In this paper, we investigate the existence, uniqueness and stability results for a class of nonlinear impulsive Hilfer-Katugampola problems. Our reasoning is founded on the Banach contraction principle and Krasnoselskii's fixed point theorem. In addition, an example is provided to demonstrate the effectiveness of the main results.
Citation: Soufyane Bouriah, Mouffak Benchohra, Juan J. Nieto, Yong Zhou. Ulam stability for nonlinear implicit differential equations with Hilfer-Katugampola fractional derivative and impulses[J]. AIMS Mathematics, 2022, 7(7): 12859-12884. doi: 10.3934/math.2022712
[1] | Wei Zhang, Jifeng Zhang, Jinbo Ni . New Lyapunov-type inequalities for fractional multi-point boundary value problems involving Hilfer-Katugampola fractional derivative. AIMS Mathematics, 2022, 7(1): 1074-1094. doi: 10.3934/math.2022064 |
[2] | Xiaoming Wang, Rizwan Rizwan, Jung Rey Lee, Akbar Zada, Syed Omar Shah . Existence, uniqueness and Ulam's stabilities for a class of implicit impulsive Langevin equation with Hilfer fractional derivatives. AIMS Mathematics, 2021, 6(5): 4915-4929. doi: 10.3934/math.2021288 |
[3] | Weerawat Sudsutad, Wicharn Lewkeeratiyutkul, Chatthai Thaiprayoon, Jutarat Kongson . Existence and stability results for impulsive (k,ψ)-Hilfer fractional double integro-differential equation with mixed nonlocal conditions. AIMS Mathematics, 2023, 8(9): 20437-20476. doi: 10.3934/math.20231042 |
[4] | Thanin Sitthiwirattham, Rozi Gul, Kamal Shah, Ibrahim Mahariq, Jarunee Soontharanon, Khursheed J. Ansari . Study of implicit-impulsive differential equations involving Caputo-Fabrizio fractional derivative. AIMS Mathematics, 2022, 7(3): 4017-4037. doi: 10.3934/math.2022222 |
[5] | Rizwan Rizwan, Jung Rye Lee, Choonkil Park, Akbar Zada . Qualitative analysis of nonlinear impulse langevin equation with helfer fractional order derivatives. AIMS Mathematics, 2022, 7(4): 6204-6217. doi: 10.3934/math.2022345 |
[6] | Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for ψ-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244 |
[7] | Thabet Abdeljawad, Pshtiwan Othman Mohammed, Hari Mohan Srivastava, Eman Al-Sarairah, Artion Kashuri, Kamsing Nonlaopon . Some novel existence and uniqueness results for the Hilfer fractional integro-differential equations with non-instantaneous impulsive multi-point boundary conditions and their application. AIMS Mathematics, 2023, 8(2): 3469-3483. doi: 10.3934/math.2023177 |
[8] | Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Kottakkaran Sooppy Nisar, Suliman Alsaeed . Discussion on iterative process of nonlocal controllability exploration for Hilfer neutral impulsive fractional integro-differential equation. AIMS Mathematics, 2023, 8(7): 16846-16863. doi: 10.3934/math.2023861 |
[9] | Hasanen A. Hammad, Hassen Aydi, Hüseyin Işık, Manuel De la Sen . Existence and stability results for a coupled system of impulsive fractional differential equations with Hadamard fractional derivatives. AIMS Mathematics, 2023, 8(3): 6913-6941. doi: 10.3934/math.2023350 |
[10] | Saleh S. Redhwan, Sadikali L. Shaikh, Mohammed S. Abdo . Implicit fractional differential equation with anti-periodic boundary condition involving Caputo-Katugampola type. AIMS Mathematics, 2020, 5(4): 3714-3730. doi: 10.3934/math.2020240 |
In this paper, we investigate the existence, uniqueness and stability results for a class of nonlinear impulsive Hilfer-Katugampola problems. Our reasoning is founded on the Banach contraction principle and Krasnoselskii's fixed point theorem. In addition, an example is provided to demonstrate the effectiveness of the main results.
Numerous authors have been interested in fractional differential equations throughout the years [1,4,5,10,12,13,14,16,18,19,20,28]. Several natural events are known to be modeled using fractional differential equations, which provides for a better description of the true state of the problem as compared to the problem modeled using differential equations of integer order [8,20,24,27].
Fractional calculus has played an essential role in several domains during the last two decades, including mechanics, chemistry, economics, biology, control theory, and signal and image processing. Furthermore, it has been discovered that fractional order models may accurately capture the dynamical behavior of many complex systems. Such models are appealing not just to engineers and physicists, but also to mathematicians. For further details and applications [2,3,17,20,21,23,29,31,32,33,34,35].
Several researchers have recently explored impulsive differential equations given their considerable applicability in diverse domains of science and technology. For a detailed study, see for instance [9,11,25].
Motivated by the aforementioned works and the paper [26], in this paper, we consider the following impulsive problem:
(ρDζ1,ζ2α+p)(ϑ)=ψ(ϑ,p(ϑ),(ρDζ1,ζ2α+p)(ϑ)), ϑ∈(ϑν,ϑν+1];ν=0,…,ς, | (1.1) |
ΔρI1−ξα+p|ϑ=ϑν=χν∈R, ν=1,…,ς, | (1.2) |
ρI1−ξα+p(α)=˜α∈R, | (1.3) |
where ρDζ1,ζ2α+,ρI1−ξα+ are the Hilfer-Katugampola fractional derivative of order ζ1∈(0,1) and type ζ2∈[0,1] and Katugampola fractional integral of order 1−ξ,(ξ=ζ1+ζ2−ζ1ζ2) respectively, ψ:Θ×R×R→R, and 0<α=ϑ0<ϑ1<⋯<ϑς<ϑς+1=μ, ΔρI1−ξα+p|ϑ=ϑν= ρI1−ξα+p(ϑ+ν)−ρI1−ξα+p(ϑ−ν),where ρI1−ξα+p(ϑ+ν)=limκ→0+ρI1−ξα+p(ϑν+κ) and ρI1−ξα+p(ϑ−ν)=limκ→0−ρI1−ξα+p(ϑν+κ) represent the right and left limits of ρI1−ξα+p(ϑ) at ϑ=ϑν.
The following is the structure of paper. Section 2 presents certain notations and revisits several notions and auxiliary results. Section 3 presents two results for the problems (1.1)–(1.3) by employing suitable fixed point theorems. In Section 4, the Ulam-Hyers stability for the problems (1.1)–(1.3) is given. Finally, we give an example to illustrate the applicability of our theoretical results.
Let 0<α<μ,Θ=[α,μ] and C(Θ,R) denotes a Banach space composed of all continuous functions from Θ into R with the norm
‖p‖∞=sup{|p(ϑ)|:ϑ∈Θ}. |
Consider the weighted spaces
Cξ,ρ(Θ)={p:(α,μ]→R:(ϑρ−αρρ)ξp(ϑ)∈C(Θ,R)},0≤ξ<1, |
Cβξ,ρ(Θ)={p∈Cβ−1(Θ):p(β)∈Cξ,ρ(Θ)},β∈N,C0ξ,ρ(Θ)=Cξ,ρ(Θ), |
with the norms
‖p‖Cξ,ρ=supϑ∈Θ|(ϑρ−αρρ)ξp(ϑ)| |
and
‖p‖Cβξ,ρ=β−1∑ν=0‖p(ν)‖∞+‖p(β)‖Cξ,ρ. |
Consider the weighted Banach space of piecewise continuous functions defined by
PC1−ξ,ρ(Θ,R)={p:Θ→R:p∈C1−ξ,ρ((ϑν,ϑν+1],R), ν=0,…,ς and thereexist ρI1−ξα+p(ϑ−ν) and ρI1−ξα+p(ϑ+ν), ν=1,…,ς with ρI1−ξα+p(ϑ−ν)=ρI1−ξα+p(ϑν)}, |
with the norm
‖p‖PC1−ξ,ρ=supϑ∈Θ|(ϑρ−ϑρνρ)1−ξp(ϑ)|. |
For ξ=1, we obtain the space
PC0,ρ(Θ,R)=PC(Θ,R)={p:Θ→R:p∈C((ϑν,ϑν+1],R), ν=0,…,ς and there exist p(ϑ−ν) and p(ϑ+ν), ν=1,…,ς with p(ϑ−ν)=p(ϑν)}, |
with the norm
‖p‖PC=‖p‖∞. |
Now, we consider the weighted spaces:
PCβ1−ξ,ρ(Θ)={p∈PCβ−1(Θ):p(β)∈PC1−ξ,ρ(Θ)},β∈N,PC01−ξ,ρ(Θ)=PC1−ξ,ρ(Θ), |
with the norms
‖p‖PCβ1−ξ,ρ=β−1∑ν=0‖p(ν)‖∞+‖p(β)‖PC1−ξ,ρ. |
By Xp˜α(α,ˉα), (˜α∈R, 1≤p≤∞), we denote the space of those complex-valued Lebesgue measurable functions ψ on [α,ˉα] for which ‖ψ‖Xp˜α<∞, with the norm
‖ψ‖Xp˜α=(∫ˉαα|ϑ˜αψ(ϑ)|pdϑϑ)1p, (1≤p<∞,˜α∈R). |
Definition 2.1. [26] Let ζ1∈R+,˜α∈R and ϰ∈Xp˜α(α,ˉα). The Katugampola fractional integral of order ζ1 is given by
(ρIζ1α+ϰ)(ϑ)=∫ϑαϱρ−1(ϑρ−ϱρρ)ζ1−1ϰ(ϱ)Γ(ζ1)dϱ, ϑ>α,ρ>0. |
Definition 2.2. [26] Let ζ1∈R+∖N and ρ>0. The Katugampola fractional derivative ρDζ1α+ of order ζ1 is given by
(ρDζ1α+ϰ)(ϑ)=δβρ(ρIβ−ζ1α+ϰ)(ϑ)=(ϑ1−ρddϑ)β∫ϑαϱρ−1(ϑρ−ϱρρ)β−ζ1−1ϰ(ϱ)Γ(β−ζ1)dϱ, ϑ>α,ρ>0, |
where β=[ζ1]+1 and δβρ=(ϑ1−ρddϑ)β.
Theorem 2.3. [26] Let ζ1>0,ζ2>0,1≤p≤∞,0<α<ˉα<∞ and ρ,˜α∈R,ρ≥˜α. Then, for ϰ∈Xp˜α(α,ˉα) the semigroup property is valid, i.e.
