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Abstract: In this work, we consider the problem of recovering the heat source term for
the heat equation with a nonlocal Wentzell-Neumann boundary condition subject to an integral
overdetermination condition. Conditions for the existence and uniqueness of the classical solution
of the inverse problem are revisited, and a numerical method for practical source reconstruction is
introduced. Unlike all of the source reconstruction methods found in literature, the method introduced
in this work computes regularized solutions from a triangular linear system arising from a semi-
discretization in the space of the continuous model. Regularization is introduced by applying the
generalized singular value decomposition of a proper matrix pair along with truncation. Numerical
results illustrate the effectiveness of the method.
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1. Introduction

Wentzell boundary conditions arise in applications in which diffusion or thermal/electrical energy
transfer processes on boundaries or interfaces have to be taken into account. This is the case, for
example, in coupled bulk-surface problems [2, 12, 15], in the scattering of electromagnetic waves by
conductors coated with a thin layer of dielectric material [7, 13] or in the modeling of heat transfer
within a conducting solid whose boundary has the capacity to store heat [16, 30]. Unlike the common
boundary conditions, such as the Dirichlet, Neumann or Robin conditions, which involve only first-
order spatial derivatives, Wentzell boundary conditions can involve higher-order derivatives [9, 15, 20,
30, 32]. The present paper deals with the heat equation

ut = uxx + r(t) f (x, t), (x, t) ∈ ΩT , (1.1)
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with the initial value
u(x, 0) = φ(x) x ∈ Ω, (1.2)

Dirichlet boundary condition
u(0, t) = 0, t ∈ [0,T ], (1.3)

and nonlocal Wentzell-Neumann boundary condition

ux(0, t) + αuxx(1, t) = 0, t ∈ [0,T ], α > 0, (1.4)

with T > 0, Ω = (0, 1) and ΩT = Ω × (0,T ], and given functions f and ϕ in ΩT . Wentzell boundary
conditions appear in heat transfer and multidimensional diffusion processes [1, 31], and in
multidimensional wave dissipative equations [26]. Also, they appear in the form of generalized
impedance boundary conditions in electromagnetic scattering problems [7, 13]. We note in passing
that, since Eq (1.4) involves distinct points in the domain, the boundary condition is nonlocal in
nature. This contrast with the existing literature on Wentzell boundary conditions, which mainly deals
with a local version of Eq (1.4) and is often related to unidirectional “heat waves” traveling to the
region [16, 29, 30]; of course, however, the physics involved there is not always simple to interpret.
Nevertheless, as pointed out in [11, pp. 79], in the diffusion of chemicals, the term ux(0, t)/α
represents the diffusive transport of materials to the boundary, so Eq (1.4) can be regarded as a
nonlocal boundary reaction. The boundary conditions given by Eqs (1.3) and (1.4) are also considered
in [21], where the reconstruction problem of the lowest term of a parabolic equation is studied.
Similar problems with standard nonlocal boundary conditions can be found in [9, 24, 25, 33].

It is worth noting that, if Eq (1.1) holds at x = 1, the boundary condition Eq (1.4) can be rewritten
as

ux(0, t) + αut(1, t) = αr(t) f (1, t). (1.5)

When the functions r(t) and f (x, t) are given, the problem of finding u(x, t) satisfying the heat
equation given by Eq (1.1), initial condition given by Eq (1.2) and boundary conditions given by
Eqs (1.3) and (1.4) is referred to as the direct (or forward) problem. The existence and uniqueness
of classical solutions of this direct problem have been established in [23] by using the generalized
Fourier method. On the other hand, when the function r(t) for t ∈ [0,T ] is unknown, we face an
inverse problem which looks for a pair of functions {r(t), u(x, t)} satisfying Eqs (1.1)–(1.4) and the
overdetermination condition ∫ 1

0
u(x, t)dx = E(t), 0 ≤ t ≤ T, (1.6)

where E(t) is a given function that represents the mass or energy measurement; in diffusion problems,
for instance, E(t) specifies the mass of the entire diffusion domain [5, 11].

Under smoothness and suitable compatibility conditions for function f , initial condition φ and
energy E, the existence and uniqueness of classical solutions for this inverse problem follow
from [23, Theorem 1]. However, because in practice, E(t) is often contaminated by noise, the
identification of r(t) demands regularization [14, 19, 23]. Physical motivations for finding a source in
the heat equation, as subject to condition (1.6) can be found in [10, 11, 23, 28]; for example, assume
that an external energy is supplied to a target at a controlled level via microwave-generating
equipment; however, the dielectric constant of the target material varies in space and time, resulting in
the spatially heterogeneous conversion of electromagnetic energy to heat. This can correspond to a
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source term r(t) f (x, t), where r(t) is proportional to the power of the external energy source and f (x, t)
is the local conversion rate of microwave energy. If u(x, t) denotes the concentration of absorbed
energy, then its integral E(t) over the entire volume of material determines the time dependent
absorbed energy.

