In this paper, we introduce the q-analogus of generalized differential operator involving q-Mittag-Leffler function in open unit disk
E={z:z∈C and |z|<1}
and define new subclass of analytic and bi-univalent functions. By applying the Faber polynomial expansion method, we then determined general coefficient bounds |an|, for n≥3. We also highlight some known consequences of our main results.
Citation: Zeya Jia, Nazar Khan, Shahid Khan, Bilal Khan. Faber polynomial coefficients estimates for certain subclasses of q-Mittag-Leffler-Type analytic and bi-univalent functions[J]. AIMS Mathematics, 2022, 7(2): 2512-2528. doi: 10.3934/math.2022141
[1] | F. Müge Sakar, Arzu Akgül . Based on a family of bi-univalent functions introduced through the Faber polynomial expansions and Noor integral operator. AIMS Mathematics, 2022, 7(4): 5146-5155. doi: 10.3934/math.2022287 |
[2] | Sheza. M. El-Deeb, Gangadharan Murugusundaramoorthy, Kaliyappan Vijaya, Alhanouf Alburaikan . Certain class of bi-univalent functions defined by quantum calculus operator associated with Faber polynomial. AIMS Mathematics, 2022, 7(2): 2989-3005. doi: 10.3934/math.2022165 |
[3] | Bilal Khan, H. M. Srivastava, Muhammad Tahir, Maslina Darus, Qazi Zahoor Ahmad, Nazar Khan . Applications of a certain q-integral operator to the subclasses of analytic and bi-univalent functions. AIMS Mathematics, 2021, 6(1): 1024-1039. doi: 10.3934/math.2021061 |
[4] | Luminiţa-Ioana Cotîrlǎ . New classes of analytic and bi-univalent functions. AIMS Mathematics, 2021, 6(10): 10642-10651. doi: 10.3934/math.2021618 |
[5] | Mohammad Faisal Khan . Certain new applications of Faber polynomial expansion for some new subclasses of υ-fold symmetric bi-univalent functions associated with q-calculus. AIMS Mathematics, 2023, 8(5): 10283-10302. doi: 10.3934/math.2023521 |
[6] | Tariq Al-Hawary, Ala Amourah, Abdullah Alsoboh, Osama Ogilat, Irianto Harny, Maslina Darus . Applications of q−Ultraspherical polynomials to bi-univalent functions defined by q−Saigo's fractional integral operators. AIMS Mathematics, 2024, 9(7): 17063-17075. doi: 10.3934/math.2024828 |
[7] | H. M. Srivastava, Sheza M. El-Deeb . The Faber polynomial expansion method and the Taylor-Maclaurin coefficient estimates of Bi-Close-to-Convex functions connected with the q-convolution. AIMS Mathematics, 2020, 5(6): 7087-7106. doi: 10.3934/math.2020454 |
[8] | Ala Amourah, B. A. Frasin, G. Murugusundaramoorthy, Tariq Al-Hawary . Bi-Bazilevič functions of order ϑ+iδ associated with (p,q)− Lucas polynomials. AIMS Mathematics, 2021, 6(5): 4296-4305. doi: 10.3934/math.2021254 |
[9] | Murugusundaramoorthy Gangadharan, Vijaya Kaliyappan, Hijaz Ahmad, K. H. Mahmoud, E. M. Khalil . Mapping properties of Janowski-type harmonic functions involving Mittag-Leffler function. AIMS Mathematics, 2021, 6(12): 13235-13246. doi: 10.3934/math.2021765 |
[10] | Norah Saud Almutairi, Adarey Saud Almutairi, Awatef Shahen, Hanan Darwish . Estimates of coefficients for bi-univalent Ma-Minda-type functions associated with q-Srivastava-Attiya operator. AIMS Mathematics, 2025, 10(3): 7269-7289. doi: 10.3934/math.2025333 |
In this paper, we introduce the q-analogus of generalized differential operator involving q-Mittag-Leffler function in open unit disk
E={z:z∈C and |z|<1}
and define new subclass of analytic and bi-univalent functions. By applying the Faber polynomial expansion method, we then determined general coefficient bounds |an|, for n≥3. We also highlight some known consequences of our main results.
Let A be the class of functions f of the form
f(z)=z+∞∑n=2anzn, | (1.1) |
which are analytic in the open unit disc
E={z:z∈C and |z|<1} |
and normalized under the conditions
f(0)=0 and f′(0)=1. |
Furthermore, by S we shall denote the class of all functions in A which are univalent in E.
Let f∈A given by (1.1) and g∈A given by
g(z)=z+∞∑n=2bnzn (z∈E), |
we define the convolution (or Hadamard product) of f and g as:
(f∗g)(z)=z+∞∑n=2anbnzn (z∈E). |
Let f,h∈A, f is subordinate to h if there exists a Schwarz function u, where
u(0)=0 and |u(z)|<1 (z∈E), |
such that
f(z)=h(u(z)) (z∈E). |
We denote this subordination by
f≺h or f(z)≺h(z), (z∈E). |
In particular, if the function h is univalent in E, the above subordination is equivalent to
f(0)=h(0) f(E)⊂h(E). |
We see that (see [24]) for the Schwarz function u(z), we have
|un|≤1. |
The Koebe-one quarter Theorem (see [24]) shows that the image of E under every univalent function f∈A contains a disk {w:|w|<14} of radius 14. Every univalent function f has an inverse f−1 defined on some disk containing the disk {w:|w|<14} and satisfying:
f−1(f(z))=z (z∈E) |
and
f(f−1(w))=w (|w|<r0(f), r0(f)≥14), |
where
g(w)=f−1(w)=w−a2w2+(2a22−a3)w3+…. | (1.2) |
A function f is said to be bi-univalent on E if both f and g=f−1 are univalent on E. We denote the class of all such functions by Σ.