(ρIζ1α+ ρIζ2α+ϰ)(ϑ)=(ρIζ1+ζ2α+ϰ)(ϑ). |
Lemma 2.4. [22] Let ζ1>0, and 0≤ξ<1. Then, ρIζ1α+ is bounded from Cξ,ρ(Θ) into Cξ,ρ(Θ).
Lemma 2.5. [7] Let ϑ>α. Then, for ζ1≥0 and ζ2>0, we have
[ρIζ1α+(ϱρ−αρρ)ζ2−1](ϑ)=Γ(ζ2)Γ(ζ1+ζ2)(ϑρ−αρρ)ζ1+ζ2−1,[ρDζ1α+(ϱρ−αρρ)ζ1−1](ϑ)=0, 0<ζ1<1. |
Lemma 2.6. [22] Let ζ1>0,0≤ξ<1 and ϰ∈Cξ[α,ˉα]. Then,
(ρDζ1α+ ρIζ1α+ϰ)(ϑ)=ϰ(ϑ), forall ϑ∈(α,ˉα]. |
Lemma 2.7. [22] Let 0<ζ1<1,0≤ξ<1. If ϰ∈Cξ,ρ[α,ˉα] and ρI1−ζ1α+ϰ∈C1ξ,ρ[α,ˉα], then
(ρIζ1α+ ρDζ1α+ϰ)(ϑ)=ϰ(ϑ)−(ρI1−ζ1α+ϰ)(α)Γ(ζ1)(ϑρ−αρρ)ζ1−1, forall ϑ∈(α,ˉα]. |
Definition 2.8. [22] Let the order ζ1 and the type ζ2 satisfy β−1<ζ1<β and 0≤ζ2≤1, with β∈N. The Hilfer-Katugampola fractional derivative of a function ϰ∈C1−ξ,ρ[α,ˉα], is defined by
(ρDζ1,ζ2α+ϰ)(ϑ)=(ρIζ2(β−ζ1)α+(ϑρ−1ddϑ)β ρI(1−ζ2)(β−ζ1)α+ϰ)(ϑ)=(ρIζ2(β−ζ1)α+δβρ ρI(1−ζ2)(β−ζ1)α+ϰ)(ϑ). |
In this paper we consider the case β=1 since 0<ζ1<1.
Property 2.9. [22] The operator ρDζ1,ζ2α+ can be written as
ρDζ1,ζ2α+= ρIζ2(1−ζ1)α+δρ ρI1−ξα+= ρIζ2(1−ζ1)α+ ρDξα+, ξ=ζ1+ζ2−ζ1ζ2. |
Definition 2.10. We assume that the parameters ζ1,ζ2,ξ satisfy
ξ=ζ1+ζ2−ζ1ζ2, 0<ζ1,ζ2,ξ<1. |
Then, we can define the spaces
Cζ1,ζ21−ξ,ρ(Θ)={p∈C1−ξ,ρ(Θ), ρDζ1,ζ2α+p∈C1−ξ,ρ(Θ)}, |
Cξ1−ξ,ρ(Θ)={p∈C1−ξ,ρ(Θ), ρDξα+p∈C1−ξ,ρ(Θ)}, |
PCζ1,ζ21−ξ,ρ(Θ)={p∈PC1−ξ,ρ(Θ), ρDζ1,ζ2α+p∈PC1−ξ,ρ(Θ)}, |
and
PCξ1−ξ,ρ(Θ)={p∈PC1−ξ,ρ(Θ), ρDξα+p∈PC1−ξ,ρ(Θ)}. |
Since ρDζ1,ζ2α+p= ρIξ(1−ζ1)α+ ρDξα+p, by Lemma 2.4, we get
Cξ1−ξ,ρ(Θ)⊂Cζ1,ζ21−ξ,ρ(Θ)⊂C1−ξ,ρ(Θ), |
and
PCξ1−ξ,ρ(Θ)⊂PCζ1,ζ21−ξ,ρ(Θ)⊂PC1−ξ,ρ(Θ). |
Lemma 2.11. [22] Let 0<ζ1<1,0≤ζ2≤1 and ξ=ζ1+ζ2−ζ1ζ2. If p∈Cξ1−ξ,ρ(Θ), then
ρIξα+ ρDξα+p=ρIζ1α+ ρDζ1,ζ2α+p |
and
ρDξα+ ρIζ1α+p= ρDζ2(1−ζ1)α+p. |
Lemma 2.12. [22] Let 0<ζ1<1,0≤ζ2≤1 and ξ=ζ1+ζ2−ζ1ζ2. If φ∈C1−ξ[α,ˉα] and ρI1−ζ2(1−ζ1)α+φ∈C11−ξ,ρ[α,ˉα], then ρDζ1,ζ2α+ ρIζ1α+φ exist on (α,ˉα] and
ρDζ1,ζ2α+ ρIζ1α+φ=φ. |
Definition 2.13. [20] A two-parameter Mittag-Leffler function Eζ1,ζ2(p),ζ1,ζ2,p∈R with ζ1>0 and ζ2>0, is defined by
Eζ1,ζ2(p)=∞∑ν=0pνΓ(ζ1ν+ζ2). |
If ζ2=1, we obtain:
Eζ1(p)=∞∑ν=0pνΓ(ζ1ν+1). |
Lemma 2.14. [6] Let ζ1>0,p(ϑ),ϖ1(ϑ) be nonnegative functions and ϖ2(ϑ) be nonnegative and nondecreasing function for ϑ∈[ϑ0,μ),μ>0,ϖ2(ϑ)≤θ where θ is a constant. If
p(ϑ)≤ϖ1(ϑ)+ϖ2(ϑ)∫ϑϑ0(ϑρ−ϱρρ)ζ1−1ϱρ−1p(ϱ)dϱ, ϑ∈[ϑ0,μ). |
Then
p(ϑ)≤ϖ1(ϑ)+∫ϑϑ0[∞∑β=1(ϖ2(ϑ)Γ(ζ1))βΓ(βζ1)(ϑρ−ϱρρ)βζ1−1ϱρ−1]ϖ1(ϱ)dϱ, ϑ∈[ϑ0,μ). |
Corollary 2.15. [6] Assume that the requirements of Lemma 2.14 are met, and that ϖ1(ϑ) is a nondecreasing function for ϑ∈[ϑ0,μ). Then
p(ϑ)≤ϖ1(ϑ)Eζ1(ϖ2(ϑ)Γ(ζ1)(ϑρ−ϑρ0ρ)ζ1), ϑ∈[ϑ0,μ). |
Definition 2.16. The Eq (1.1) is Ulam-Hyers stable if there exists a real number cψ,ς>0 such that for each κ>0 and for each solution w∈PCξ1−ξ,ρ(Θ) of the inequality
{|ρDζ1,ζ2α+w(ϑ)−ψ(ϑ,w(ϑ),ρDζ1,ζ2α+w(ϑ))|≤κ,ϑ∈(ϑν,ϑν+1],ν=1,…,ς|ΔρI1−ξα+w|ϑ=ϑν−χν|≤κ,ν=1,…,ς; | (2.1) |
there exists a solution p∈PCξ1−ξ,ρ(Θ) of Eq (1.1) with
|w(ϑ)−p(ϑ)|≤cψ,ςκ,ϑ∈Θ. |
Definition 2.17. The Eq (1.1) is generalized Ulam-Hyers stable if there exists ϖψ,ς∈PC1−ξ(R+,R+), ϖψ,ς(0)=0, such that for each solution w∈PCξ1−ξ,ρ(Θ) of the inequality (2.1), there exists a solution p∈PCξ1−ξ,ρ(Θ) of the Eq (1.1) with
|w(ϑ)−p(ϑ)|≤ϖψ,ς(κ),ϑ∈Θ. |
Definition 2.18. The Eq (1.1) is Ulam-Hyers-Rassias stable with respect to (ω,ϖ) if there exists a real number cψ,ς,ω>0 such that for each κ>0 and for each solution w∈PCξ1−ξ,ρ(Θ) of the inequality
{|ρDζ1,ζ2α+w(ϑ)−ψ(ϑ,w(ϑ),ρDζ1,ζ2α+w(ϑ))|≤κω(ϑ),ϑ∈(ϑν,ϑν+1],ν=1,…,ς|ΔρI1−ξα+w|ϑ=ϑν−χν|≤κϖ,ν=1,...,ς; | (2.2) |
there exists a solution p∈PCξ1−ξ,ρ(Θ) of Eq (1.1) with
|w(ϑ)−p(ϑ)|≤cψ,ς,ωκ(ω(ϑ)+ϖ),ϑ∈Θ. |
Definition 2.19. The Eq (1.1) is generalized Ulam-Hyers-Rassias stable with respect to (ω,ϖ) if there exists a real number cψ,ς,ω>0 such that for each solution w∈PCξ1−ξ,ρ(Θ) of the inequality
{|ρDζ1,ζ2α+w(ϑ)−ψ(ϑ,w(ϑ),ρDζ1,ζ2α+w(ϑ))|≤ω(ϑ),ϑ∈(ϑν,ϑν+1],ν=1,…,ς|ΔρI1−ξα+w|ϑ=ϑν−χν|≤ϖ,ν=1,…,ς; | (2.3) |
there exists a solution p∈PCξ1−ξ,ρ(Θ) of Eq (1.1) with
|w(ϑ)−p(ϑ)|≤cψ,ς,ω(ω(ϑ)+ϖ(ϑ)),ϑ∈Θ. |
Remark 2.20. A function w∈PCξ1−ξ,ρ(Θ) is a solution of the inequality (2.2) if and only if there is η∈PCξ1−ξ,ρ(Θ) and a sequence ην,ν=1,…,ς, where
i) |η(ϑ)|≤κω(ϑ),ϑ∈(ϑν,ϑν+1],ν=1,…,ς and |ην|≤κϖ,ν=1,…,ς;
ii) ρDζ1,ζ2α+w(ϑ)=ψ(ϑ,w(ϑ),ρDζ1,ζ2α+w(ϑ))+η(ϑ),ϑ∈(ϑν,ϑν+1],ν=1,…,ς;
iii) ΔρI1−ξα+w|ϑ=ϑν=χν+ην,ν=1,…,ς.
Theorem 2.21. [30] Let D⊂PC(Θ,R). D is relatively compact (i.e ¯D is compact) if:
(1) D is uniformly bounded i.e, there exists ˉθ>0 where
|ψ(p)|<ˉθforeveryψ∈Dandp∈(ϑν,ϑν+1],ν=1,…,ς. |
(2) D is equicontinuous on (ϑν,ϑν+1] i.e, for every κ>0, there exists δ>0 such that for each p,¯p∈(ϑν,ϑν+1], |p−¯p|≤δ implies |ψ(p)−ψ(¯p)|≤κ, for every ψ∈D.
