Research article

Faber polynomial coefficients estimates for certain subclasses of $ q $-Mittag-Leffler-Type analytic and bi-univalent functions

  • Received: 08 August 2021 Accepted: 01 November 2021 Published: 16 November 2021
  • MSC : Primary 05A30, 30C45; Secondary 11B65, 47B38

  • In this paper, we introduce the $ q $-analogus of generalized differential operator involving $ q $-Mittag-Leffler function in open unit disk

    $ \begin{equation*} E = \left \{ z:z\in \mathbb{C\ \ }\text{ and} \ \ \left \vert z\right \vert <1\right \} \end{equation*} $

    and define new subclass of analytic and bi-univalent functions. By applying the Faber polynomial expansion method, we then determined general coefficient bounds $ |a_{n}| $, for $ n\geq 3 $. We also highlight some known consequences of our main results.

    Citation: Zeya Jia, Nazar Khan, Shahid Khan, Bilal Khan. Faber polynomial coefficients estimates for certain subclasses of $ q $-Mittag-Leffler-Type analytic and bi-univalent functions[J]. AIMS Mathematics, 2022, 7(2): 2512-2528. doi: 10.3934/math.2022141

    Related Papers:

  • In this paper, we introduce the $ q $-analogus of generalized differential operator involving $ q $-Mittag-Leffler function in open unit disk

    $ \begin{equation*} E = \left \{ z:z\in \mathbb{C\ \ }\text{ and} \ \ \left \vert z\right \vert <1\right \} \end{equation*} $

    and define new subclass of analytic and bi-univalent functions. By applying the Faber polynomial expansion method, we then determined general coefficient bounds $ |a_{n}| $, for $ n\geq 3 $. We also highlight some known consequences of our main results.