Lewin [50] studied the class of bi-univalent functions, in fact he obtained the bound
|a2|≤1.51. |
Netanyahu [53] showed that max|a2|=43. Brannan and Clunie [16] conjectured that |a2|≤√2. In recent years, the pioneering work of Srivastava et al. [67] essentially revived the investigation of various subclasses of the analytic and bi-univalent function class Σ. In fact, in a remarkably large number of sequels to the pioneering work of Srivastava et al. [67], several different subclasses of the analytic and bi-univalent function class were introduced and studied analogously by the many authors (see, for example, [11,17,18,19,20,21,29,31,38,39,64,67].
In Geometric Function Theory (GFT), the quantum (or q-) calculus used as important tools to study different families of analytic function and due to the application in mathematics and some related areas it has inspired a number of well-known mathematicians.
The quantum (or q-) calculus is widely applied in various operators which include the q-difference (q -derivative) operators and these operators plays an important role in GFT as well as in the theory of hypergeometric series, quantum theory, number theory and statistical mechanics. Jackson [35,36] was among the few researchers who defined the q-derivative and q-integral operator as well as provided some of their applications. Also Ismail et al. [34] introduced research work in connection with function theory and q-theory. Letter on, by using q-beta function Gupta [14] introduced q -Baskakov-Durrmeyer operator while q-Picard and q-Gauss-Weierstrass singular integral operators introduced and studied by Aral in [13].
Historically, Srivastava studied univalent function theory by using q -calculus, see for detail [62,63]. Moreover, Kanas and Raducanu [40] introduced the q-analogue of Ruscheweyh differential operator and Arif et al. [15] discussed some of its applications for multivalent functions. For detailed study about q-analogous of operators we may refer to [1,33,42,43,44,45,46,47,48,49,59,66].
Definition 1.1. (see [36]) The q-number [t]q and q-factorial [n]q! for q∈(0,1) is defined as:
[t]q=1+q+q2+...+qn−1, (t=n∈N) |
and
[n]q!=n∏k=1[k]q, (n∈N) |
where
[0]q!=1 and [t]q=1−qt1−q (t∈C). |
Definition 1.2. (see [36]) The q-generalized Pochhammer symbol [t]n,q, t∈C, is defined as:
[t]n,q=[t]q[t+1]q[t+2]q...[t+n−1]q, (n∈N). |
and the q-Gamma function be given as:
[t]q=Γq(t+1)Γq(t) and Γq(1)=1. |
Definition 1.3. ([36]) For f∈A, the q-derivative operator or q -difference operator be defined as:
Dqf(z)=f(z)−f(qz)(1−q)z, z∈E. | (1.3) |
Combining (1.1) and (1.3), we have
Dqf(z)=1+∞∑n=2[n]qanzn−1. |
Note that
Dqzn=[n]qzn−1 and Dq{∞∑n=1anzn}=∞∑n=1[n]qanzn−1. |
We can observe that
limq→1−Dqf(z)=f′(z). |
Mittag-Leffler introduced Mittag-Leffler function Hα(z) in [51,52] as:
Hα(z)=∞∑n=01Γ(αn+1)zn, (α∈C, ℜ(α))>0, |
and its generalization Hα,β(z) introduced by Wiman [70] as:
Hα,β(z)=∞∑n=01Γ(αn+β)zn, (α, β∈C, ℜ(α), ℜ(β))>0. |
For more study about Mittag-Leffler function see article [12,54,65,68].
The q-Mittag-Leffler function is defined by (see [58])
Hα,β(z,q)=∞∑n=01Γq(αn+β)zn (α, β∈C, ℜ(α), ℜ(β))>0. | (1.4) |
Note that q-Mittag-Leffler function is the specialized case of the q -Fox-Wright function rΦs(z,q), (see, for details, [60,61]). Since the q-Mittag-Leffler function Hα,β(z,q) defined by (1.4) does not belong to the normalized analytic function class A.
Now, we define the normalization of this q-Mittag-Leffler function Fα,β(z) as:
Fα,β(z,q)=zΓq(β)Hα,β(z)Fα,β(z,q)=z+∞∑n=2Γq(β)Γq(α(n−1)+β)zn, |
where z∈E, ℜα>0, β∈C∖{0,−1,−2,...}). Corresponding to Fα,β(z,q) and for f∈A, we define the following differential operator Dm,qδ,μ(α,β):A→A by
D0,qδ,μ(α,β)f(z)=f(z)∗Fα,β(z,q), |
D1,qδ,μ(α,β)f(z)=(1−δ+μ)(f(z)∗Fα,β(z,q))+(δ−μ)zDq(f(z)∗Fα,β(z,q))+δμz2D2q(f(z)∗Fα,β(z,q)), | (1.5) |
...Dm,qδ,μ(α,β)f(z)=Dqδ,μ(Dm−1δ,μ(α,β)f(z)). | (1.6) |
If f(z) is given by (1.1), then from (1.5) and (1.6), we have
Dm,qδ,μ(α,β)f(z)=z+∞∑n=2Ψ(α,β,q,n)(φ(δ,μ,q,n))manzn, |
where
φ(δ,μ,q,n)=1+(δμ[n]q[n−1]q+q(δ−μ)[n]q), | (1.7) |
Ψ(α,β,q,n)=Γq(β)Γq(α(n−1)+β). | (1.8) |
Each of the following special case of the above-mentioned operator Dm,qδ,μ(α,β):A→A is worthy of noted.
(ⅰ) For μ=0, α=0, β=1, and δ=1, we get Salagean q-differential operator introduced by Salagean in [27].
(ⅱ) For q→1−, μ=0, α=0, β=1, and δ=1, we get Salagean differential operator introduced by Salagean in [55].
(ⅲ) For q→1−, μ=0, α=0, and β=1, we get Al-Oboudi operator [2].
(ⅳ) For q→1−, and m=0, we have Eα,β(z) introduced in [65].
(ⅴ) For q→1−, α=0, and β=1, we have Raducanu and Orhan differential operator [22] see also [23].
The Faber polynomials introduced by Faber [25] play an important role in various areas of mathematical sciences, especially in Geometric Function Theory see also [28,56,57]. Not much is known about the bounds on general coefficients |an|, for n≥3 of bi-univalent functions. In the literature only a few work determining the general coefficient |an|, for n≥3 for the analytic bi-univalent function given by (1.1). For more study see [3,4,30,32,37,69].
Here in this paper we define new subclass of bi-univalent functions and determine estimates for the general coefficient bounds |an| for n≥3, by using Faber polynomial expansions and newly defined q-analogue of differential operator. Throughout in this paper, we assume that
0≤μ≤δ, 0≤δ, 0<q<1,−1≤B<A≤1,λ≥1, m∈N0=N∪{0}. |
Definition 1.4. A function f∈Σ is said to be in the class Bm,λ,μ,δΣ(α,β,q,A,B) if the following subordinations are satisfied:
(1−λ)Dm,qδ,μ(α,β)f(z)+λDm+1,qδ,μ(α,β)f(z)z≺1+Az1+Bz, |
and
(1−λ)Dm,qδ,μ(α,β)g(w)+λDm+1,qδ,μ(α,β)g(w)w≺1+Aw1+Bw, |
where the function g is given by (1.2).
Remark 1.5. First of all, it ids easy to see that
limq→1−(Bm,λ,0,1Σ(0,1,q,1,−1))=BΣ(m,λ,φ), |
where BΣ(m,λ,φ) is the function class introduced and studied by Altinkaya and Yalcin [11]. Secindly, we have
limq→1−B0,λ,0,1Σ(0,1,q,1,−1)=BΣ(φ,λ) |
where the class BΣ(φ,λ) was introduced by Frasin and Aouf [26].
In this article, we defined certain new subclasses of analytic and bi-univalent functions which involve the differential operator of q-Mittag-Leffer functions. Then by applying the method of Faber polynomial expansions, we determined general coefficients bond |an|, for n≥3. We also highlight some known consequences of our main results.
By using the Faber polynomial expansion of functions f of the form (1.1), the coefficients of its inverse map g=f−1 are given by,
g(w)=f−1(w)=w+∞∑n=21nK−nn−1(a2,a3,...)wn, |
where
K−nn−1=(−n)!(−2n+1)!(n−5)!an−12+(−n)![2(−n+1)]!(n−3)!an−32a3+(−n)!(−2n+3)!(n−4)!an−42a4+(−n)![2(−n+2)]!(n−5)!an−52[a5+(−n+2)a23]+(−n)!(−2n+5)!(n−6)!an−62[a6+(−2n+5)a3a4]+∑j≥7an−j2Vj |
and g=f−1 given by (1.2), Vj with 7≤j≤n is a homogeneous polynomial in the variables |a2|,|a3|,...,|an| (see [5]). In particular, the first three terms of K−nn−1 are
12K−21=−a213K−32=2a22−a314K−43=−(5a32−5a2a3+a4). |
In general, for any p∈N and n≥2, an expansion of Kpn−1 (see [4]) is,
Kpn−1=pan+p(p−1)2E2n−1+p!(p−3)!3!E3n−1+...+p!(p−n+1)!(n−1)!En−1n−1, |
where Epn−1=Epn−1(a2,a3,...) (see [6]) given by
Emn−1(a2,...,an)=∞∑n=2m!(a2)μ1...(an)μn−1μ1!...μn−1!, for m≤n. |
While a1=1, and the sum is taken over all nonnegative integer μ1,...,μn satisfying:
μ1+μ2+...+μn=m, |
and
μ1+2μ2+...+(n−1)μn−1=n−1. |
Evidently, (see [3])
En−1n−1(a2,...,an)=an−12, |
or equivalently,
Emn(a1,a2,...,an)=∞∑n=1m!(a1)μ1...(an)μnμ1!...μn!, for m≤n, |
again a1=1, and the taking the sum over all nonnegative integer μ1,...,μn satisfying:
μ1+μ2+...+μn=m,μ1+2μ2+...+(n)μn=n. |
It is clear that
Enn(a1,...,an)=En1 |
the first and last polynomials are
Enn=an1 and E1n=an. |
Theorem 2.1. Let f∈Bm,λ,μ,δΣ(α,β,q,A,B). If ai=0; 2≤i≤n−1, then
|an|≤A−B{1+(φ−1)λ}Ψ(α,β,q,n)(φ(δ,μ,q,n))m, n≥3, |
where φ is given by (1.7).