With appropriate modifications, the preceding theorem may be extended to the weighted space PC1−ξ(Θ,R).
Theorem 2.22. [26] (PC1−ξ type Arzela-Ascoli theorem). Let D⊂PC1−ξ(Θ,R). D is relatively compact (i.e ¯D is compact) if:
(1) D is uniformly bounded i.e, there exists ˉθ>0 such that
|ψ(p)|<ˉθforeveryψ∈Dandp∈(ϑν,ϑν+1],ν=1,…,ς. |
(2) D is equicontinuous on (ϑν,ϑν+1] i.e, for every κ>0, there exists δ>0 such that for each p,¯p∈(ϑν,ϑν+1], |p−¯p|≤δ implies |ψ(p)−ψ(¯p)|≤κ, for every ψ∈D.
In this section, we study the existence of solution for the problems (1.1)–(1.3). We employ the following lemma to establish our main results.
Lemma 3.1. Let 0<ζ1<1, and 0≤ζ2≤1,ξ=ζ1+ζ2−ζ1ζ2 and γ:Θ→R be continuous function. For any ˉα∈Θ, a function p∈Cξ1−ξ,ρ(Θ,R) is a solution of the equation:
p(ϑ)=1Γ(ξ)(ϑρ−αρρ)ξ−1{(ρI1−ξα+)p(ˉα)−(ρI1−ξ+ζ1α+)γ(ϑ)|ϑ=ˉα}+(ρIζ1α+γ)(ϑ), | (3.1) |
if and only if, p is solution of the Hilfer-Katugampola fractional differential equation
ρDζ1,ζ2α+p(ϑ)=γ(ϑ); ϑ∈Θ. | (3.2) |
Proof. (⇒) Let p∈Cξ1−ξ,ρ(Θ) satisfying (3.1). We demonstrate that p also verifies the fractional differential equation (3.2). Applying ρDζ1,ζ2α+ on both sides of the Eq (3.1), we get
ρDζ1,ζ2α+p(ϑ)=1Γ(ξ){(ρI1−ξα+)p(ˉα)−(ρI1−ξ+ζ1α+)γ(ϑ)|ϑ=ˉα} ρDζ1,ζ2α+(ϱρ−αρρ)ξ−1(ϑ)+ρDζ1,ζ2α+ ρIζ1α+γ(ϑ); ϑ∈Θ. |
From the Lemma 2.4 and by the definition of the space C11−ξ,ρ(Θ), we get
ρI1−ζ2(1−ζ1)α+γ∈C11−ξ,ρ(Θ). |
By Lemma 2.12 and Lemma 2.5 we obtain
ρDζ1,ζ2α+p(ϑ)=γ(ϑ); ϑ∈Θ. |
(⇐) Let p∈Cξ1−ξ,ρ(Θ) by a solution of the fractional differential equation (3.2). We prove that p is also a solution of (3.1). Then
1Γ(ξ)(ϑρ−αρρ)ξ−1{(ρI1−ξα+)p(ˉα)−(ρI1−ξ+ζ1α+)γ(ϑ)|ϑ=ˉα}+(ρIζ1α+γ)(ϑ)=1Γ(ξ)(ϑρ−αρρ)ξ−1{(ρI1−ξα+)p(ˉα)−(ρI1−ξ+ζ1α+)ρDζ1,ζ2α+p(ϑ)|ϑ=ˉα}+ρIζ1α+ ρDζ1,ζ2α+p(ϑ)=1Γ(ξ)(ϑρ−αρρ)ξ−1{(ρI1−ξα+)p(ˉα)−ρI1−ξα+(ρIζ1α+ ρDζ1,ζ2α+)p(ϑ)|ϑ=ˉα}+ρIζ1α+ ρDζ1,ζ2α+p(ϑ). | (3.3) |
By Lemma 2.7, with ζ1=ξ, we obtain
(ρIξα+ ρDξα+p)(ϑ)=p(ϑ)−1Γ(ξ)(ϑρ−αρρ)ξ−1 ρI1−ξα+p(α), |
where ϑ∈(α,μ]. By hypothesis, p∈Cξ1−ξ,ρ(Θ), using Lemma 2.11, we have
(ρIξα+ ρDξα+p)(ϑ)=(ρIζ1α+ ρDζ1,ζ2α+p)(ϑ)=p(ϑ)−1Γ(ξ)(ϑρ−αρρ)ξ−1 ρI1−ξα+p(α), | (3.4) |
which implies that
ρI1−ξα+(ρIζ1α+ ρDζ1,ζ2α+p)(ϑ)=(ρI1−ξα+p)(ϑ)−1Γ(ξ) ρI1−ξα+p(α)ρI1−ξα+(ϱρ−αρρ)ξ−1(ϑ). |
By applying Lemma 2.5 we get
ρI1−ξα+(ρIζ1α+ ρDζ1,ζ2α+p)(ϑ)=(ρI1−ξα+p)(ϑ)−1Γ(ξ) ρI1−ξα+p(α)Γ(ξ)=(ρI1−ξα+p)(ϑ)−ρI1−ξα+p(α). | (3.5) |
By replacing (3.4) and (3.5) in (3.3) we have
1Γ(ξ)(ϑρ−αρρ)ξ−1{(ρI1−ξα+p)(ˉα)−(ρI1−ξ+ζ1α+γ)(ϑ)|ϑ=ˉα}+ρIζ1α+γ(ϑ)=1Γ(ξ)(ϑρ−αρρ)ξ−1{(ρI1−ξα+p)(ˉα)−ρI1−ξα+p(ϑ)+ρI1−ξα+p(α)|ϑ=ˉα}+p(ϑ)−1Γ(ξ)(ϑρ−αρρ)ξ−1 ρI1−ξα+p(α)=1Γ(ξ)(ϑρ−αρρ)ξ−1 ρI1−ξα+p(α)+p(ϑ)−1Γ(ξ)(ϑρ−αρρ)ξ−1 ρI1−ξα+p(α)=p(ϑ), |
with ϑ∈(α,ˉα], that is p(⋅) satisfies (3.1). This completes the proof of the Lemma.
Lemma 3.2. Let ξ=ζ1+ζ2−ζ1ζ2, where 0<ζ1<1 and 0≤ζ2≤1. Let Ψ:(α,μ]→R is a continuous function. A function p∈PCξ1−ξ,ρ(Θ) is a solution of the fractional integral equation
p(ϑ)={˜αΓ(ξ)(ϑρ−αρρ)ξ−1+(ρIζ1α+Ψ)(ϑ), ϑ∈(α,ϑ1]1Γ(ξ)(ϑρ−αρρ)ξ−1(˜α+ν∑i=1χi)+(ρIζ1α+Ψ)(ϑ), ϑ∈(ϑν,ϑν+1], | (3.6) |
where ν=1,…,ς, if and only if p is a solution of the problem:
(ρDζ1,ζ2α+p)(ϑ)=Ψ(ϑ), foreach , ϑ∈(ϑν,ϑν+1], ν=0,…,ς, | (3.7) |
ΔρI1−ξα+p|ϑ=ϑν=χν∈R, ν=1,…,ς, | (3.8) |
ρI1−ξα+p(α)=˜α∈R. | (3.9) |
Proof. Assume that p∈PCξ1−ξ,ρ(Θ,R) satisfies the problems (3.7)–(3.9).
If ϑ∈(α,ϑ1] then
{(ρDζ1,ζ2α+p)(ϑ)=Ψ(ϑ)ρI1−ξα+p(α)=˜α. | (3.10) |
Then the problem (3.10) is equivalent to the following fractional integral [22].
