Motivated by the work [
Citation: Messaoud Bounkhel, Ali Al-Tane. Convexity of nonlinear mappings between bounded linear operator spaces[J]. AIMS Mathematics, 2024, 9(5): 10462-10477. doi: 10.3934/math.2024511
Motivated by the work [
[1] | J. P. Aubin and H. Frankowska, Set valued analysis, Birkhauser, Boston, 1990. |
[2] | H. Bauschke and P. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, Springer, 2011. |
[3] | J. M. Borwein and Q. J. Zhu, Variational methods in convex analysis, J. Glob. Optim., 35 (2006), 197–213. https://doi.org/10.1007/s10898-005-3835-3. doi: 10.1007/s10898-005-3835-3 |
[4] | J. M. Borwein, Subgradients of convex operators, Math. Oper. Stat. Ser., 15 (1984), 179–191. https://doi.org/10.1080/02331938408842921. doi: 10.1080/02331938408842921 |
[5] | J. M. Borwein, Continuity and differentiability properties of convex operators, London Maths. Soc., s3-44 (1982), 420–444. https://doi.org/10.1112/plms/s3-44.3.420. doi: 10.1112/plms/s3-44.3.420 |
[6] | J. M. Borwein, Convex relations in analysis and optimization, In: S. Schaible and W. T. Ziemba, (eds.), Generalized Concavity in Optimization and Economics, Academic Press, New York, 1981. |
[7] | M. Bounkhel, Global minimum of nonlinear mappings and orthogonality in $C^1$-classes, New Zeal. J. Math., 36 (2007), 147–158. |
[8] | J. Brinkhuis, Z. Q. Luo, and S. Zhang, Matrix convex functions with applications to weighted centers for semidefinite programming, Technical Report, El 2005-38, Econometric Institute, Erasmus University Rotterdam, 2005. |
[9] | X. Chen, H. Qi, and P. Tseng, Analysis of nonsmooth symmetric-matrix-valued function with applications to semidefinite complementarity problems, SIAM J. Optim., 13 (2003), 960–985. https://doi.org/10.1137/S1052623400380584. doi: 10.1137/S1052623400380584 |
[10] | M. V. Dolgopolik, DC semidefinite programming and cone constrained DC optimization I: theory, Comput. Optim. Appl., 82 (2022), 649–671. https://doi.org/10.1007/s10589-022-00374-y. doi: 10.1007/s10589-022-00374-y |
[11] | M. V. Dolgopolik, DC semidefinite programming and cone constrained DC optimization Ⅱ: local search methods, Comput. Optim. Appl., 85 (2023), 993–1031. https://doi.org/10.1007/s10589-023-00479-y. doi: 10.1007/s10589-023-00479-y |
[12] | M. V. Dolgopolik, Subdifferentials of convex matrix-valued functions, arXiv: 2307.15856, 2023. |
[13] | F. Hansen and J. Tomiyama, Differential analysis of matrix convex functions, Linear Algebra Appl., 420 (2007), 102–116. https://doi.org/10.1016/j.laa.2006.06.018. doi: 10.1016/j.laa.2006.06.018 |
[14] | N. Kirov, Generic fréchet differentiability of convex operators, P. Am. Math. Soc., 94 (1985), 1. |
[15] | A. G. Kusraev and S. S. Kutateladze, Subdifferentials: Theory and applications, Kluwer Academic Publishers, Dordrecht, 1995. |
[16] | B. S. Mordukhovich, Variational analysis and generalized differentiation I: Basic theory, Springer-Verlag, Berling, Heidelberg, 2006. |
[17] | K. Nordstrom, Convexity of the inverse and Moore-Penrose inverse, Linear Algebra Appl., 434 (2011), 1489–1512. https://doi.org/10.1016/j.laa.2010.11.023. doi: 10.1016/j.laa.2010.11.023 |
[18] | N. S. Papageorgiou, Nonsmooth analysis on partially ordered vectors spaces: Part 1: Convex case, Pac. J. Math., 107 (1983), 403–458. https://doi.org/10.2140/pjm.1983.107.403. doi: 10.2140/pjm.1983.107.403 |
[19] | S. M. Robinson, Regularity and stability for convex multivalued functions, Math. Oper. Res., 1 (1976), 130–143. https://doi.org/10.1287/moor.1.2.130. doi: 10.1287/moor.1.2.130 |
[20] | R. T. Rockafellar, Convex analysis, Princeton Univ. Press, Princeton, NJ, 1970. |
[21] | R. T. Rockafellar, R. Wets, Variational analysis, Springer Verlag, Berlin, 1998. |
[22] | D. Sun and J. Sun, Semismooth matrix-valued functions, Math. Oper. Res., 27 (2002), 150–169. https://doi.org/10.1287/moor.27.1.150.342. doi: 10.1287/moor.27.1.150.342 |
[23] | M. Théra. Subdifferential calculus for convex operators, J. Math. Anal. Appl., 80 (1981), 78–91. |
[24] | M. Valadier, Sous-differentiabilité des fonctions convexes à valeurs dans un espace vectoriel ordonné, Math. Scand., 30 (1972), 65–74. |
[25] | L. Vesely and L. Zajicek, On differentiability of convex operators, J. Math. Anal. Appl., 402 (2013), 12–22. https://doi.org/10.1016/j.jmaa.2012.12.073. doi: 10.1016/j.jmaa.2012.12.073 |
[26] | L. Vesely and L. Zajicek, Delta-convex mappings between Banach spaces and applications, Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1989. |
[27] | W. Watkins, Convex matrix functions, Proc. Amer. Math. Soc., 44 (1974), 31–34. https://doi.org/10.1090S0002-9939-1974-0340291-3. |
[28] | W. Wyss, Two non-commutative binomial theorems, arXiv: 1707.03861, 2017. |