Proof. Let f be given by (1.1), we have
(1−λ)Dm,qδ,μ(α,β)f(z)+λDm+1,qδ,μ(α,β)f(z)z=1+∞∑n=2{1+(φ−1)λ}Ψ(α,β,q,n)(φ(δ,μ,q,n))manzn−1 |
and for its inverse map g=f−1, we have
(1−λ)Dm,qδ,μ(α,β)g(w)+λDm+1,qδ,μ(α,β)g(w)w=1+∞∑n=2{1+(φ−1)λ}Ψ(α,β,q,n)(φ(δ,μ,q,n))m⋅1nK−nn−1(a2,a3....,an)wn−1=1+∞∑n=2{1+(φ−1)λ}Ψ(α,β,q,n)(φ(δ,μ,q,n))mbnwn−1, |
where
bn=1nK−nn−1(a2,a3....,an). |
Since, both the functions f and its inverse map g=f−1 are in Bm,λ,μ,δΣ(α,β,q,A,B), by the definition of subordination, for z,w∈E, there exist two Schwarz functions
ψ(z)=∞∑n=1cnzn |
and
ϕ(w)=∞∑n=1dnwn, |
such that
(1−λ)Dm,qδ,μ(α,β)f(z)+λDm+1,qδ,μ(α,β)f(z)z=1+A(ψ(z))1+B(ψ(z)), | (2.1) |
and
(1−λ)Dm,qδ,μ(α,β)g(w)+λDm+1,qδ,μ(α,β)g(w)w=1+A(ϕ(w))1+B(ϕ(w)), | (2.2) |
where
1+A(ψ(z))1+B(ψ(z))=1−∞∑n=1(A−B)K−1n(c1,c2,...,cn,B)zn, | (2.3) |
and
1+A(ϕ(w))1+B(ϕ(w))=1−∞∑n=1(A−B)K−1n(d1,d2,...,dn,B)wn. | (2.4) |
In general [3,4] for any p∈N and n≥2, an expansion of Kpn(k1,k2,...,kn,B),
Kpn(k1,k2,...,kn,B)=p!(p−n)!n!kn1Bn−1+p!(p−n+1)!(n−2)!kn−21k2Bn−2+p!(p−n+2)!(n−3)!×kn−31k3Bn−3+p!(p−n+3)!(n−4)!kn−41[k4Bn−4+p−n+32k23B]+p!(p−n+4)!(n−5)!kn−51[k5Bn−5+(p−n+4)k3k4B]+∑j≥6kn−11Xj, |
where Xj is a homogeneous polynomial of degree j in the variables k1,k2,...,kn.
Comparing the corresponding coefficients of (2.1) and (2.3) yields
{1+(φ(δ,μ,q,n)−1)λ}Ψ(α,β,q,n)(φ(δ,μ,q,n))man=−(A−B)K−1n−1(c1,c2,...,cn−1,B) | (2.5) |
and similarly, from (2.2) and (2.4) yields
{1+(φ(δ,μ,q,n)−1)λ}Ψ(α,β,q,n)(φ(δ,μ,q,n))mbn=−(A−B)K−1n−1(d1,d2,...,dn−1,B). | (2.6) |
Note that for ai=0; 2≤i≤n−1, we have
bn=−an |
and so
{1+(φ(δ,μ,q,n)−1)λ}Ψ(α,β,q,n)(φ(δ,μ,q,n))man=−(A−B)cn−1, | (2.7) |
{1+(φ(δ,μ,q,n)−1)λ}Ψ(α,β,q,n)(φ(δ,μ,q,n))man=(A−B)dn−1. | (2.8) |
Now taking the absolute values of (2.7) and (2.8) and using the fact that
|cn−1|≤1 and |dn−1|≤1, |
we obtain
|an|=|−(A−B)cn−1||{1+(φ(δ,μ,q,n)−1)λ}Ψ(α,β,q,n)(φ(δ,μ,q,n))m|=|(A−B)dn−1||{1+(φ(δ,μ,q,n)−1)λ}Ψ(α,β,q,n)(φ(δ,μ,q,n))m|≤A−B{1+(φ(δ,μ,q,n)−1)λ}Ψ(α,β,q,n)(φ(δ,μ,q,n))m. |
If in Theorem 2.1, we take
μ=0=α and β=δ=1=A=−B |
and let q→1−, we have the following known result.