    加载中


    [1] Q. Z. Ahmad, N. Khan, M. Raza, M. Tahir, B. Khan, Certain $q$-difference operators and their applications to the subclass of meromorphic $q$-starlike functions, Filomat, 33 (2019), 3385–3397. Available from: https://doi.org/10.2298/FIL1911385A.
    [2] F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Int. J. Math. Math. Sci., 27 (2004), 1429–1436. Available from: https://doi.org/10.1155/S0161171204108090.
    [3] H. Airault, Remarks on Faber polynomials, Int. Math. Forum., 3 (2008), 449–456.
    [4] H. Airault, A. Bouali, Differential calculus on the Faber polynomials, Bull. Sci. Math., 130 (2006), 179–222. doi:10.1016/j.bulsci.2005.10.002. doi: 10.1016/j.bulsci.2005.10.002
    [5] H. Airault, J. Ren, An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math., 126 (2002), 343–367. Available from: https://doi.org/10.1016/S0007-4497(02)01115-6.
    [6] H. Airault, Symmetric sums associated to the factorizations of Grunsky coefficients, In: Conference, Groups and Symmetries Montreal Canada, April 2007.
    [7] R. M. Ali, S. K. Lee, V. Ravichandran, S. Supramaniam, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett., 25 (2012), 344–351. Available from: https://doi.org/10.1016/j.aml.2011.09.012.
    [8] S. Altınkaya, S. Yalçın, Coefficient estimates for two new subclasses of bi-univalent functions with respect to symmetric points, J. Funct. Spaces, (2015), Article ID: 145242. Available from: doi.org/10.1155/2015/145242.
    [9] S. Altınkaya, S. Yalçın, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Acta Univ. Apulensis, Mat. Inform., 40 (2014), 347–354.
    [10] S. Altınkaya, S. Yalçın, Initial coefficient bounds for a general class of bi-univalent functions, Int. J. Anal., (2014), Article ID: 867871.
    [11] S. Altinkaya, S. Yalcin, Faber polynomial coefficient bounds for a subclass of bi-univalent functions, C. R. Acad. Sci. Paris, Ser. I., 353 (2015), 1075–1080. Available from: https://doi.org/10.1016/j.crma.2015.09.003.
    [12] A. A. Attiya, Some applications of Mittag-Leffler function in the unit disk, Filomat, 30 (2016), 2075–2081.
    [13] A. Aral, On the generalized Picard and Gauss Weierstrass singular integrals, J. Comput. Anal. Appl., 8 (2006), 249–261.
    [14] A. Aral, V. Gupta, On $q$-Baskakov type operators, Demon-str. Math., 42 (2009), 109–122.
    [15] M. Arif, H. M. Srivastava, S. Uma, Some applications of a $q$ -analogue of the Ruscheweyh type operator for multivalent functions, RACSAM, 113 (2019), 1211–1221. Available from: https://doi.org/10.1007/s13398-018-0539-3.
    [16] D. A. Brannan, J. Clunie, Aspects of contemporary complex analysis, Proceedings of the NATO Advanced Study Instute Held at University of Durham, New York, Academic Press, 1979.
    [17] S. Bulut, Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions, C. R. Acad. Sci. Paris. Ser. I., 352 (2014), 479–484. Available from: https://doi.org/10.1016/j.crma.2014.04.004.
    [18] E. Deniz, J. M. Jahangiri, S. K. Kina, S. G. Hamidi, Faber polynomial coefficients for generalized bi-subordinate functions of complex order, J. Math. Ineq., 12 (2018), 645–653. Available from: dx.doi.org/10.7153/jmi-2018-12-49.
    [19] E. Deniz, H. T. Yolcu, Faber polynomial coefficients for meromorphic bi-subordinate functions of complex order, AIMS Math., 5 (2020), 640–649.
    [20] M. Çağlar, E. Deniz, Initial coefficients for a subclass of bi-univalent functions defined by Salagean differential operator, Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat., 66 (2017), 85–91. Available from: https://doi.org/10.1501/Commua1_0000000777.
    [21] E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Classical Anal., 2 (2013), 49–60. Available from: dx.doi.org/10.7153/jca-02-05.
    [22] D. Raducanu, H. Orhan, Subclasses of analytic functions defined by a generalized differential operator, Int. J. Math. Anal., 4 (2010), 1–15.
    [23] E. Deniz, H. Orhan, The Fekete-Szegö Problem for A Generalized Subclass of Analytic Functions, Kyungpook Math. J., 50 (2010), 37–47.
    [24] P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, vol. 259, Springer, New York, 1983.
    [25] G. Faber, Uber polynomische Entwickelungen, Math. Ann., 57 (1903), 389–408. Available from: https://doi.org/10.1007/BF01444293.
    [26] B. A. Frasin, M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24 (2011), 1569–1573. Available from: https://doi.org/10.1016/j.aml.2011.03.048.
    [27] M. Govindaraj, S. Sivasubramanian, On a class of analytic functions related to conic domains involving $q$-calculus, Anal. Math., 43 (2017), 475–487. Available from: https://doi.org/10.1007/s10476-017-0206-5.
    [28] H. Grunsky, Koffizientenbedingungen fur schlict abbildende meromorphe funktionen, Math. Zeit., 45 (1939), 29–61.
    [29] S. G. Hamidi, J. M. Jahangiri, Faber polynomial coefficient estimates for analytic bi-close-to-convex functions, C. R. Acad. Sci. Paris. Ser. I, 352 (2014), 17–20. Available from: https://doi.org/10.1016/j.crma.2013.11.005.
    [30] S. G. Hamidi, J. M. Jahangiri, Faber polynomial coefficients of bi-subordinate functions, C. R. Acad. Sci. Paris, Ser. I, 354 (2016), 365–370. Available from: https://doi.org/10.1016/j.crma.2016.01.013.
    [31] S. G. Hamidi, J. M. Jahangiri, Faber polynomial coefficient estimates for bi-univalent functions defined by subordinations, Bull. Iran. Math. Soc., 41 (2015), 1103–1119. Available from: https://doi.org/10.1007/s41980-018-0011-3.
    [32] S. Hussain, S. Khan, M. A. Zaighum, M. Darus, Z. Shareef, Coefficients bounds for certain subclass of bi-univalent functions associated with Ruscheweyh $q$-differential operator, J. Complex Anal., Article ID 2826514. Available from: https://doi.org/10.1155/2017/2826514.
    [33] S. Hussain, S. Khan, M. A. Zaighum, D. Darus, Certain subclass of analytic functions related with conic domains and associated with Salagean $q$-differential operator, AIMS Math., 2 (2017), 622–634. doi: 10.3934/Math.2017.4.622. doi: 10.3934/Math.2017.4.622
    [34] M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Variables Theory Appl., 14 (1990), 77–84. Available from: https://doi.org/10.1080/17476939008814407.
    [35] F. H. Jackson, On $q$-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193–203.
    [36] F. H. Jackson, On $q$-functions and a certain difference operator, T. Royal Soc. Edinburgh, 46 (1908), 253–281. doi: https://doi.org/10.1017/S0080456800002751. doi: 10.1017/S0080456800002751
    [37] J. M. Jahangiri, On the coefficients of powers of a class of Bazilevic functions, Indian J. Pure Appl. Math., 17 (1986), 1140–1144.
    [38] J. M. Jahangiri, S. G. Hamidi, Coefficient estimates for certain classes of bi-univalent functions, Int. J. Math. Math. Sci., (2013), Article ID 190560. Available from: https://doi.org/10.1155/2013/190560.
    [39] J. M. Jahangiri, S. G. Hamidi, S. Abd Halim, Coefficients of bi-univalent functions with positive real part derivatives, Bull. Malays. Math. Soc., 3 (2014), 633–640.
    [40] S. Kanas, D. Raducanu, Some class of analytic functions related to conic domains, Math. Slovaca, 64 (2014), 1183–1196. Available from: https://doi.org/10.2478/s12175-014-0268-9.
    [41] S. Khan, N. Khan, S. Hussain, Q. Z. Ahmad, M. A. Zaighum, Some subclasses of bi-univalent functions associated with Srivastva-Attiya operator, Bull. Math. Anal. Appl., 9 (2017), 37–44.
    [42] B. Khan, Z. G. Liu, H. M. Srivastava, N. Khan, M. Darus, M. Tahir, A study of some families of multivalent $q$-starlike functions involving higher-order $q$-Derivatives, Mathematics, 8 (2020), Article ID 1470, 1–12. Available from: https://doi.org/10.3390/math8091470.
    [43] B. Khan, Z. G. Liu, H. M. Srivastava, N. Khan, M. Tahir, Applications of higher-order derivatives to subclasses of multivalent $q$-starlike functions, Maejo Internat. J. Sci. Technol., 15 (2021), 61–72.
    [44] B. Khan, H. M. Srivastava, M. Tahir, M. Darus, Q. Z. Ahmad, N. Khan, Applications of a certain integral operator to the subclasses of analytic and bi-univalent functions, AIMS Math., 6 (2021), 1024–1039. doi:10.3934/math.2021061. doi: 10.3934/math.2021061
    [45] B. Khan, H. M. Srivastava, N. Khan, M. Darus, M. Tahir, Q. Z. Ahmad, Coefficient estimates for a subclass of analytic functions associated with a certain leaf-like domain, Mathematics, 8 (2020), Article ID 1334, 1–15. Available from: https://doi.org/10.3390/math8081334.
    [46] W. S. Chung, T. Kim, H. I. Kwon, On the $q$-analog of the Laplace transform, Russ. J. Math. Phys., 21 (2014), 156–168. Available from: https://doi.org/10.1134/S1061920814020034.