p(ϑ)=˜αΓ(ξ)(ϑρ−αρρ)ξ−1+(ρIζ1α+Ψ)(ϑ), ϑ∈(α,ϑ1]. | (3.11) |
Now, if ϑ∈(ϑ1,ϑ2] then
(ρDζ1,ζ2α+p)(ϑ)=Ψ(ϑ); ϑ∈(ϑ1,ϑ2] with ρI1−ξα+p(ϑ+1)−ρI1−ξα+p(ϑ−1)=χ1. |
By Lemma 3.1, we have
p(ϑ)=1Γ(ξ)(ϑρ−αρρ)ξ−1{(ρI1−ξα+)p(ϑ+1)−(ρI1−ξ+ζ1α+Ψ)(ϑ)|ϑ=ϑ1}+(ρIζ1α+Ψ)(ϑ)=1Γ(ξ)(ϑρ−αρρ)ξ−1{(ρI1−ξα+)p(ϑ−1)+χ1−(ρI1−ξ+ζ1α+Ψ)(ϑ)|ϑ=ϑ1}+(ρIζ1α+Ψ)(ϑ); ϑ∈(ϑ1,ϑ2]. | (3.12) |
Now, from (3.11), we have
ρI1−ξα+p(ϑ)=˜α+ρI1−ξ+ζ1α+Ψ(ϑ), ϑ∈(α,ϑ1]. |
This gives
ρI1−ξα+p(ϑ−1)− ρI1−ξ+ζ1α+Ψ(ϑ)|ϑ=ϑ1=˜α. | (3.13) |
Using (3.13) in (3.12), we obtain
p(ϑ)=1Γ(ξ)(ϑρ−αρρ)ξ−1(˜α+χ1)+ ρIζ1α+Ψ(ϑ), ϑ∈(ϑ1,ϑ2]. | (3.14) |
Next, if ϑ∈(ϑ2,ϑ3] then
ρDζ1,ζ2α+p(ϑ)=Ψ(ϑ); ϑ∈(ϑ2,ϑ3] with ρI1−ξα+p(ϑ+2)−ρI1−ξα+p(ϑ−2)=χ2. |
Again, by Lemma 3.1, we have
p(ϑ)=1Γ(ξ)(ϑρ−αρρ)ξ−1{ρI1−ξα+p(ϑ+2)−ρI1−ξ+ζ1α+Ψ(ϑ)|ϑ=ϑ2}+ρIζ1α+Ψ(ϑ)=1Γ(ξ)(ϑρ−αρρ)ξ−1{ρI1−ξα+p(ϑ−2)+χ2−ρI1−ξ+ζ1α+Ψ(ϑ)|ϑ=ϑ2}+ρIζ1α+Ψ(ϑ); ϑ∈(ϑ2,ϑ3]. | (3.15) |
From (3.14), we have
ρI1−ξα+p(ϑ)=(˜α+χ1)+ρI1−ξ+ζ1α+Ψ(ϑ); ϑ∈(ϑ1,ϑ2], |
which gives
ρI1−ξα+p(ϑ−2)−ρI1−ξ+ζ1α+Ψ(ϑ)|ϑ=ϑ2=˜α+χ1. | (3.16) |
Using (3.16) in (3.15), we get
p(ϑ)=1Γ(ξ)(ϑρ−αρρ)ξ−1(˜α+χ1+χ2)+ ρIζ1α+Ψ(ϑ), ϑ∈(ϑ2,ϑ3]. |
Continuing the above process, we obtain
p(ϑ)=1Γ(ξ)(ϑρ−αρρ)ξ−1(˜α+ν∑i=1χi)+(ρIζ1α+Ψ)(ϑ), ϑ∈(ϑν,ϑν+1],ν=1⋯ς. |
Conversely, let p∈PCξ1−ξ,ρ(Θ,R) satisfies the fractional integral equation (3.11). Then, for ϑ∈(α,ϑ1], we have
p(ϑ)=˜αΓ(ξ)(ϑρ−αρρ)ξ−1+ρIζ1α+Ψ(ϑ). |
Applying ρDζ1,ζ2α+ on both sides, we get
ρDζ1,ζ2α+p(ϑ)=˜αΓ(ξ)ρDζ1,ζ2α+(ϱρ−αρρ)ξ−1(ϑ)+ρDζ1,ζ2α+ ρIζ1α+Ψ(ϑ). |
From Lemma 2.4 and by the definition of the space C11−λ,ρ(Θ), we can get
ρI1−ζ2(1−ζ1)α+Ψ∈C11−λ,ρ(Θ). | (3.17) |
Using Lemma 2.12 and Lemma 2.5, we obtain
ρDζ1,ζ2α+p(ϑ)=Ψ(ϑ),ϑ∈(α,ϑ1]. |
Now, for ϑ∈(ϑν;ϑν+1], we have
p(ϑ)=1Γ(ξ)(ϑρ−αρρ)ξ−1(˜α+ν∑i=1χi)+ ρIζ1α+Ψ(ϑ). |
Applying the operator ρDζ1,ζ2α+ on both sides, we get
ρDζ1,ζ2α+p(ϑ)=1Γ(ξ)(˜α+ν∑i=1χi) ρDζ1,ζ2α+(ϱρ−αρρ)ξ−1(ϑ)+ ρDζ1,ζ2α+ ρIζ1α+Ψ(ϑ). |
From (3.17) and using Lemma 2.12 and Lemma 2.5, we obtain
ρDζ1,ζ2α+p(ϑ)=Ψ(ϑ). |
Thus, p satisfies (3.7). Next, we demonstrate that p also verify (3.8) and (3.9). Applying the operator ρI1−ξα+ on both sides of Eq (3.11), we get
ρI1−ξα+p(ϑ)=˜αΓ(ξ)ρI1−ξα+(ϱρ−αρρ)ξ−1(ϑ)+ ρI1−ξ+ζ1α+Ψ(ϑ). |
By Lemma 2.5 we get
ρI1−ξα+p(ϑ)=˜α+ ρI1−ξ+ζ1α+Ψ(ϑ), |
which implies that
ρI1−ξα+p(ϑ)− ρI1−ξ+ζ1α+Ψ(ϑ)=˜α,ρI1−ξα+(p(ϑ)− ρIζ1α+Ψ(ϑ))=˜α. |
Since p satisfies (3.7) we have
ρI1−ξα+(p(ϑ)− ρIζ1α+ ρDζ1,ζ2α+p(ϑ))=˜α. |
Using Lemma 2.11 we have
ρI1−ξα+(p(ϑ)− ρIξα+ ρDξα+p(ϑ))=˜α. |
From the definition of Cξ1−ξ,ρ(Θ), Lemma 2.4 and using Definition 2.2, we have
ρI1−ξα+p∈C(Θ) and ρDξα+p=δρ ρI1−ξα+p∈C1−ξ,ρ(Θ). |
Thus
ρI1−ξα+p∈C11−ξ,ρ(Θ). |
By Lemma 2.7, with ζ1=ξ we can write
ρI1−ξα+(p(ϑ)−p(ϑ)+ρI1−ξα+p(α)Γ(ξ)(ϑρ−αρρ)ξ−1)=˜α,ρI1−ξα+p(α)Γ(ξ) ρI1−ξα+(ϱρ−αρρ)ξ−1(ϑ)=˜α. |
By Lemma 2.5 we have
ρI1−ξα+p(α)=˜α, |
which is the condition (3.9).
Further, from Eq (3.6), for ϑ∈(ϑν,ϑν+1], we have
ρI1−ξα+p(ϑ)=1Γ(ξ)(˜α+ν∑i=1χi) ρI1−ξα+(ϱρ−αρρ)ξ−1(ϑ)+ ρI1−ξ+ζ1α+Ψ(ϑ)=˜α+ν∑i=1χi+ ρI1−ξ+ζ1α+Ψ(ϑ), | (3.18) |
and for ϑ∈(ϑν−1,ϑν], we have
ρI1−ξα+p(ϑ)=1Γ(ξ)(˜α+ν−1∑i=1χi) ρI1−ξα+(ϱρ−αρρ)ξ−1(ϑ)+ ρI1−ξ+ζ1α+Ψ(ϑ)=˜α+ν−1∑i=1χi+ ρI1−ξ+ζ1α+Ψ(ϑ). | (3.19) |
Therefore, from (3.18) and (3.19), we obtain
ρI1−ξα+p(ϑ+ν)− ρI1−ξα+p(ϑ−ν)=ν∑i=1χi−ν−1∑i=1χi=χν, |
which condition (3.8). We have proved that p satisfies the problems (3.7)–(3.9).
As a consequence of Lemma 3.2, we have the following lemma.
Lemma 3.3. Let ξ=ζ1+ζ2−ζ1ζ2 where 0<ζ1<1 and 0≤ζ2≤1, let ψ:(α,μ]×R×R→R be a continuous function where ψ(⋅,p(⋅),x(⋅))∈PC1−ξ,ρ(Θ) for any p,x∈PC1−ξ,ρ(Θ). If p∈PCξ1−ξ,ρ(Θ), then p verifies (1.1)–(1.3) if and only if p is the fixed point of the operator S:PC1−ξ,ρ(Θ)→PC1−ξ,ρ(Θ) given by
Sp(ϑ)=1Γ(ξ)(ϑρ−αρρ)ξ−1(˜α+∑α<ϑν<ϑχν)+(ρIζ1α+ϰ)(ϑ), | (3.20) |
where ϰ:(0,μ]→R be a function verifying the functional equation
ϰ(ϑ)=ψ(ϑ,p(ϑ),ϰ(ϑ)). |
It is obvious that ϰ∈PC1−ξ,ρ(Θ). Also, by Lemma 2.4, Sp∈PC1−ξ,ρ(Θ).
Assume that the function ψ:(α,μ]×R×R→R is continuous and verifies the following:
(H1) ψ(⋅,x(⋅),y(⋅))∈PCζ2(1−ζ1)1−ξ,ρ for any x,y∈PC1−ξ,ρ(Θ).
(H2) There exist constants θ1>0 and 0<θ2<1 such that
|ψ(ϑ,x,y)−ψ(ϑ,ˉx,ˉy)|≤θ1|x−ˉx|+θ2|y−ˉy| |
for any x,y,ˉx,ˉy∈PC1−ξ,ρ(Θ) and ϑ∈(α,μ].
We can now declare and demonstrate our existence result for problems (1.1)–(1.3) based on Banach's fixed point [15].
Theorem 3.4. If (H1) and (H2) are met, and
B:=θ1Γ(ξ)Γ(ζ1+ξ)(1−θ2)(μρ−αρρ)ζ1<1, | (3.21) |
then the problems (1.1)–(1.3) has unique solution in PCξ1−ξ,ρ(Θ)⊂PCζ1,ζ21−ξ,ρ(Θ).
Proof. The proof will be presented in two segments.
Step 1: We demonstrate that S defined in (3.20) has a unique fixed point p∗ in PC1−ξ,ρ(Θ). Let p,x∈PC1−ξ,ρ(Θ) and ϑ∈(α,μ], then, we have
|Sp(ϑ)−Sx(ϑ)|=|ρIζ1α+ϰ(ϑ)−ρIζ1α+γ(ϑ)|≤1Γ(ζ1)∫ϑα(ϑρ−ϱρρ)ζ1−1ϱρ−1|ψ(ϱ,p(ϱ),ϰ(ϱ))−ψ(ϱ,x(ϱ),γ(ϱ))|dϱ, |
where ϰ,γ∈PC1−ξ,ρ(Θ) such that
ϰ(ϑ)=ψ(ϑ,p(ϑ),ϰ(ϑ)),γ(ϑ)=ψ(ϑ,x(ϑ),γ(ϑ)). |
By (H2), we have
|ϰ(ϑ)−γ(ϑ)|=|ψ(ϑ,p(ϑ),ϰ(ϑ))−ψ(ϑ,x(ϑ),γ(ϑ))|≤θ1|p(ϑ)−x(ϑ)|+θ2|ϰ(ϑ)−γ(ϑ)|. |
Then,
|ϰ(ϑ)−γ(ϑ)|≤θ11−θ2|p(ϑ)−x(ϑ)|. |
Therefore, for each ϑ∈(α,μ]
|Sp(ϑ)−Sx(ϑ)|≤θ1(1−θ2)Γ(ζ1)∫ϑα(ϑρ−ϱρρ)ζ1−1ϱρ−1|p(ϱ)−x(ϱ)|dϱ≤θ1(1−θ2)(Iζ1α+(ϱρ−αρρ)ξ−1)(ϑ)‖p−x‖PC1−ξ,ρ. |
By Lemma 2.5, we have
|Sp(ϑ)−Sx(ϑ)|≤θ1Γ(ξ)Γ(ζ1+ξ)(1−θ2)(ϑρ−αρρ)ζ1+ξ−1‖p−x‖PC1−ξ,ρ, |
hence
|(ϑρ−αρρ)1−ξ(Sp(ϑ)−Sx(ϑ))|≤θ1Γ(ξ)Γ(ζ1+ξ)(1−θ2)(ϑρ−αρρ)ζ1‖p−x‖PC1−ξ,ρ≤θ1Γ(ξ)Γ(ζ1+ξ)(1−θ2)(μρ−αρρ)ζ1‖p−x‖PC1−ξ,ρ, |
which implies that
‖Sp−Sx‖PC1−ξ,ρ≤θ1Γ(ξ)Γ(ζ1+ξ)(1−θ2)(μρ−αρρ)ζ1‖p−x‖PC1−ξ,ρ. |
By (3.21), the operator S is a contraction. Hence, by Banach's contraction principle, S has a unique fixed point p∗∈PC1−ξ,ρ(Θ).
Step 2: We show that such a fixed point p∗∈PC1−ξ,ρ(Θ) is actually in PCξ1−ξ,ρ(Θ).
Since p∗ is the unique fixed point of operator S in PC1−ξ,ρ(Θ), then, for each ϑ∈(α,μ], we have
p∗(ϑ)=1Γ(ξ)(ϑρ−αρρ)ξ−1(˜α+∑α<ϑν<ϑχν)+(ρIζ1α+ψ(ϱ,p∗(ϱ),ϰ(ϱ)))(ϑ). |
Applying ρDξα+ to both sides and by Lemma 2.5, and Lemma 2.11, we have
ρDξα+p∗(ϑ)=(ρDξα+ ρIζ1α+ψ(ϱ,p∗(ϱ),ϰ(ϱ)))(ϑ)=(ρDζ2(1−ζ1)α+ψ(ϱ,p∗(ϱ),ϰ(ϱ)))(ϑ). |
Since ξ≥ζ1, by (H1), the right hand side is in PC1−ξ,ρ(Θ) and thus ρDξα+p∗∈PC1−ξ,ρ(Θ) which implies that p∗∈PCξ1−ξ,ρ(Θ). As a consequence of Steps 1 and 2 together with Lemma 3.3, we can conclude that the problems (1.1)–(1.3) has a unique solution in PCξ1−ξ,ρ(Θ).
Our second result is based on Krasnoselskii fixed point theorem [15].
Theorem 3.5. Assume (H1) and,
(H3) There exist constants 0<θ1<(1−θ2)Γ(ζ1+ξ)2Γ(ξ)(μρ−αρρ)−ζ1 and 0<θ2<1 such that
|ψ(ϑ,x,y)−ψ(ϑ,ˉx,ˉy)|≤θ1|x−ˉx|+θ2|y−ˉy| |
for any x,y,ˉx,ˉy∈PC1−ξ,ρ(Θ) and ϑ∈(α,μ].
Then the problems (1.1)–(1.3) has at least one solution.
Proof. Consider the set
Bε∗={p∈PC1−ξ,ρ(Θ):||p||PC1−ξ,ρ≤ε∗}, |
where
ε∗≥2Γ(ξ)(|˜α|+ς∑ν=1|χν|)+2Γ(ξ)ψ∗(1−θ2)Γ(ζ1+ξ)(μρ−αρρ)1−ξ+ζ1, |
where ψ∗=supϑ∈Θ|ψ(ϑ,0,0)|.
We define the operators S1 and S2 on Bε∗ by
S1p(ϑ)=1Γ(ξ)(ϑρ−αρρ)ξ−1(˜α+∑α<ϑν<ϑχν), ϑ∈Θ, | (3.22) |
S2p(ϑ)=1Γ(ζ1)∫ϑα(ϑρ−ϱρρ)ζ1−1ϱρ−1ϰ(ϱ)dϱ, ϑ∈Θ. | (3.23) |
Then (3.20) can be written as
Sp(ϑ)=S1p(ϑ)+S2p(ϑ), p∈PC1−ξ,ρ(Θ). |
Step 1: We demonstrate that S1p+S2x∈Bε∗ for any p,x∈Bε∗. For operator S1, multiplying both sides of (3.22) by (ϑρ−αρρ)1−ξ, we have
(ϑρ−αρρ)1−ξS1p(ϑ)=1Γ(ξ)(˜α+∑α<ϑν<ϑχν), |
then
|(ϑρ−αρρ)1−ξS1p(ϑ)|≤1Γ(ξ)(|˜α|+ς∑ν=1|χν|). |
This gives
||S1p||PC1−ξ,ρ≤1Γ(ξ)(|˜α|+ς∑ν=1|χν|). | (3.24) |
By (H3), we have for each ϑ∈(α,μ],
|ϰ(ϑ)|=|ψ(ϑ,x(ϑ),ϰ(ϑ))−ψ(ϑ,0,0)+ψ(ϑ,0,0)|≤|ψ(ϑ,x(ϑ),ϰ(ϑ))−ψ(ϑ,0,0)|+|ψ(ϑ,0,0)|≤θ1|x(ϑ)|+θ2|ϰ(ϑ)|+ψ∗. |
Multiplying both sides of the above inequality by (ϑρ−αρρ)1−ξ, we get
|(ϑρ−αρρ)1−ξϰ(ϑ)|≤(ϑρ−αρρ)1−ξψ∗+θ1|(ϑρ−αρρ)1−ξx(ϑ)|+θ2|(ϑρ−αρρ)1−ξϰ(ϑ)|≤(μρ−αρρ)1−ξψ∗+θ1ε∗+θ2|(ϑρ−αρρ)1−ξϰ(ϑ)|. |
Then, for each ϑ∈(α,μ], we have
|(ϑρ−αρρ)1−ξϰ(ϑ)|≤(μρ−αρρ)1−ξψ∗+θ1ε∗1−θ2:=θ3. | (3.25) |
Thus, (3.23) and Lemma 2.5, implies
|S2(x)(ϑ)|≤[Γ(ξ)ψ∗(1−θ2)Γ(ζ1+ξ)(μρ−αρρ)1−ξ+θ1Γ(ξ)ε∗(1−θ2)Γ(ζ1+ξ)](ϑρ−αρρ)ζ1+ξ−1. |
Therefore
|(ϑρ−αρρ)1−ξS2x(ϑ)|≤[Γ(ξ)ψ∗(1−θ2)Γ(ζ1+ξ)(μρ−αρρ)1−ξ+θ1Γ(ξ)ε∗(1−θ2)Γ(ζ1+ξ)](ϑρ−αρρ)ζ1≤Γ(ξ)ψ∗(1−θ2)Γ(ζ1+ξ)(μρ−αρρ)1−ξ+ζ1+θ1Γ(ξ)ε∗(1−θ2)Γ(ζ1+ξ)(μρ−αρρ)ζ1. |
Thus
‖S2x‖PC1−ξ,ρ≤Γ(ξ)ψ∗(1−θ2)Γ(ζ1+ξ)(μρ−αρρ)1−ξ+ζ1+θ1Γ(ξ)ε∗(1−θ2)Γ(ζ1+ξ)(μρ−αρρ)ζ1. | (3.26) |
Linking (3.24) and (3.26) for every p,x∈Bε∗ we obtain
‖S1p+S2x‖PC1−ξ,ρ≤‖S1p‖PC1−ξ,ρ+‖S2x‖PC1−ξ,ρ≤Γ(ξ)ψ∗(1−θ2)Γ(ζ1+ξ)(μρ−αρρ)1−ξ+ζ1+θ1Γ(ξ)ε∗(1−θ2)Γ(ζ1+ξ)(μρ−αρρ)ζ1+1Γ(ξ)(|˜α|+ς∑ν=1|χν|). |
Since
ε∗≥2Γ(ξ)(|˜α|+ς∑ν=1|χν|)+2Γ(ξ)ψ∗(1−θ2)Γ(ζ1+ξ)(μρ−αρρ)1−ξ+ζ1, |
and
θ1<(1−θ2)Γ(ζ1+ξ)2Γ(ξ)(μρ−αρρ)−ζ1, |
we have
‖S1p+S2x‖PC1−ξ,ρ≤ε∗. |
which infers that S1p+S2x∈Bε∗.
Step 2: Clearly S1 is a contraction.
Step 3: S2 is compact and continuous.
The continuity of S2 follows from the continuity of ψ. Next we prove that S2 is uniformly bounded on Bε∗. Let any x∈Bε∗. Then by (3.26) we have
‖S2x‖PC1−ξ,ρ≤Γ(ξ)ψ∗(1−θ2)Γ(ζ1+ξ)(μρ−αρρ)1−ξ+ζ1+θ1Γ(ξ)ε∗(1−θ2)Γ(ζ1+ξ)(μρ−αρρ)ζ1. |
This means that S2 is uniformly bounded on Bε∗. Next, we show that S2Bε∗ is equicontinuous. Let any x∈Bε∗ and 0<α<τ1<τ2≤μ. Then
|S2x(τ1)−S2x(τ2)|=1Γ(ζ1)|∫τ1α(τρ1−ϱρρ)ζ1−1ϱρ−1ϰ(ϱ)dϱ−∫τ2α(τρ2−ϱρρ)ζ1−1ϱρ−1ϰ(ϱ)dϱ|≤1Γ(ζ1)|∫τ1α(τρ1−ϱρρ)ζ1−1ϱρ−1(ϱρ−αρρ)ξ−1(ϱρ−αρρ)1−ξϰ(ϱ)dϱ−∫τ2α(τρ2−ϱρρ)ζ1−1ϱρ−1(ϱρ−αρρ)ξ−1(ϱρ−αρρ)1−ξϰ(ϱ)dϱ|, |
by using (3.25) we have
|S2x(τ1)−S2x(τ2)|≤θ3Γ(ζ1)|∫τ1α(τρ1−ϱρρ)ζ1−1ϱρ−1(ϱρ−αρρ)ξ−1dϱ−∫τ2α(τρ2−ϱρρ)ζ1−1ϱρ−1(ϱρ−αρρ)ξ−1dϱ|≤θ3Γ(ξ)Γ(ζ1+ξ)|(τρ1−αρρ)ζ1+ξ−1−(τρ2−αρρ)ζ1+ξ−1|. |
Note that
|S2x(τ1)−S2x(τ2)|→0 as τ2→τ1. |
This shows that S2 is equicontinuous on Θ. Therefore S2 is relatively compact on Bε∗. By PC1−ξ; type Arzela-Ascoli theorem S2 is compact on Bε∗.
By Krasnoselskii's fixed point theorem, S has at least a fixed point p∗∈C1−ξ,ρ(Θ) and by the same way of the proof of Theorem 3.4, p∗∈Cξ1−ξ,ρ(Θ). Using Lemma 3.3, we conclude that the problems (1.1)–(1.3) has at least one solution in the space Cξ1−ξ,ρ(Θ).
In what follows, we give the following result on Ulam-Hyers-Rassias stability.
Theorem 4.1. Assume that (H1), (H2), (3.21) hold and,
(H4) There exists a nondecreasing function ω∈PCξ−1(Θ) and there exists λω>0 such that for any ϑ∈(α,μ]:
ρIζ1α+(ω(ϱ))(ϑ)≤λωω(ϑ). |
Then, the Eq (1.1) is Ulam-Hyers-Rassias stable with respect to (ω,ϖ).