Corollary 2.2. ([11]). Let f∈BΣ(m,λ,φ). If ai=0; 2≤i≤n−1, then
|an|≤2nm{1+(n−1)λ}; n≥3. |
Theorem 2.3. Let f∈Bm,λ,μ,δΣ(α,β,q,A,B). Then
|a2|≤min{A−B{1+(φ(δ,μ,q,2)−1)λ}Ψ(α,β,q,2)(φ(δ,μ,q,2))m,√(A−B){1+|B|}{1+(φ(δ,μ,q,3)−1)λ}Ψ(α,β,q,3)(φ(δ,μ,q,3))m,}, |
|a3|≤min{(A−B)2{{1+(φ(δ,μ,q,2)−1)λ}Ψ(α,β,q,2)(φ(δ,μ,q,2))m}2+A−B{1+(φ(δ,μ,q,3)−1)λ}Ψ(α,β,q,3)(φ(δ,μ,q,3))m,(A−B){2+|B|}{1+(φ(δ,μ,q,3)−1)λ}Ψ(α,β,q,3)(φ(δ,μ,q,3))m} |
|a3−a22|≤A−B{1+(φ(δ,μ,q,3)−1)λ}Ψ(α,β,q,3)(φ(δ,μ,q,3))m, |
and
|a3−2a22|≤|A−B|{1+|B|}{1+(φ(δ,μ,q,3)−1)λ}Ψ(α,β,q,3)(φ(δ,μ,q,3))m. |
Proof. Replacing n by 2 and 3 in (2.5) and (2.6), respectively, we find that
{1+(φ(δ,μ,q,2)−1)λ}Ψ(α,β,q,2)(φ(δ,μ,q,2))ma2=−(A−B)c1, | (2.9) |
{1+(φ(δ,μ,q,3)−1)λ}Ψ(α,β,q,3)(φ(δ,μ,q,3))ma3=(A−B)c2+B(B−A)c21, | (2.10) |
{1+(φ(δ,μ,q,2)−1)λ}Ψ(α,β,q,2)(φ(δ,μ,q,2))ma2=(A−B)d1 | (2.11) |
and
{1+(φ(δ,μ,q,3)−1)λ}Ψ(α,β,q,3)(φ(δ,μ,q,3))m(2a22−a3)=(A−B)d2+B(B−A)d21. | (2.12) |
From (2.9) and (2.11) we obtain
|a2|=|−(A−B)c1|{1+(φ(δ,μ,q,2)−1)λ}Ψ(α,β,q,2)(φ(δ,μ,q,2))m=|(A−B)d1|{1+(φ(δ,μ,q,2)−1)λ}Ψ(α,β,q,2)(φ(δ,μ,q,2))m≤A−B{1+(φ(δ,μ,q,2)−1)λ}Ψ(α,β,q,2)(φ(δ,μ,q,2))m. | (2.13) |
Adding (2.10) and (2.12) implies
2{1+(φ(δ,μ,q,3)−1)λ}Ψ(α,β,q,3)(φ(δ,μ,q,3))ma22=(A−B)(c2+d2)+B(B−A)(c21+d21), |
or equivalently,
|a2|≤√(A−B){1+|B|}{1+(φ(δ,μ,q,3)−1)λ}Ψ(α,β,q,3)(φ(δ,μ,q,3))m. | (2.14) |
From (2.13) and (2.14) we get required assertion.
Now from (2.10), one can easily see that
|a3|=|(A−B)c2+B(B−A)c21|{1+(φ(δ,μ,q,3)−1)λ}Ψ(α,β,q,3)(φ(δ,μ,q,3))m≤(A−B){1+|B|}{1+(φ(δ,μ,q,3)−1)λ}Ψ(α,β,q,3)(φ(δ,μ,q,3))m. |
Next in order to find the bound on the coefficient |a3|,we subtract (2.12) from (2.10), we thus obtain
2{1+(φ(δ,μ,q,3)−1)λ}Ψ(α,β,q,3)(φ(δ,μ,q,3))m(a3−a22)=(A−B)(c2−d2)+B(B−A)(c21−d21). | (2.15) |
Using the fact that c21=d21 and taking the absolute values of both sides of (2.15), we obtain the desired inequality
|a3|≤|a2|2+|(A−B)(c2−d2)|2{1+(φ(δ,μ,q,3)−1)λ}Ψ(α,β,q,3)(φ(δ,μ,q,3))m≤|a2|2+A−B{1+(φ(δ,μ,q,3)−1)λ}Ψ(α,β,q,3)(φ(δ,μ,q,3))m. | (2.16) |
Substituting the value of a22 from (2.13) into (2.16), we obtain
|a3|≤(A−B)2{{1+(φ(δ,μ,q,2)−1)λ}Ψ(α,β,q,2)(φ(δ,μ,q,2))m}2+A−B{1+(φ(δ,μ,q,3)−1)λ}Ψ(α,β,q,3)(φ(δ,μ,q,3))m. |
Additionally, substituting the value of a22 from (2.14) into (2.16), we obtain
|a3|≤(A−B){2+|B|}{1+(φ(δ,μ,q,3)−1)λ}Ψ(α,β,q,3)(φ(δ,μ,q,3))m. |
Solving the equation (2.15) for a3−a22, we get the desired inequality as:
|a3−a22|=|(A−B)(c2−d2)+B(B−A)(c21−d21)2{1+(φ(δ,μ,q,3)−1)λ}Ψ(α,β,q,3)(φ(δ,μ,q,3))m|≤A−B{1+(φ(δ,μ,q,3)−1)λ}Ψ(α,β,q,3)(φ(δ,μ,q,3))m. |
Finally we rewrite (2.12) as
{1+(φ(δ,μ,q,3)−1)λ}Ψ(α,β,q,3)(φ(δ,μ,q,3))m(a3−2a22)=−{(A−B)d2+B(B−A)d21}, |
and therefore
|a3−2a22|=|−{(A−B)d2+B(B−A)d21}{1+(φ(δ,μ,q,3)−1)λ}Ψ(α,β,q,3)(φ(δ,μ,q,3))m|≤|A−B|{1+|B|}{1+(φ(δ,μ,q,3)−1)λ}Ψ(α,β,q,3)(φ(δ,μ,q,3))m. |
If in Theorem 2.3, we take
μ=0=α and β=δ=1=A=−B |
and let q→1−, we have the following known result.