    [47] V. Gupta, T. Kim, On a $q$-analog of the Baskakov basis functions, Russ. J. Math. Phys., 20 (2013), 276–282. Available from: https://doi.org/10.1134/S1061920813030035.
    [48] T. Kim, D. S. Kim, W. S. Chung, H. I. Kwon, Some families of $q$-sums and $q$-products, Filomat, 31 (2017), 1611–1618. Available from: https://doi.org/10.2298/FIL1706611K.
    [49] T. Kim, Some identities on the $q$-integral representation of the product of several $q$-Bernstein-type polynomials, Abstr. Appl. Anal., 2011 (2011), Article ID 634675, 11.
    [50] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18 (1967), 63–68. Available from: https://doi.org/10.2307/2035225.
    [51] G. M. Mittag-Leffler, Sur la nouvelle fonction $E_{\alpha }(x)$, C R Acad. Sci. Paris, 137 (1903), 554–558.
    [52] G. M. Mittag-Leffler, Sur la representation analytique dune branche uniforme dune fonction monogene, Acta Math., 29 (1905), 101–181.
    [53] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $ \left \vert z\right \vert < 1$, Arch. Ration. Mech. An., 32 (1969), 100–112. Available from: https://doi.org/10.1007/BF00247676.
    [54] H. Rehman, M. Darus, J. Salah, Coefficient properties involving the generalized k-Mittag-Leffler functions, Transyl. J. Math. Mech.(TJMM), 9 (2017), 155–164.
    [55] G. S. Salagean, Subclasses of univalent functions, Lecture Notes in Mathematics, 1013, Springer (Berlin, 1983), 362–372.
    [56] M. Schiffer, A method of variation within the family of simple functions, Proc. London Math. Soc., 44 (1938), 432–449. Available from: https://doi.org/10.1112/plms/s2-44.6.432.
    [57] A. C. Schaeffer, D. C. Spencer, The coefficients of schlict functions, Duke Math. J., 10 (1943), 611–635. doi: 10.1215/S0012-7094-43-01056-7. doi: 10.1215/S0012-7094-43-01056-7
    [58] S. K. Sharma, R. Jain, On some properties of generalized $q$ -Mittag Leffler function, Math. Aeterna, 4 (2014), 613–619.
    [59] L. Shi, M. Raza, K. Javed, S. Hussain, M. Arif, Class of analytic functions defined by $q$-integral operator in a symmetric region, Symmetry, 11 (2019), 1042. Available from: https://doi.org/10.3390/sym11081042.
    [60] H. M. Srivastava, Certain $q$-polynomial expansions fot functions of several variables. I and II, IMA J. Appl. Math., 30 (1983), 315-323. Available from: https://doi.org/10.1093/imamat/30.3.315.
    [61] H. M. Srivastava, P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, (1985).
    [62] H. M. Srivastava, Univalent functions, fractional calculus, and associated generalized hypergeometric functions, In: H. M. Srivastava, S. Owa, Univalent functions, fractional Calculus, and Their Applications, John Wiley & Sons, New York, etc. (1989).
    [63] H. M. Srivastava, Operators of basic (or q-) calculus and fractional $q$-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A: Sci., 44 (2020), 327–344. Available from: https://doi.org/10.1007/s40995-019-00815-0.
    [64] H. M. Srivastava, S. S. Eker, R. M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29 (2015), 1839–1845. Available from: https://www.jstor.org/stable/24898346.
    [65] H. M. Srivastava, B. A. Frasin, V. Pescar, Univalence of integral operators involving Mittag-Leffler functions, Appl. Math. Inf. Sci., 11 (2017), 635–641.
    [66] H. M. Srivastava, S. Khan, Q. Z. Ahmad, N. Khan, S. Hussain, The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain $q$-integral operator, Stud. Univ. Babe s-Bolyai Math., 63 (2018), 419–436. doi: 10.24193/subbmath.2018.4.01. doi: 10.24193/subbmath.2018.4.01
    [67] H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188–1192. Available from: https://doi.org/10.1016/j.aml.2010.05.009.
    [68] H. M. Srivastava, Z. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel, Appl. Math. Comput., 211 (2009), 198–210. Available from: https://doi.org/10.1016/j.amc.2009.01.055.
    [69] P. G. Todorov, On the Faber polynomials of the univalent functions of class, J. Math. Anal. Appl., 162 (1991), 268–276. Available from: https://doi.org/10.1016/0022-247X(91)90193-4.
    [70] A. Wiman, Uber den fundamentalsatz in der teorie der funktionen $ E(x)$, Acta Math., 29 (1905), 191–201. doi: 10.1007/BF02403202. doi: 10.1007/BF02403202
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1791) PDF downloads(83) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog