Research article

Sharp bounds on the zeroth-order general Randić index of trees in terms of domination number

  • Received: 20 July 2021 Accepted: 08 November 2021 Published: 16 November 2021
  • MSC : 05C05, 05C35, 05C69

  • The zeroth-order general Randić index of graph $ G = (V_G, E_G) $, denoted by $ ^0R_{\alpha}(G) $, is the sum of items $ (d_{v})^{\alpha} $ over all vertices $ v\in V_G $, where $ \alpha $ is a pertinently chosen real number. In this paper, we obtain the sharp upper and lower bounds on $ ^0R_{\alpha} $ of trees with a given domination number $ \gamma $, for $ \alpha\in(-\infty, 0)\cup(1, \infty) $ and $ \alpha\in(0, 1) $, respectively. The corresponding extremal graphs of these bounds are also characterized.

    Citation: Chang Liu, Jianping Li. Sharp bounds on the zeroth-order general Randić index of trees in terms of domination number[J]. AIMS Mathematics, 2022, 7(2): 2529-2542. doi: 10.3934/math.2022142

    Related Papers:

  • The zeroth-order general Randić index of graph $ G = (V_G, E_G) $, denoted by $ ^0R_{\alpha}(G) $, is the sum of items $ (d_{v})^{\alpha} $ over all vertices $ v\in V_G $, where $ \alpha $ is a pertinently chosen real number. In this paper, we obtain the sharp upper and lower bounds on $ ^0R_{\alpha} $ of trees with a given domination number $ \gamma $, for $ \alpha\in(-\infty, 0)\cup(1, \infty) $ and $ \alpha\in(0, 1) $, respectively. The corresponding extremal graphs of these bounds are also characterized.



    加载中


    [1] B. Bollobás, P. Erdös, Graphs of extremal weights, Ars Combin., 50 (1998), 225–233.
    [2] B. Borovćanin, B. Furtula, On extremal Zagreb indices of trees with given domination number, Appl. Math. Comput., 279 (2016), 208–218. doi: 10.1016/j.amc.2016.01.017. doi: 10.1016/j.amc.2016.01.017
    [3] S. Bermudo, J. E. Nápoles, J. Rada, Extremal trees for the Randić index with given domination number, Appl. Math. Comput., 375 (2020), 125122. doi: 10.1016/j.amc.2020.125122. doi: 10.1016/j.amc.2020.125122
    [4] C. Delorme, O. Favaron, D. Rautenbach, On the Randić index, Discrete Math., 257 (2002), 29–38. doi: 10.1016/S0012-365X(02)00256-X. doi: 10.1016/S0012-365X(02)00256-X
    [5] M. Dehmer, F. Emmert-Streib, Y. Shi, Interrelations of graph distance measures based on topological indices, PloS One, 9 (2014), 1–14. doi: 10.1371/journal.pone.0094985. doi: 10.1371/journal.pone.0094985
    [6] Z. Dvořák, B. Lidicky, R. Škrekovski, Randić index and the diameter of a graph, Eur. J. Combin., 32 (2011), 434–442. doi: 10.1016/J.EJC.2010.12.002. doi: 10.1016/J.EJC.2010.12.002
    [7] Y. M. Hu, X. L. Li, Y. T. Shi, T. Y. Xu, Connected $(n, m)$-graphs with minimum and maximum zeroth-order general Randić index, Discrete Appl. Math., 155 (2007), 1044–1054. doi: 10.1016/j.dam.2006.11.008. doi: 10.1016/j.dam.2006.11.008
    [8] L. B. Kier, L. H. Hall, The meaning of molecular connectivity: A bimolecular accessibility model, Croat. Chem. Acta, 75 (2002), 371–382.
    [9] M. Knor, B. Lužar, R. Škrekovski, Sandwiching the (generalized) Randić index, Discrete Appl. Math., 181 (2015), 160–166. doi: 10.1016/j.dam.2014.08.032. doi: 10.1016/j.dam.2014.08.032
    [10] C. Liu, J. P. Li, Y. G. Pan, On extremal modified Zagreb indices of trees, MATCH Commun. Math. Comput. Chem., 85 (2021), 349–366.
    [11] H. Q. Liu, M. Lu, F. Tian, On the Randić index, J. Math. Chem., 38 (2005), 345–354. doi: 10.1007/s10910-005-5824-7. doi: 10.1007/s10910-005-5824-7
    [12] H. Q. Liu, M. Lu, F. Tian, On the Randić index, J. Math. Chem., 44 (2008), 301–310. doi: 10.1007/s10910-005-9020-6. doi: 10.1007/s10910-005-9020-6
    [13] R. Lang, X. Li, S. Zhang, Inverse problem for Zagreb index of molecular graphs (in Chinese), Appl. Math. J. Chinese Univ. Ser. A, 18 (2003), 487–493.
    [14] X. L. Li, Y. T. Shi, A survey on the Randić index, MATCH Commun. Math. Comput. Chem., 59 (2008), 127–156.
    [15] X. L. Li, J. Zheng, A unified approach to the extremal trees for different indices, MATCH Commun. Math. Comput. Chem., 54 (2005), 195–208.
    [16] X. L. Li, H. Zhao, Trees with the first three smallest and largest generalized topological indices, MATCH Commun. Math. Comput. Chem., 50 (2004), 57–62.
    [17] L. Pavlović, Maximal value of the zeroth-order Randić index, Discrete Appl. Math., 127 (2003), 615–626. doi: 10.1016/S0166-218X(02)00392-X. doi: 10.1016/S0166-218X(02)00392-X
    [18] L. Pavlović, M. Lazić, T. Aleksić, More on "Connected $(n, m)$-graphs with minimum and maximum zeroth-order general Randić index", Discrete Appl. Math., 157 (2009), 2938–2944. doi: 10.1016/j.dam.2009.02.014. doi: 10.1016/j.dam.2009.02.014
    [19] M. Randić, On characterization of molecular branching, J. Amer. Chem. Soc., 97 (1975), 6609–6615. doi: 10.1021/ja00856a001. doi: 10.1021/ja00856a001
    [20] M. Randić, M. Nović, D. Plavšić, Solved and unsolved problems of structural chemistry, Boca Raton: CRC Press, 2016. doi: 10.1201/b19046.
    [21] Y. T. Shi, Note on two generalizations of the Randić index, Appl. Math. Comput., 265 (2015), 1019–1025. doi: 10.1016/j.amc.2015.06.019. doi: 10.1016/j.amc.2015.06.019
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1438) PDF downloads(52) Cited by(1)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog