In this work, we consider the problem of recovering the heat source term for the heat equation with a nonlocal Wentzell-Neumann boundary condition subject to an integral overdetermination condition. Conditions for the existence and uniqueness of the classical solution of the inverse problem are revisited, and a numerical method for practical source reconstruction is introduced. Unlike all of the source reconstruction methods found in literature, the method introduced in this work computes regularized solutions from a triangular linear system arising from a semi-discretization in the space of the continuous model. Regularization is introduced by applying the generalized singular value decomposition of a proper matrix pair along with truncation. Numerical results illustrate the effectiveness of the method.
Citation: Fermín S. V. Bazán, Luciano Bedin, Mansur I. Ismailov, Leonardo S. Borges. Inverse time-dependent source problem for the heat equation with a nonlocal Wentzell-Neumann boundary condition[J]. Networks and Heterogeneous Media, 2023, 18(4): 1747-1771. doi: 10.3934/nhm.2023076
In this work, we consider the problem of recovering the heat source term for the heat equation with a nonlocal Wentzell-Neumann boundary condition subject to an integral overdetermination condition. Conditions for the existence and uniqueness of the classical solution of the inverse problem are revisited, and a numerical method for practical source reconstruction is introduced. Unlike all of the source reconstruction methods found in literature, the method introduced in this work computes regularized solutions from a triangular linear system arising from a semi-discretization in the space of the continuous model. Regularization is introduced by applying the generalized singular value decomposition of a proper matrix pair along with truncation. Numerical results illustrate the effectiveness of the method.
[1] | E. M. Ait Ben Hassi, S. E. Chorfi, L. Maniar, Identification of source terms in heat equation with dynamic boundary conditions, Math. Meth. Appl. Sci., 45 (2022), 2364–2379. https://doi.org/10.1002/mma.7933 doi: 10.1002/mma.7933 |
[2] | E. Bänsch, M. Gahn, A mixed finite-element method for elliptic operators with Wentzell boundary condition, IMA J. Numer. Anal., 40 (2020), 87–108. https://doi.org/10.1093/imanum/dry068 doi: 10.1093/imanum/dry068 |
[3] | F. S. V. Bazán, L. Bedin, F. Bozzoli, Numerical estimation of convective heat transfer coefficient through linearization, Int. J. Heat and Mass Transfer, 102 (2016), 1230–1244. https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.021 doi: 10.1016/j.ijheatmasstransfer.2016.07.021 |
[4] | F. S. V. Bazán, M. C. C. Cunha, L. S. Borges, Extension of GKB-FP algorithm to large-scale general-form Tikhonov regularization, Numer. Lin. Alg., 21 (2014), 316–339. https://doi.org/10.1002/nla.1874 doi: 10.1002/nla.1874 |
[5] | F. S. V. Bazán, M. I. Ismailov, L. Bedin, Time-dependent lowest term estimation in a 2D bioheat transfer problem with nonlocal and convective boundary conditions, Inverse Probl Sci Eng, 29 (2021), 1282–1307. https://doi.org/10.1080/17415977.2020.1846034 doi: 10.1080/17415977.2020.1846034 |
[6] | L. S. Borges, F. S. V. Bazán, M. C. Cunha, Automatic stopping rule for iterative methods in discrete ill-posed problems, Comput. Appl. Math, 34 (2015), 1175–1197. https://doi.org/10.1007/s40314-014-0174-3 doi: 10.1007/s40314-014-0174-3 |
[7] | L. Bourgeois, N. Chaulet, H. Haddar, On simultaneous identification of the shape and generalized impedance boundary condition in obstacle scattering, SIAM J Sci Comput, 34 (2012), A1824–A1848. https://doi.org/10.1137/110850347 doi: 10.1137/110850347 |
[8] | J. C. Butcher, Numerical Methods for Ordinary Differential Equations, Chichester: John Wiley & Sons, 2016. |
[9] | J. R. Cannon, Y. Lin, S. Wang, Determination of a control parameter in a parabolic partial differential equation, J. Austral. Math. Soc. Ser. B, 33 (1991), 149–163. https://doi.org/10.1017/S0334270000006962 doi: 10.1017/S0334270000006962 |
[10] | J. R. Cannon, Y. Lin, S. Wang, Determination of source parameter in parabolic equation, Meccanica, 27 (1992), 85–94. https://doi.org/10.1007/BF00420586 doi: 10.1007/BF00420586 |
[11] | J. R. Cannon, The one-dimensional heat equation, Cambridge: Cambridge University Press, 1984. https://doi.org/10.1017/CBO9781139086967 |
[12] | J. R. Cannon, G. H. Meyer, On diffusion in a fractured medium, SIAM J. Appl. Math., 20 (1971), 434–448. https://doi.org/10.1137/0120047 doi: 10.1137/0120047 |
[13] | M. Duruflé, H. Haddar, P. Joly, Higher order generalized impedance boundary conditions in electromagnetic scattering problems, C. R. Physique, 7 (2006), 533–542. https://doi.org/10.1016/j.crhy.2006.03.010 doi: 10.1016/j.crhy.2006.03.010 |
[14] | H. W. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems, Dordrecht: Kluwer Academic Publishers, 1996. |
[15] | W. Feller, Diffusion processes in one dimension, Trans. Am. Math. Soc., 77 (1954), 1–31. https://doi.org/10.1090/S0002-9947-1954-0063607-6 doi: 10.1090/S0002-9947-1954-0063607-6 |
[16] | G. R. Goldstein, J. A. Goldstein, D. Guidetti, S. Romanelli, Maximal regularity, analytic semigroups, and dynamic and general Wentzell boundary conditions with a diffusion term on the boundary, Ann. Mat. Pura Appl., 199 (2020), 127–146. https://doi.org/10.1007/s10231-019-00868-3 doi: 10.1007/s10231-019-00868-3 |
[17] | P. C. Hansen, Rank-deficient and discrete ill-posed problems, Philadelphia: SIAM, 1998. https://doi.org/10.1137/1.9780898719697 |
[18] | P. C. Hansen, Regularization Tools: A MATLAB package for analysis and solution of discrete ill-posed problems, Numer. Alg., 6 (1994), 1–35. https://doi.org/10.1007/BF02149761 doi: 10.1007/BF02149761 |
[19] | A. Hazanee, D. Lesnic, M. I. Ismailov, N. B. Kerimov, An inverse time-dependent source problem for the heat equation with a non-classical boundary condition, Appl. Math. Modelling, 39 (2015), 6258–6272. https://doi.org/10.1016/j.apm.2015.01.058 doi: 10.1016/j.apm.2015.01.058 |
[20] | T. Hintermann, Evolution equations with dynamic boundary conditions, Proc. R. Soc. Edinb., 113 (1989), 43–60. https://doi:10.1017/S0308210500023945 doi: 10.1017/S0308210500023945 |
[21] | M. I. Ismailov, I. Tekin, S. Erkovan, An inverse problem for finding the lowest term of a heat equation with Wentzell-Neumann boundary condition, Inverse Probl Sci Eng, 27 (2019), 1608–1634. https://doi.org/10.1080/17415977.2018.1553968 doi: 10.1080/17415977.2018.1553968 |
[22] | M. I. Ismailov, F. Kanca, D. Lesnic, Determination of a time-dependent heat source under nonlocal boundary and integral overdetermination conditions, Appl. Math. Comput., 218 (2011), 4138–4146. https://doi.org/10.1016/j.amc.2011.09.044 doi: 10.1016/j.amc.2011.09.044 |
[23] | M. I. Ismailov, Inverse source problem for heat equation with nonlocal wentzell boundary condition, Results Math., 73 (2018), 68–73. https://doi.org/10.1007/s00025-018-0829-2 doi: 10.1007/s00025-018-0829-2 |
[24] | M. I. Ivanchov, The inverse problem of determining the heat source power for a parabolic equation under arbitrary boundary conditions, J. Math. Sci., 88 (1998), 432–436. https://doi.org/10.1007/BF02365265 doi: 10.1007/BF02365265 |
[25] | M. I. Ivanchov, N. V. Pabyrivs'ka, Simultaneous determination of two coefficients of a parabolic equation in the case of nonlocal and integral conditions, Ukr. Math. J., 53 (2001), 674–684. https://doi.org/10.1023/A:1012570031242 doi: 10.1023/A:1012570031242 |
[26] | K. Laoubi, D. Seba, Polynomial Decay Rate for Dissipative Wave Equations with Mixed Boundary Conditions, Acta Appl Math, 169 (2020), 629–646. https://doi.org/10.1007/s10440-020-00315-z doi: 10.1007/s10440-020-00315-z |
[27] | D. B. Marchenkov, On the convergence of spectral expansions of functions for a problem with a spectral parameter in the boundary condition, Differ. Equ., 41 (2005), 1496–1500. https://doi.org/10.1007/s10625-005-0305-0 doi: 10.1007/s10625-005-0305-0 |
[28] | A. I. Prilepko, D. G. Orlovsky, I. A. Vasin, Methods for solving inverse problems in mathematical physics, Boca Raton: CRC Press, 2000. https://doi.org/10.1201/9781482292985 |
[29] | S. Romanelli, Goldstein-Wentzell boundary conditions: Recent results with Jerry and Gisèle Goldstein, Discrete Contin. Dyn. Syst., 34 (2014), 749–760. https://doi.org/10.3934/dcds.2014.34.749 doi: 10.3934/dcds.2014.34.749 |
[30] | N. Sauer, Dynamic boundary conditions and the Carslaw-Jaeger constitutive relation in heat transfer, SN Partial Differ. Equ. Appl., 1 (2020), 1–48. https://doi.org/10.1007/s42985-020-00050-y doi: 10.1007/s42985-020-00050-y |
[31] | M. Slodička, A parabolic inverse source problem with a dynamical boundary condition, Appl. Math. Comput., 256 (2015), 529–539. https://doi.org/10.1016/j.amc.2015.01.103 doi: 10.1016/j.amc.2015.01.103 |
[32] | A. D. Venttsel', On boundary conditions for multidimensional diffusion processes, Theory Prob. Appl., 4 (1959), 164–177. https://doi.org/10.1137/1104014 doi: 10.1137/1104014 |
[33] | P. Zhang, P. Meng, W. Yin, H. Liu, A neural network method for time-dependent inverse source problem with limited-aperture data, J. Comput. Appl. Math., 421 (2023), 114842. https://doi.org/10.1016/j.cam.2022.114842 doi: 10.1016/j.cam.2022.114842 |