Corollary 2.4. ([11]). Let f∈BΣ(p,λ,φ). Then
|a2|≤min{1(1+λ)2m−1,2√(1+2λ)3m}, |
|a3|≤min{1(1+λ)222m−2+2(1+2λ)3m,2(1+2λ)3m−1}, |
|a3−a22|≤2(1+2λ)3m |
and
|a3−2a22|≤4(1+2λ)3m. |
Basic (or q-) Calculus is particularly applicable in many deserve areas of mathematics and physics. In our present investigations, we have first introduced the q-analogus of generalized differential operator involving q-Mittag-Leffler function in open unit disk
E={z:z∈C and |z|<1} |
and then defined certain new subclasses of analytic and bi-univalent functions. Furthermore, By applying the Faber polynomial expansion method, we have determined general coefficient bounds |an|, for n≥3. We have also highlight some known consequences of our main results.
This work was supported by The Key Scientific Research Project of the Colleges and Universities in Henan Province (NO. 19A110024), Natural Science Foundation of Henan Province (CN) (NO. 212300410204).
[1] | Q. Z. Ahmad, N. Khan, M. Raza, M. Tahir, B. Khan, Certain q-difference operators and their applications to the subclass of meromorphic q-starlike functions, Filomat, 33 (2019), 3385–3397. Available from: https://doi.org/10.2298/FIL1911385A. |
[2] | F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Int. J. Math. Math. Sci., 27 (2004), 1429–1436. Available from: https://doi.org/10.1155/S0161171204108090. |
[3] | H. Airault, Remarks on Faber polynomials, Int. Math. Forum., 3 (2008), 449–456. |
[4] |
H. Airault, A. Bouali, Differential calculus on the Faber polynomials, Bull. Sci. Math., 130 (2006), 179–222. doi:10.1016/j.bulsci.2005.10.002. doi: 10.1016/j.bulsci.2005.10.002
![]() |
[5] | H. Airault, J. Ren, An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math., 126 (2002), 343–367. Available from: https://doi.org/10.1016/S0007-4497(02)01115-6. |
[6] | H. Airault, Symmetric sums associated to the factorizations of Grunsky coefficients, In: Conference, Groups and Symmetries Montreal Canada, April 2007. |
[7] | R. M. Ali, S. K. Lee, V. Ravichandran, S. Supramaniam, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett., 25 (2012), 344–351. Available from: https://doi.org/10.1016/j.aml.2011.09.012. |
[8] | S. Altınkaya, S. Yalçın, Coefficient estimates for two new subclasses of bi-univalent functions with respect to symmetric points, J. Funct. Spaces, (2015), Article ID: 145242. Available from: doi.org/10.1155/2015/145242. |
[9] | S. Altınkaya, S. Yalçın, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Acta Univ. Apulensis, Mat. Inform., 40 (2014), 347–354. |
[10] | S. Altınkaya, S. Yalçın, Initial coefficient bounds for a general class of bi-univalent functions, Int. J. Anal., (2014), Article ID: 867871. |
[11] | S. Altinkaya, S. Yalcin, Faber polynomial coefficient bounds for a subclass of bi-univalent functions, C. R. Acad. Sci. Paris, Ser. I., 353 (2015), 1075–1080. Available from: https://doi.org/10.1016/j.crma.2015.09.003. |
[12] | A. A. Attiya, Some applications of Mittag-Leffler function in the unit disk, Filomat, 30 (2016), 2075–2081. |
[13] | A. Aral, On the generalized Picard and Gauss Weierstrass singular integrals, J. Comput. Anal. Appl., 8 (2006), 249–261. |
[14] | A. Aral, V. Gupta, On q-Baskakov type operators, Demon-str. Math., 42 (2009), 109–122. |
[15] | M. Arif, H. M. Srivastava, S. Uma, Some applications of a q -analogue of the Ruscheweyh type operator for multivalent functions, RACSAM, 113 (2019), 1211–1221. Available from: https://doi.org/10.1007/s13398-018-0539-3. |
[16] | D. A. Brannan, J. Clunie, Aspects of contemporary complex analysis, Proceedings of the NATO Advanced Study Instute Held at University of Durham, New York, Academic Press, 1979. |
[17] | S. Bulut, Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions, C. R. Acad. Sci. Paris. Ser. I., 352 (2014), 479–484. Available from: https://doi.org/10.1016/j.crma.2014.04.004. |
[18] | E. Deniz, J. M. Jahangiri, S. K. Kina, S. G. Hamidi, Faber polynomial coefficients for generalized bi-subordinate functions of complex order, J. Math. Ineq., 12 (2018), 645–653. Available from: dx.doi.org/10.7153/jmi-2018-12-49. |
[19] | E. Deniz, H. T. Yolcu, Faber polynomial coefficients for meromorphic bi-subordinate functions of complex order, AIMS Math., 5 (2020), 640–649. |
[20] | M. Çağlar, E. Deniz, Initial coefficients for a subclass of bi-univalent functions defined by Salagean differential operator, Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat., 66 (2017), 85–91. Available from: https://doi.org/10.1501/Commua1_0000000777. |
[21] | E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Classical Anal., 2 (2013), 49–60. Available from: dx.doi.org/10.7153/jca-02-05. |
[22] | D. Raducanu, H. Orhan, Subclasses of analytic functions defined by a generalized differential operator, Int. J. Math. Anal., 4 (2010), 1–15. |