Proof. Let w∈PC1−ξ,ρ(Θ) be a solution of the inequality (2.2). Denote by p the unique solution of the problem:
(ρDζ1,ζ2α+p)(ϑ)=ψ(ϑ,p(ϑ),(ρDζ1,ζ2α+p)(ϑ)), foreach , ϑ∈(ϑν,ϑν+1], ν=0,…,ς, |
ΔρI1−ξα+p|ϑ=ϑν=χν∈R, ν=1,…,ς, |
(ρI1−ξα+w)(α)=(ρI1−ξα+p)(α)=˜α∈R. |
Using Lemma 3.3, we obtain
p(ϑ)={˜αΓ(ξ)(ϑρ−αρρ)ξ−1+(ρIζ1α+ϰ(ϱ))(ϑ), ϑ∈(α,ϑ1]1Γ(ξ)(ϑρ−αρρ)ξ−1(˜α+ν∑i=1χi)+(ρIζ1α+ϰ(ϱ))(ϑ), ϑ∈(ϑν,ϑν+1], |
where ϰ:(0,μ]→R be a function satisfying the functional equation
ϰ(ϑ)=ψ(ϑ,p(ϑ),ϰ(ϑ)). |
Since w solution of the inequality (2.2) and by Remark 2.20, we have
(ρDζ1,ζ2α+w)(ϑ)=ψ(ϑ,w(ϑ),(ρDζ1,ζ2α+w)(ϑ))+η(ϑ), foreach, ϑ∈(ϑν,ϑν+1], | (4.1) |
ΔρI1−ξα+w|ϑ=ϑν=χν+ην,ν=1,…,ς. | (4.2) |
Clearly, the solution of the problems (4.1) and (4.2) is given by
w(ϑ)={˜αΓ(ξ)(ϑρ−αρρ)ξ−1+(ρIζ1α+(γ(ϱ)+η(ϱ)))(ϑ), ϑ∈(α,ϑ1]1Γ(ξ)(ϑρ−αρρ)ξ−1(˜α+ν∑i=1(χi+ηi))+(ρIζ1α+(γ(ϱ)+η(ϱ)))(ϑ), ϑ∈(ϑν,ϑν+1], |
where γ:(0,μ]→R be a function satisfying the functional equation
γ(ϑ)=ψ(ϑ,w(ϑ),γ(ϑ)). |
If ϑ∈(α,ϑ1], it follows that
|w(ϑ)−p(ϑ)|≤1Γ(ζ1)∫ϑα(ϑρ−ϱρρ)ζ1−1ϱρ−1|η(ϱ)|dϱ+1Γ(ζ1)∫ϑα(ϑρ−ϱρρ)ζ1−1ϱρ−1|γ(ϱ)−ϰ(ϱ)|dϱ≤κΓ(ζ1)∫ϑα(ϑρ−ϱρρ)ζ1−1ϱρ−1ω(ϱ)dϱ+1Γ(ζ1)∫ϑα(ϑρ−ϱρρ)ζ1−1ϱρ−1|γ(ϱ)−ϰ(ϱ)|dϱ≤κλωω(ϑ)+1Γ(ζ1)∫ϑα(ϑρ−ϱρρ)ζ1−1ϱρ−1|γ(ϱ)−ϰ(ϱ)|dϱ, |
where ϰ,γ∈C1−ξ,ρ(Θ) such that
ϰ(ϑ)=ψ(ϑ,p(ϑ),ϰ(ϑ)),γ(ϑ)=ψ(ϑ,w(ϑ),γ(ϑ)). |
By (H2), we have
|γ(ϑ)−ϰ(ϑ)|=|ψ(ϑ,w(ϑ),γ(ϑ))−ψ(ϑ,p(ϑ),ϰ(ϑ))|≤θ1|w(ϑ)−p(ϑ)|+θ2|γ(ϑ)−ϰ(ϑ)|. |
Then,
|γ(ϑ)−ϰ(ϑ)|≤θ11−θ2|w(ϑ)−p(ϑ)|. |
Therefore, for each ϑ∈(α,ϑ1]
|w(ϑ)−p(ϑ)|≤κλωω(ϑ)+θ1(1−θ2)Γ(ζ1)∫ϑα(ϑρ−ϱρρ)ζ1−1ϱρ−1|w(ϱ)−p(ϱ)|dϱ. |
Applying Corollary 2.15, we get
|w(ϑ)−p(ϑ)|≤κλωω(ϑ)Eζ1(θ11−θ2(ϑρ−αρρ)ζ1)≤κλωω(ϑ)Eζ1(θ11−θ2(μρ−αρρ)ζ1)≤κλω(ψ+ω(ϑ))Eζ1(θ11−θ2(μρ−αρρ)ζ1)=κc1(ψ+ω(ϑ)), |
where
c1=λωEζ1(θ11−θ2(μρ−αρρ)ζ1). |
If ϑ∈(ϑν,ϑν+1], ν=1,…,ς, then we have
|w(ϑ)−p(ϑ)|≤1Γ(ξ)(ϑρ−αρρ)ξ−1ς∑ν=1|ην|+1Γ(ζ1)∫ϑα(ϑρ−ϱρρ)ζ1−1ϱρ−1|η(ϱ)|dϱ+1Γ(ζ1)∫ϑα(ϑρ−ϱρρ)ζ1−1ϱρ−1|γ(ϱ)−ϰ(ϱ)|dϱ≤ςκψΓ(ξ)(ϑρ1−αρρ)ξ−1+κΓ(ζ1)∫ϑα(ϑρ−ϱρρ)ζ1−1ϱρ−1ω(ϱ)dϱ+1Γ(ζ1)∫ϑα(ϑρ−ϱρρ)ζ1−1ϱρ−1|γ(ϱ)−ϰ(ϱ)|dϱ≤ςκψΓ(ξ)(ϑρ1−αρρ)ξ−1+κλωω(ϑ)+1Γ(ζ1)∫ϑα(ϑρ−ϱρρ)ζ1−1ϱρ−1|γ(ϱ)−ϰ(ϱ)|dϱ, |
where ϰ,γ∈C1−ξ,ρ(Θ) such that
ϰ(ϑ)=ψ(ϑ,p(ϑ),ϰ(ϑ)),γ(ϑ)=ψ(ϑ,w(ϑ),γ(ϑ)). |
By (H2), we have
|γ(ϑ)−ϰ(ϑ)|=|ψ(ϑ,w(ϑ),γ(ϑ))−ψ(ϑ,p(ϑ),ϰ(ϑ))|≤θ1|w(ϑ)−p(ϑ)|+θ2|γ(ϑ)−ϰ(ϑ)|. |
Then,
|γ(ϑ)−ϰ(ϑ)|≤θ11−θ2|w(ϑ)−p(ϑ)|. |
Therefore, for each ϑ∈(ϑν,ϑν+1], ν=1,…,ς,
|w(ϑ)−p(ϑ)|≤ςκϖΓ(ξ)(ϑρ1−αρρ)ξ−1+κλωω(ϑ)+θ1(1−θ2)Γ(ζ1)∫ϑα(ϑρ−ϱρρ)ζ1−1ϱρ−1|w(ϱ)−p(ϱ)|dϱ. |
Applying Corollary 2.15, we get
|w(ϑ)−p(ϑ)|≤[ςκψΓ(ξ)(ϑρ1−αρρ)ξ−1+κλωω(ϑ)]Eζ1(θ11−θ2(ϑρ−αρρ)ζ1)≤[ςκψΓ(ξ)(ϑρ1−αρρ)ξ−1+κλωω(ϑ)]Eζ1(θ11−θ2(μρ−αρρ)ζ1)≤κ[ςΓ(ξ)(ϑρ1−αρρ)ξ−1+λω](ω(ϑ)+ψ)Eζ1(θ11−θ2(μρ−αρρ)ζ1)=κc2(ω(ϑ)+ψ), |
where
c2=[ςΓ(ξ)(ϑρ1−αρρ)ξ−1+λω]Eζ1(θ11−θ2(μρ−αρρ)ζ1). |
Thus, the Eq (1.1) is Ulam-Hyers-Rassias stable with respect to (ω,ϖ). The proof is complete.
The following theorem gives Ulam-Hyers stable result.
Theorem 4.2. Assume that (H1), (H2) and (3.21) hold. Then, the Eq (1.1) is Ulam-Hyers stable.
