Logistic regression is a generalized nonlinear regression analysis model and is often used for data mining, automatic disease diagnosis, economic prediction, and other fields. In this paper, we first aimed to introduce the concept of uncertain logistic regression based on the uncertainty theory, as well as investigating the likelihood function in the sense of uncertain measure to represent the likelihood of unknown parameters.
Citation: Jinling Gao, Zengtai Gong. Uncertain logistic regression models[J]. AIMS Mathematics, 2024, 9(5): 10478-10493. doi: 10.3934/math.2024512
Logistic regression is a generalized nonlinear regression analysis model and is often used for data mining, automatic disease diagnosis, economic prediction, and other fields. In this paper, we first aimed to introduce the concept of uncertain logistic regression based on the uncertainty theory, as well as investigating the likelihood function in the sense of uncertain measure to represent the likelihood of unknown parameters.
[1] | B. Das, B. C. Tripathy, P. Debnath, B. Bhattacharya, Characterization of statistical convergence of complex uncertain double sequence, Anal. Math. Phys., 10 (2020), 71. https://doi.org/10.1007/s13324-020-00419-7 doi: 10.1007/s13324-020-00419-7 |
[2] | J. Ding, Z. Zhang, Bayesian statistical models with uncertainty variables, J. Intell. Fuzzy Syst., 39 (2020), 1109–1117. https://doi.org/10.3233/JIFS-192014 doi: 10.3233/JIFS-192014 |
[3] | J. H. Ding, Z. Q. Zhang, Statistical inference on unceryain nonparametric regression model, Fuzzy Optim. Decis. Making, 20 (2021), 451–469. https://doi.org/10.1007/s10700-021-09353-0 doi: 10.1007/s10700-021-09353-0 |
[4] | L. Fang, S. Liu, Z. Huang, Uncertain Johnson-Schumacher growth model with imprecise observations and k-fold cross-validation test, Soft Computing, 24 (2020), 2715–2720. https://doi.org/10.1007/s00500-019-04090-4 doi: 10.1007/s00500-019-04090-4 |
[5] | B. D. Liu, Uncertainty theory, 2 Eds., Berlin: Springer-Verlag, 2007. https://doi.org/10.1007/978-3-662-44354-5 |
[6] | B. D. Liu, Uncertain entailment and modus ponens in the framework of uncertain logic, Journal of Uncertain Systems, 3 (2009), 243–251. |
[7] | B. D. Liu, Uncertainty theory: A branch of mathematics for modeling human uncertainty, Berlin: Springger-Verlag, 2010. https://doi.org/10.1007/978-3-642-13959-8 |
[8] | W. C. Lio, B. D. Liu, Uncertain maximum likelihood estimation with application to uncertain regression analysis, Soft Comput., 24 (2020), 9351–9360. https://doi.org/10.1007/s00500-020-04951-3 doi: 10.1007/s00500-020-04951-3 |
[9] | Z. Liu, L. F. Jia, Cross-validation for the uncertain Chapman-Richards growth model with imprecise observations, Int. J. Uncertain. Fuzziness Knowl. Based Syst., 28 (2020), 769–783. https://doi.org/10.1142/s0218488520500336 doi: 10.1142/s0218488520500336 |
[10] | Z. Liu, Y. Yang, Least absolute deviations eatimation for uncertain regression with imprecise observations, Fuzzy Optim. Decis. Making, 19 (2020), 33–52. https://doi.org/10.1007/s10700-019-09312-w doi: 10.1007/s10700-019-09312-w |
[11] | Y. H. Sheng, S. Kar, Some results of moments of uncertain variable through inverse uncertainty distribution, Fuzzy Optim. Decis. Making, 14 (2015), 57–76. https://doi.org/10.1007/s10700-014-9193-1 doi: 10.1007/s10700-014-9193-1 |
[12] | Y. L. Song, Z. F. Fu, Uncertain multivariable regression model, Soft Comput., 22 (2018), 5861–5866. https://doi.org/10.1007/s00500-018-3324-5 doi: 10.1007/s00500-018-3324-5 |
[13] | X. S. Wang, Z. C. Gao, H. Y. Guo, Delphi method for estimating uncertainty distributions, Intermational Journaal on Information, 15 (2012), 449–460. |
[14] | M. L. Wen, Q. Y. Zhang, R. Kang, Y. Yang, Some new ranking criteria in data envelopment analysis under uncertain environment, Comput. Ind. Eng., 110 (2017), 498–504. https://doi.org/10.1016/j.cie.2017.05.034 doi: 10.1016/j.cie.2017.05.034 |
[15] | K. Yao, A formula to calculate the variance of uncertain variable, Soft Comput., 19 (2015), 2947–2953. https://doi.org/10.1007/s00500-014-1457-8 doi: 10.1007/s00500-014-1457-8 |
[16] | K. Yao, Uncertain statistical inference models with imprecise observations, IEEE T. Fuzzy Syst., 26 (2018), 409–415. https://doi.dog/10.1109/TFUZZ.2017.2666846 doi: 10.1109/TFUZZ.2017.2666846 |
[17] | K. Yao, B. D. Liu, Uncertain regression analysis: An approach for imprecise observations, Soft Comput., 22 (2018), 5579–5582. https://doi.org/10.1007/s00500-017-2521-y doi: 10.1007/s00500-017-2521-y |
[18] | X. Yang, Y. Ni, Least-squares estimation for uncertain moving average model, Commun. Stat.-Theor. M., 50 (2021), 4134–4143. https://doi.org/10.1080/03610926.2020.1713373 doi: 10.1080/03610926.2020.1713373 |
[19] | T. Q. Ye, B. D. Liu, Uncertain hypothesis test for uncertain differential equations, Fuzzy Optim. Decis. Making, 22 (2023), 195–211. https://doi.org/10.1007/s10700-022-09389-w doi: 10.1007/s10700-022-09389-w |
[20] | M. X. Zhao, Y. H. Liu, D. A. Ralescu, J. Zhou, The covariance of uncertain variables: definition and calculation formulae, Fuzzy Optim. Decis. Making, 17 (2018), 211–232. https://doi.org/10.1007/s10700-017-9270-3 doi: 10.1007/s10700-017-9270-3 |