[23] | E. Deniz, H. Orhan, The Fekete-Szegö Problem for A Generalized Subclass of Analytic Functions, Kyungpook Math. J., 50 (2010), 37–47. |
[24] | P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, vol. 259, Springer, New York, 1983. |
[25] | G. Faber, Uber polynomische Entwickelungen, Math. Ann., 57 (1903), 389–408. Available from: https://doi.org/10.1007/BF01444293. |
[26] | B. A. Frasin, M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24 (2011), 1569–1573. Available from: https://doi.org/10.1016/j.aml.2011.03.048. |
[27] | M. Govindaraj, S. Sivasubramanian, On a class of analytic functions related to conic domains involving q-calculus, Anal. Math., 43 (2017), 475–487. Available from: https://doi.org/10.1007/s10476-017-0206-5. |
[28] | H. Grunsky, Koffizientenbedingungen fur schlict abbildende meromorphe funktionen, Math. Zeit., 45 (1939), 29–61. |
[29] | S. G. Hamidi, J. M. Jahangiri, Faber polynomial coefficient estimates for analytic bi-close-to-convex functions, C. R. Acad. Sci. Paris. Ser. I, 352 (2014), 17–20. Available from: https://doi.org/10.1016/j.crma.2013.11.005. |
[30] | S. G. Hamidi, J. M. Jahangiri, Faber polynomial coefficients of bi-subordinate functions, C. R. Acad. Sci. Paris, Ser. I, 354 (2016), 365–370. Available from: https://doi.org/10.1016/j.crma.2016.01.013. |
[31] | S. G. Hamidi, J. M. Jahangiri, Faber polynomial coefficient estimates for bi-univalent functions defined by subordinations, Bull. Iran. Math. Soc., 41 (2015), 1103–1119. Available from: https://doi.org/10.1007/s41980-018-0011-3. |
[32] | S. Hussain, S. Khan, M. A. Zaighum, M. Darus, Z. Shareef, Coefficients bounds for certain subclass of bi-univalent functions associated with Ruscheweyh q-differential operator, J. Complex Anal., Article ID 2826514. Available from: https://doi.org/10.1155/2017/2826514. |
[33] |
S. Hussain, S. Khan, M. A. Zaighum, D. Darus, Certain subclass of analytic functions related with conic domains and associated with Salagean q-differential operator, AIMS Math., 2 (2017), 622–634. doi: 10.3934/Math.2017.4.622. doi: 10.3934/Math.2017.4.622
![]() |
[34] | M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Variables Theory Appl., 14 (1990), 77–84. Available from: https://doi.org/10.1080/17476939008814407. |
[35] | F. H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193–203. |
[36] |
F. H. Jackson, On q-functions and a certain difference operator, T. Royal Soc. Edinburgh, 46 (1908), 253–281. doi: https://doi.org/10.1017/S0080456800002751. doi: 10.1017/S0080456800002751
![]() |
[37] | J. M. Jahangiri, On the coefficients of powers of a class of Bazilevic functions, Indian J. Pure Appl. Math., 17 (1986), 1140–1144. |
[38] | J. M. Jahangiri, S. G. Hamidi, Coefficient estimates for certain classes of bi-univalent functions, Int. J. Math. Math. Sci., (2013), Article ID 190560. Available from: https://doi.org/10.1155/2013/190560. |
[39] | J. M. Jahangiri, S. G. Hamidi, S. Abd Halim, Coefficients of bi-univalent functions with positive real part derivatives, Bull. Malays. Math. Soc., 3 (2014), 633–640. |
[40] | S. Kanas, D. Raducanu, Some class of analytic functions related to conic domains, Math. Slovaca, 64 (2014), 1183–1196. Available from: https://doi.org/10.2478/s12175-014-0268-9. |
[41] | S. Khan, N. Khan, S. Hussain, Q. Z. Ahmad, M. A. Zaighum, Some subclasses of bi-univalent functions associated with Srivastva-Attiya operator, Bull. Math. Anal. Appl., 9 (2017), 37–44. |
[42] | B. Khan, Z. G. Liu, H. M. Srivastava, N. Khan, M. Darus, M. Tahir, A study of some families of multivalent q-starlike functions involving higher-order q-Derivatives, Mathematics, 8 (2020), Article ID 1470, 1–12. Available from: https://doi.org/10.3390/math8091470. |
[43] | B. Khan, Z. G. Liu, H. M. Srivastava, N. Khan, M. Tahir, Applications of higher-order derivatives to subclasses of multivalent q-starlike functions, Maejo Internat. J. Sci. Technol., 15 (2021), 61–72. |
[44] |
B. Khan, H. M. Srivastava, M. Tahir, M. Darus, Q. Z. Ahmad, N. Khan, Applications of a certain integral operator to the subclasses of analytic and bi-univalent functions, AIMS Math., 6 (2021), 1024–1039. doi:10.3934/math.2021061. doi: 10.3934/math.2021061
![]() |
[45] | B. Khan, H. M. Srivastava, N. Khan, M. Darus, M. Tahir, Q. Z. Ahmad, Coefficient estimates for a subclass of analytic functions associated with a certain leaf-like domain, Mathematics, 8 (2020), Article ID 1334, 1–15. Available from: https://doi.org/10.3390/math8081334. |
[46] | W. S. Chung, T. Kim, H. I. Kwon, On the q-analog of the Laplace transform, Russ. J. Math. Phys., 21 (2014), 156–168. Available from: https://doi.org/10.1134/S1061920814020034. |