Proof. Let w∈C1−ξ,ρ(Θ) be a solution of the inequality (2.1). Denote by p the unique solution of the problem:
(ρDζ1,ζ2α+p)(ϑ)=ψ(ϑ,p(ϑ),(ρDζ1,ζ2α+p)(ϑ)), foreach , ϑ∈(ϑν,ϑν+1], ν=0,…,ς, |
ΔρI1−ξα+p|ϑ=ϑν=χν∈R, ν=1,…,ς, |
(ρI1−ξα+w)(α)=(ρI1−ξα+p)(α)=˜α∈R. |
By the same way of the proof of Theorem 4.1, we can easily show that:
If ϑ∈(α,ϑ1], it follows that
|w(ϑ)−p(ϑ)|≤1Γ(ζ1)∫ϑα(ϑρ−ϱρρ)ζ1−1ϱρ−1|η(ϱ)|dϱ+1Γ(ζ1)∫ϑα(ϑρ−ϱρρ)ζ1−1ϱρ−1|γ(ϱ)−ϰ(ϱ)|dϱ≤κΓ(ζ1)∫ϑα(ϑρ−ϱρρ)ζ1−1ϱρ−1dϱ+θ1(1−θ2)Γ(ζ1)∫ϑα(ϑρ−ϱρρ)ζ1−1ϱρ−1|w(ϱ)−p(ϱ)|dϱ≤κΓ(ζ1+1)(μρ−αρρ)ζ1+θ1(1−θ2)Γ(ζ1)∫ϑα(ϑρ−ϱρρ)ζ1−1ϱρ−1|w(ϱ)−p(ϱ)|dϱ. |
Applying Lemma 2.14, we get
|w(ϑ)−p(ϑ)|≤κΓ(ζ1+1)(μρ−αρρ)ζ1[1+∫ϑα∞∑β=1(θ11−θ2)βΓ(βζ1)(ϑρ−ϱρρ)βζ1−1ϱρ−1dϱ]≤κΓ(ζ1+1)(μρ−αρρ)ζ1[1+∞∑β=1(θ11−θ2)βΓ(βζ1+1)(μρ−αρρ)βζ1]=κΓ(ζ1+1)(μρ−αρρ)ζ1[1+∞∑β=11Γ(βζ1+1)[(θ11−θ2)(μρ−αρρ)ζ1]β]=κΓ(ζ1+1)(μρ−αρρ)ζ1[1+Eζ1((θ11−θ2)(μρ−αρρ)ζ1)]=b1κ. |
If {\vartheta} \in ({\vartheta}_{\nu},{\vartheta}_{{\nu}+1}],\ {\nu}=1, \ldots,{\varsigma}, then we have
\begin{eqnarray*} |{\mathfrak{w}}({\vartheta})-{\mathfrak{p}}({\vartheta})|&\leq& \frac {1}{\Gamma({\xi})}\left( \frac {{\vartheta}^{\rho}-{\alpha}^{\rho}}{\rho}\right)^{{\xi}-1}\sum\limits_{{\nu}=1}^{{\varsigma}}|\eta_{{\nu}}|+ \frac {1}{\Gamma({\zeta_1})}{ \int}_{{\alpha}}^{{\vartheta}}\left( \frac {{\vartheta}^{\rho}-{\varrho}^{\rho}}{\rho}\right)^{{\zeta_1}-1}{\varrho}^{\rho-1}|\eta({\varrho})|d{\varrho}\\ &+& \frac {1}{\Gamma({\zeta_1})}{ \int}_{{\alpha}}^{{\vartheta}}\left( \frac {{\vartheta}^{\rho}-{\varrho}^{\rho}}{\rho}\right)^{{\zeta_1}-1}{\varrho}^{\rho-1}|{\gamma}({\varrho})-{\varkappa}({\varrho})|d{\varrho}\\ &\leq& \frac {{\varsigma}\kappa}{\Gamma({\xi})}\left( \frac {{\vartheta}_{1}^{\rho}-{\alpha}^{\rho}}{\rho}\right)^{{\xi}-1}+ \frac {\kappa}{\Gamma({\zeta_1})}{ \int}_{{\alpha}}^{{\vartheta}}\left( \frac {{\vartheta}^{\rho}-{\varrho}^{\rho}}{\rho}\right)^{{\zeta_1}-1}{\varrho}^{\rho-1}d{\varrho}\\ &+& \frac {1}{\Gamma({\zeta_1})}{ \int}_{{\alpha}}^{{\vartheta}}\left( \frac {{\vartheta}^{\rho}-{\varrho}^{\rho}}{\rho}\right)^{{\zeta_1}-1}{\varrho}^{\rho-1}|{\gamma}({\varrho})-{\varkappa}({\varrho})|d{\varrho}\\ &\leq& \frac {{\varsigma}\kappa}{\Gamma({\xi})}\left( \frac {{\vartheta}_{1}^{\rho}-{\alpha}^{\rho}}{\rho}\right)^{{\xi}-1}+ \frac {\kappa}{\Gamma({\zeta_1}+1)}\left( \frac {{\mu}^{\rho}-{\alpha}^{\rho}}{\rho}\right)^{{\zeta_1}}\\ &+& \frac {{\theta_1}}{(1-{\theta_2})\Gamma({\zeta_1})}{ \int}_{{\alpha}}^{{\vartheta}}\left( \frac {{\vartheta}^{\rho}-{\varrho}^{\rho}}{\rho}\right)^{{\zeta_1}-1}{\varrho}^{\rho-1}|{\mathfrak{w}}({\varrho})-{\mathfrak{p}}({\varrho})|d{\varrho}. \end{eqnarray*} |
Applying Lemma 2.14, we get
\begin{eqnarray*} |{\mathfrak{w}}({\vartheta})-{\mathfrak{p}}({\vartheta})|&\leq&\kappa\left[ \frac {{\varsigma}}{\Gamma({\xi})}\left( \frac {{\vartheta}_{1}^{\rho}-{\alpha}^{\rho}}{\rho}\right)^{{\xi}-1}+ \frac {1}{\Gamma({\zeta_1}+1)}\left( \frac {{\mu}^{\rho}-{\alpha}^{\rho}}{\rho}\right)^{{\zeta_1}}\right]\\ &&\left[1+{ \int}_{{\alpha}}^{{\vartheta}}\sum\limits_{{\beta}=1}^{\infty} \frac {\left( \frac {{\theta_1}}{1-{\theta_2}}\right)^{{\beta}}}{\Gamma({\beta}{\zeta_1})}\left( \frac {{\vartheta}^{\rho}-{\varrho}^{\rho}}{\rho}\right)^{{\beta}{\zeta_1}-1}{\varrho}^{\rho-1}d{\varrho}\right]\\ &\leq&\kappa\left[ \frac {{\varsigma}}{\Gamma({\xi})}\left( \frac {{\vartheta}_{1}^{\rho}-{\alpha}^{\rho}}{\rho}\right)^{{\xi}-1}+ \frac {1}{\Gamma({\zeta_1}+1)}\left( \frac {{\mu}^{\rho}-{\alpha}^{\rho}}{\rho}\right)^{{\zeta_1}}\right]\\ &&\left[1+\sum\limits_{{\beta}=1}^{\infty} \frac {\left( \frac {{\theta_1}}{1-{\theta_2}}\right)^{{\beta}}}{\Gamma({\beta}{\zeta_1}+1)}\left( \frac {{\mu}^{\rho}-{\alpha}^{\rho}}{\rho}\right)^{{\beta}{\zeta_1}}\right]\\ &=&\kappa\left[ \frac {{\varsigma}}{\Gamma({\xi})}\left( \frac {{\vartheta}_{1}^{\rho}-{\alpha}^{\rho}}{\rho}\right)^{{\xi}-1}+ \frac {1}{\Gamma({\zeta_1}+1)}\left( \frac {{\mu}^{\rho}-{\alpha}^{\rho}}{\rho}\right)^{{\zeta_1}}\right]\\ &&\left[1+\sum\limits_{{\beta}=1}^{\infty} \frac {1}{\Gamma({\beta}{\zeta_1}+1)}\left[\left( \frac {{\theta_1}}{1-{\theta_2}}\right)\left( \frac {{\mu}^{\rho}-{\alpha}^{\rho}}{\rho}\right)^{{\zeta_1}}\right]^{{\beta}}\right]\\ &=&\kappa\left[ \frac {{\varsigma}}{\Gamma({\xi})}\left( \frac {{\vartheta}_{1}^{\rho}-{\alpha}^{\rho}}{\rho}\right)^{{\xi}-1}+ \frac {1}{\Gamma({\zeta_1}+1)}\left( \frac {{\mu}^{\rho}-{\alpha}^{\rho}}{\rho}\right)^{{\zeta_1}}\right]\\ &&\left[1+E_{{\zeta_1}}\left(\left( \frac {{\theta_1}}{1-{\theta_2}}\right)\left( \frac {{\mu}^{\rho}-{\alpha}^{\rho}}{\rho}\right)^{{\zeta_1}}\right)\right]= b_{2}\kappa, \end{eqnarray*} |
which completes the proof of the theorem. Moreover, if we set {\varpi}_{{\psi},{\varsigma}}(\kappa)=(b_{1}+b_{2})\kappa; {\varpi}_{{\psi},{\varsigma}}(0)=0 , then, the Eq (1.1) is generalized Ulam-Hyers stable.
Consider the following initial value problem with impulse
\begin{equation} ^{\frac{1}{2}}D^{\frac{1}{2},0}_{1^{+}}{\mathfrak{p}}({\vartheta})=\frac{2+|{\mathfrak{p}}({\vartheta})|+\left|^{\frac{1}{2}}D^{\frac{1}{2},0}_{0^{+}}{\mathfrak{p}}({\vartheta})\right|}{108e^{-{\vartheta}+3}\left(1+|{\mathfrak{p}}({\vartheta})|+\left|^{\frac{1}{2}}D^{\frac{1}{2},0}_{0^{+}}{\mathfrak{p}}({\vartheta})\right|\right)}+\frac{\ln(\sqrt{{\vartheta}}+1)}{3\sqrt{\sqrt{{\vartheta}}-1}} , \;{\vartheta}\in J_{0} \cup J_{1}, \end{equation} | (5.1) |
\begin{equation} \Delta ^{\rho}I_{{\alpha}^{+}}^{1-{\xi}}{\mathfrak{p}}\left( \frac {3}{2}\right) = \eta \in {{\mathbb R}} , \end{equation} | (5.2) |
\begin{equation} ^{\frac{1}{2}}I_{1^{+}}^{1-{\xi}}{\mathfrak{p}}(1)=0, \end{equation} | (5.3) |
where J_{0}=\left(1, \frac{3}{2}\right], J_{1}=\left(\frac{3}{2},2\right].
Set
{\psi}({\vartheta},{\mathfrak{x}},{\mathfrak{y}})=\frac{2+|{\mathfrak{x}}|+|{\mathfrak{y}}|}{108e^{-{\vartheta}+3}(1+|{\mathfrak{x}}|+|{\mathfrak{y}}|)}+\frac{\ln(\sqrt{{\vartheta}}+1)}{3\sqrt{{\vartheta}}} , {\vartheta}\in (1,2] , {\mathfrak{x}},{\mathfrak{y}}\in {{\mathbb R}}. |
We have
PC^{{\zeta_2}(1-{\zeta_1})}_{1-{\xi},\rho}([1,2])=PC^{0}_{\frac{1}{2},\frac{1}{2}}([1,2])=PC_{\frac{1}{2},\frac{1}{2}}([1,2]), |
with {\xi}={\zeta_1}=\rho=\frac{1}{2} and {\zeta_2}=0. Clearly, the function {\psi} \in PC_{\frac{1}{2},\frac{1}{2}}([1,2]).
Hence condition (H1) is satisfied.
For each {\mathfrak{x}},\bar{{\mathfrak{x}}},{\mathfrak{y}},\bar{{\mathfrak{y}}}\in{{\mathbb R}} and {\vartheta}\in(1,2] :
\begin{eqnarray*} |{\psi}({\vartheta},{\mathfrak{x}},{\mathfrak{y}})-{\psi}({\vartheta},\bar{{\mathfrak{x}}},\bar{{\mathfrak{y}}})|&\leq &\frac{1}{108e^{-{\vartheta}+3}}(|{\mathfrak{x}}-\bar{{\mathfrak{x}}}|+|{\mathfrak{y}}-\bar{{\mathfrak{y}}}|)\\ &\leq & \frac {1}{108e}\left(|{\mathfrak{x}}-\bar{{\mathfrak{x}}}|+|{\mathfrak{y}}-\bar{{\mathfrak{y}}}|\right). \end{eqnarray*} |
Hence condition (H{2}) is satisfied with {\theta_1}={\theta_2}= \frac {1}{108e}.
The condition
\frac {{\theta_1}\Gamma({\xi})}{\Gamma({\zeta_1}+{\xi})(1-{\theta_2})}\left( \frac {{\mu}^{\rho}-{\alpha}^{\rho}}{\rho}\right)^{{\zeta_1}}\approx 0.0055 < 1, |
is satisfied with with {\alpha}=1 and {\mu}=2. It follows from Theorem 3.4 that the problems (5.1)–(5.3) has a unique solution in the space PC^{\frac{1}{2}}_{\frac{1}{2},\frac{1}{2}}([1,2]). Moreover, Theorem 4.2, implies that the Eq (1.1) is Ulam-Hyers stable.