[47] | V. Gupta, T. Kim, On a q-analog of the Baskakov basis functions, Russ. J. Math. Phys., 20 (2013), 276–282. Available from: https://doi.org/10.1134/S1061920813030035. |
[48] | T. Kim, D. S. Kim, W. S. Chung, H. I. Kwon, Some families of q-sums and q-products, Filomat, 31 (2017), 1611–1618. Available from: https://doi.org/10.2298/FIL1706611K. |
[49] | T. Kim, Some identities on the q-integral representation of the product of several q-Bernstein-type polynomials, Abstr. Appl. Anal., 2011 (2011), Article ID 634675, 11. |
[50] | M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18 (1967), 63–68. Available from: https://doi.org/10.2307/2035225. |
[51] | G. M. Mittag-Leffler, Sur la nouvelle fonction Eα(x), C R Acad. Sci. Paris, 137 (1903), 554–558. |
[52] | G. M. Mittag-Leffler, Sur la representation analytique dune branche uniforme dune fonction monogene, Acta Math., 29 (1905), 101–181. |
[53] | E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z|<1, Arch. Ration. Mech. An., 32 (1969), 100–112. Available from: https://doi.org/10.1007/BF00247676. |
[54] | H. Rehman, M. Darus, J. Salah, Coefficient properties involving the generalized k-Mittag-Leffler functions, Transyl. J. Math. Mech.(TJMM), 9 (2017), 155–164. |
[55] | G. S. Salagean, Subclasses of univalent functions, Lecture Notes in Mathematics, 1013, Springer (Berlin, 1983), 362–372. |
[56] | M. Schiffer, A method of variation within the family of simple functions, Proc. London Math. Soc., 44 (1938), 432–449. Available from: https://doi.org/10.1112/plms/s2-44.6.432. |
[57] |
A. C. Schaeffer, D. C. Spencer, The coefficients of schlict functions, Duke Math. J., 10 (1943), 611–635. doi: 10.1215/S0012-7094-43-01056-7. doi: 10.1215/S0012-7094-43-01056-7
![]() |
[58] | S. K. Sharma, R. Jain, On some properties of generalized q -Mittag Leffler function, Math. Aeterna, 4 (2014), 613–619. |
[59] | L. Shi, M. Raza, K. Javed, S. Hussain, M. Arif, Class of analytic functions defined by q-integral operator in a symmetric region, Symmetry, 11 (2019), 1042. Available from: https://doi.org/10.3390/sym11081042. |
[60] | H. M. Srivastava, Certain q-polynomial expansions fot functions of several variables. I and II, IMA J. Appl. Math., 30 (1983), 315-323. Available from: https://doi.org/10.1093/imamat/30.3.315. |
[61] | H. M. Srivastava, P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, (1985). |
[62] | H. M. Srivastava, Univalent functions, fractional calculus, and associated generalized hypergeometric functions, In: H. M. Srivastava, S. Owa, Univalent functions, fractional Calculus, and Their Applications, John Wiley & Sons, New York, etc. (1989). |
[63] | H. M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A: Sci., 44 (2020), 327–344. Available from: https://doi.org/10.1007/s40995-019-00815-0. |
[64] | H. M. Srivastava, S. S. Eker, R. M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29 (2015), 1839–1845. Available from: https://www.jstor.org/stable/24898346. |
[65] | H. M. Srivastava, B. A. Frasin, V. Pescar, Univalence of integral operators involving Mittag-Leffler functions, Appl. Math. Inf. Sci., 11 (2017), 635–641. |
[66] |
H. M. Srivastava, S. Khan, Q. Z. Ahmad, N. Khan, S. Hussain, The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain q-integral operator, Stud. Univ. Babe s-Bolyai Math., 63 (2018), 419–436. doi: 10.24193/subbmath.2018.4.01. doi: 10.24193/subbmath.2018.4.01
![]() |
[67] | H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188–1192. Available from: https://doi.org/10.1016/j.aml.2010.05.009. |
[68] | H. M. Srivastava, Z. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel, Appl. Math. Comput., 211 (2009), 198–210. Available from: https://doi.org/10.1016/j.amc.2009.01.055. |
[69] | P. G. Todorov, On the Faber polynomials of the univalent functions of class, J. Math. Anal. Appl., 162 (1991), 268–276. Available from: https://doi.org/10.1016/0022-247X(91)90193-4. |
[70] |
A. Wiman, Uber den fundamentalsatz in der teorie der funktionen E(x), Acta Math., 29 (1905), 191–201. doi: 10.1007/BF02403202. doi: 10.1007/BF02403202
![]() |
1. | H. M. Srivastava, Shahid Khan, Sarfraz Nawaz Malik, Fairouz Tchier, Afis Saliu, Qin Xin, Faber polynomial coefficient inequalities for bi-Bazilevič functions associated with the Fibonacci-number series and the square-root functions, 2024, 2024, 1029-242X, 10.1186/s13660-024-03090-9 | |
2. | Sarem H. Hadi, Maslina Darus, 2024, 3023, 0094-243X, 070002, 10.1063/5.0172085 | |
3. | Ahmad A. Abubaker, Khaled Matarneh, Suha B. Al-Shaikh, Mohammad Faisal Khan, Behzad Ghanbari, Some new applications of the fractional integral and four-parameter Mittag-Leffler function, 2025, 20, 1932-6203, e0317776, 10.1371/journal.pone.0317776 |