We have investigated the existence, uniqueness and stability of solutions for a class of nonlinear impulsive Hilfer-Katugampola problems. Our reasoning is founded on the Banach contraction principle and Krasnoselskii’s fixed point theorem. In addition, an example is provided to demonstrate the effectiveness of the main results. We plan to consider for for a futur study the same problem in infinite dimensional Banach space and make us of Darbo and Monch's fixed point theorems associated with the notion of measure of noncompactness.
The research of J. J. Nieto was partially supported by the AEI of Spain under Grant MTM2016-75140-P and co-financed by European Community fund FEDER. The work of Y. Zhou was supported by the National Natural Science Foundation of China (12071396).
The authors declare that there is no conflict of interest.
[1] | S. Abbas, M. Benchohra, J. R. Graef, J. Henderson, Implicit fractional differential and integral equations: Existence and stability, Walter de Gruyter, London, 2018. https://doi.org/10.1515/9783110553819 |
[2] | S. Abbas, M. Benchohra, G. M. N'Guérékata, Topics in fractional differential equations, New York: Springer-Verlag, 2012. |
[3] | S. Abbas, M. Benchohra, G. M. N'Guérékata, Advanced fractional differential and integral equations, New York: Nova Science Publishers, 2014. |
[4] |
R. P. Agarwal, D. Baleanu, J. J. Nieto, D. F. M. Torres, Y. Zhou, A survey on fuzzy fractional differential and optimal control nonlocal evolution equations, J. Comput. Appl. Math., 339 (2018), 3–29. https://doi.org/10.1016/j.cam.2017.09.039 doi: 10.1016/j.cam.2017.09.039
![]() |
[5] |
B. Ahmad, S. Sivasundaram, Existence of solutions for impulsive integral boundary value problems of fractional order, Nonlinear Anal.: Hybrid Syst., 4 (2010), 134–141. https://doi.org/10.1016/j.nahs.2009.09.002 doi: 10.1016/j.nahs.2009.09.002
![]() |
[6] | Y. Adjabi, F. Jarad, T. Abdeljawad, On generalized fractional operators and a Gronwall type inequality with applications, Filomat, 31 (2017), 5457–5473. |
[7] | R. Almeida, A. B. Malinowska, T. Odzijewicz, Fractional differential equations with dependence on the Caputo-Katugampola derivative, J. Comput. Nonlinear Dyn., 11 (2016), 061017. |
[8] |
R. Almeida, N. R. O. Bastos, M. T. T. Monteiro, A fractional Malthusian growth model with variable order using an optimization approach, Stat. Optim. Inf. Comput., 6 (2018), 4–11. https://doi.org/10.19139/soic.v6i1.465 doi: 10.19139/soic.v6i1.465
![]() |
[9] | M. Benchohra, S. Bouriah, Existence and stability rusults for nonlinear implicit fractional differential equations with impulses, Mem. Differ. Equ. Math. Phys., 69 (2016), 15–31. |
[10] |
M. Benchohra, S. Bouriah, J. J. Nieto, Existence and stability results for nonlocal initial value problems for differential equations with Hilfer fractional derivative, Stud. Univ. Babes-Bolyai Math., 63 (2018), 447–464. https://doi.org/10.24193/subbmath.2018.4.03 doi: 10.24193/subbmath.2018.4.03
![]() |
[11] | M. Benchohra, J. Henderson, S. L. Ntouyas, Impulsive differential equations and inclusions, Vol. 2, New York: Hindawi Publishing Corporation, 2006. |
[12] |
E. C. de Oliveira, J. V. da C. Sousa, Ulam-Hyers-Rassias stability for a class of fractional integro-differential equations, Results Math., 73 (2018), 111. https://doi.org/10.1007/s00025-018-0872-z doi: 10.1007/s00025-018-0872-z
![]() |
[13] |
E. F. Doungmo Goufo, J. J. Nieto, Attractors for fractional differential problems of transition to turbulent flows, J. Comput. Appl. Math., 339 (2018), 329–342. https://doi.org/10.1016/j.cam.2017.08.026 doi: 10.1016/j.cam.2017.08.026
![]() |
[14] |
Y. Y. Gambo, F. Jarad, D. Baleanu, T. Abdeljawad, On Caputo modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2014 (2014), 1–12. https://doi.org/10.1186/1687-1847-2014-10 doi: 10.1186/1687-1847-2014-10
![]() |
[15] | A. Granas, J. Dugundji, Fixed point theory, New York: Springer-Verlag, 2003. |
[16] | R. Hilfer, Applications of fractional calculus in physics, World Scientific, Singapore, 2000. |
[17] | R. Hilfer, Threefold introduction to fractional derivatives, In: Anomalous transport: Foundations and applications, Wiley Online Library, 2008. |
[18] |
U. N. Katugampola, A new approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865. https://doi.org/10.1016/j.amc.2011.03.062 doi: 10.1016/j.amc.2011.03.062
![]() |
[19] |
M. D. Kassim, N. E. Tatar, Well-posedness and stability for a differential problem with Hilfer-Hadamard fractional derivative, Abst. Appl. Anal., 2013 (2013), 1–7. https://doi.org/10.1155/2013/605029 doi: 10.1155/2013/605029
![]() |
[20] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Amsterdam: Elsevier, 2006. |
[21] | K. S. Miller, B. Ross, An introduction to the fractional calculus and differential equations, New York: John Wiley, 1993. |
[22] |
D. S. Oliveira, E. C. de Oliveira, Hilfer-Katugampola fractional derivative, Comput. Appl. Math., 37 (2018), 3672–3690. https://doi.org/10.1007/s40314-017-0536-8 doi: 10.1007/s40314-017-0536-8
![]() |
[23] | I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999. |
[24] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon and Breach, Yverdon, 1993. |
[25] | A. M. Samoilenko, N. A. Perestyuk, Impulsive differential equations, Singapore: World Scientific, 1995. |
[26] |
J. V. da C. Sousa, L. D. Kucche, E. C. de Oliveira, Stability of \psi-Hilfer impulsive fractional differential equations, Appl. Math. Lett., 88 (2019), 73–80. https://doi.org/10.1016/j.aml.2018.08.013 doi: 10.1016/j.aml.2018.08.013
![]() |
[27] |
J. V. da C. Sousa, M. N. N. dos Santos, L. A. Magna, E. C. de Oliveira, Validation of a fractional model for erythrocyte sedimentation rate, Comput. Appl. Math., 37 (2018), 6903–6919. https://doi.org/10.1007/s40314-018-0717-0 doi: 10.1007/s40314-018-0717-0
![]() |
[28] |
S. Verma, P. Viswanathan, A note on Katugampola fractional calculus and fractal dimensions, Appl. Math. Comput., 339 (2018), 220–230. https://doi.org/10.1016/j.amc.2018.07.035 doi: 10.1016/j.amc.2018.07.035
![]() |
[29] |
J. R. Wang, M. Feckan, Y. Zhou, Fractional order differential switched systems with coupled nonlocal initial and impulsive conditions, Bull. Sci. Math., 141 (2017), 727–746. https://doi.org/10.1016/j.bulsci.2017.07.007 doi: 10.1016/j.bulsci.2017.07.007
![]() |
[30] |
W. Wei, X. Xiang, Y. Peng, Nonlinear impulsive integro-differential equations of mixed type and optimal controls, Optimization, 55 (2006), 141–156. https://doi.org/10.1080/02331930500530401 doi: 10.1080/02331930500530401
![]() |
[31] |
Y. Zhou, Infinite interval problems for fractional evolution equations, Mathematics, 10 (2022), 900. https://doi.org/10.3390/math10060900 doi: 10.3390/math10060900
![]() |
[32] |
Y. Zhou, B. Ahmad, A. Alsaedi, Existence of nonoscillatory solutions for fractional neutral differential equations, Appl. Math. Lett., 72 (2017), 70–74. https://doi.org/10.1016/j.aml.2017.04.016 doi: 10.1016/j.aml.2017.04.016
![]() |
[33] |
Y. Zhou, J. W. He, New results on controllability of fractional evolution systems with order {\alpha}\in (1, 2), Evol. Equ. Control Theory, 10 (2021), 491–509. https://doi.org/10.3934/eect.2020077 doi: 10.3934/eect.2020077
![]() |
[34] |
Y. Zhou, J. W. He, B. Ahmad, N. H. Tuan, Existence and regularity results of a backward problem for fractional diffusion equations, Math. Meth. Appl. Sci., 42 (2019), 6775–6790. https://doi.org/10.1002/mma.5781 doi: 10.1002/mma.5781
![]() |
[35] |
Y. Zhou, J. N. Wang, The nonlinear Rayleigh-Stokes problem with Riemann-Liouville fractional derivative, Math. Meth. Appl. Sci., 44 (2021), 2431–2438. https://doi.org/10.1002/mma.5926 doi: 10.1002/mma.5926
![]() |
1. | Ravi P. Agarwal, Snezhana Hristova, Donal O’Regan, Boundary Value Problems for Fractional Differential Equations of Caputo Type and Ulam Type Stability: Basic Concepts and Study, 2023, 12, 2075-1680, 226, 10.3390/axioms12030226 | |
2. | Sumati Kumari Panda, Velusamy Vijayakumar, Results on finite time stability of various fractional order systems, 2023, 174, 09600779, 113906, 10.1016/j.chaos.2023.113906 | |
3. | Madeaha Alghanmi, Ravi P. Agarwal, Bashir Ahmad, Existence of Solutions for a Coupled System of Nonlinear Implicit Differential Equations Involving \varrho -Fractional Derivative with Anti Periodic Boundary Conditions, 2024, 23, 1575-5460, 10.1007/s12346-023-00861-5 | |
4. | AHMED ALSAEDI, HANA AL-HUTAMI, BASHIR AHMAD, INVESTIGATION OF A NONLINEAR MULTI-TERM IMPULSIVE ANTI-PERIODIC BOUNDARY VALUE PROBLEM OF FRACTIONAL q-INTEGRO-DIFFERENCE EQUATIONS, 2023, 31, 0218-348X, 10.1142/S0218348X23401916 | |
5. | Soufyane Bouriah, Abdelkrim Salim, Mouffak Benchohra, Erdal Karapinar, On Periodic solutions for implicit nonlinear Caputo tempered fractional differential problems, 2024, 57, 2391-4661, 10.1515/dema-2023-0154 |