The source recovering problem for parabolic equations subject to condition (1.6) has attracted the
attention of several authors in recent years. The case of local nonlinear Wentzell boundary conditions
is addressed in [31], where the authors deal with the identification of a time-dependent function h(t)
in a source term modeled in the form h(t) f (x); in this case, the well-posedness of the problem is
established by means of variational techniques and a numerical scheme based on Rothe’s method for
the noise free data is designed. In [22], a one-dimensional heat equation subject to standard nonlocal
boundary conditions is considered, and a numerical method is proposed based on the Crank-Nicolson
finite-difference scheme combined with an iterative method. A similar problem under local Wentzell
boundary conditions is addressed in [19], where the well-posedness of the identification problem is
based on a spectral analysis of eigenvalue problems in which spectral parameter is also in the boundary
conditions; the problem is numerically addressed by using the boundary element method combined
with Tikhonov regularization. Regarding the Dirichlet boundary conditions, the well-posedness of the
problem is discussed in [10, 28] by considering spatial or time-dependent source terms.

In this work, we revisit and improve previous results on the existence and uniqueness of the
solution of the inverse source problem reported in [23]; then, we introduce a numerical method for
recovering the pair {r(t), u(x, t)} by using as input data the model parameters f , φ and α, together with
energy values satisfying the overdetermination condition given by Eq (1.6) and Eqs (1.1)–(1.4). So, in
a sense, this paper fulfills what was promised in [23]. For this, we first introduce a semi-discrete
model obtained via the spatial semi-discretization of the continuous model; then, we show that the
source term solves a Volterra integral equation of the first kind involving the time variable only. In
addition, unlike the discretization schemes and matrices used by all methods mentioned above, a
reconstruction method that regularizes a triangular linear system is proposed, where a time-marching
implicit midpoint method is used as a solver of the semi-discrete model. More specifically, to build
stable reconstructions of the source term, we use the generalized singular value decomposition
(GSVD) of an appropriate matrix pair, along with proper truncation regularization techniques.
Precisely, we consider three truncation parameter selection criteria, namely, the Morozov’s
discrepancy principle (DP) [17], the minimum product rule (MPR) [4] and the generalized
cross-validation (GCV) [17]. The proposed method is illustrated through some numerical examples.

The paper is organized as follows. Section 2 is devoted to the theoretical foundations of the problem,
and we briefly discuss the well-posedness of classical solutions for the aforementioned inverse source
reconstruction problem. Section 3 describes a semi-discrete model for the problem given by Eqs (1.1)–
(1.4), together with a spectral analysis that shows the connection between eigenpairs of the semi-
discrete model and eigenpairs of the continuous model. A surrogate model for source reconstruction,
as well as our practical reconstruction method, is derived and stated in Section 4. In Section 5, we
present some numerical experiments to illustrate the efficiency of the method. Finally, Section 6 ends
the paper with concluding remarks and future work plans.
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2. Theoretical foundation

Model problems involving a time-dependent source function and homogeneous linear boundary
conditions can be solved by employing the method of separation of variables using the eigenpairs of a
proper spectral problem. The auxiliary spectral problem for Eqs (1.1)–(1.4) is given by [23]{

−y′′(x) = λy(x), 0 ≤ x ≤ 1,
y(0) = 0, y′(0) − αλy(1) = 0.

(2.1)

Clearly, as this is a non self-adjoint spectral problem, which results from requiring the solution u(x, t)
to satisfy the the non-standard boundary conditions given by Eqs (1.3) and (1.4), the standard Fourier
expansion method cannot be used to solve Eqs (1.1)–(1.4). In fact, in this case, the key tool is a more
general concept of basis, i.e., the so-called Riesz basis, which allows us to employ the generalized
Fourier expansion method, where the solution is expressed in terms of eigenvalues and eigenfunctions
of the auxiliary spectral problem. It is readily seen that the eigenvalues λ of Eq (2.1) are roots of the
nonlinear equation

α
√
λ sin(

√
λ) = 1, Re(

√
λ) > 0. (2.2)

Regarding the roots, it is known that there are infinitely many positive real roots, and that there can
also be a finite number of complex solutions, the number of which depends on α [23, 27].

Furthermore, although not mentioned explicitly in [23, 27], we emphasize that, if α ,
1

x j sin(x j)
,

where x j is any positive root of sin(x) + x cos(x) = 0, then all eigenvalues λ are simple; this is
because, if α = 1/x j sin(x j) for some j, both equations, αx sin(x) = 1 and sin(x) + x cos(x) = 0, will
share the same root x j, in which case λ is at least a double eigenvalue.

Assign a zero index to any of the complex eigenvalues and list the remaining eigenvalues in
ascending order of Re(

√
λ), that is, let λn be numbered so that λn is complex for n = 0, 1, . . . , nα,

while, for n > nα, λn is real. The asymptotic estimate for the eigenvalues given by√
λn = πn +

(−1)n

παn
+ O

(
1
n3

)
is valid for large n [27]. It is straightforward to see that the eigenfunction associated with eigenvalue
λn, n = 0, 1, 2, . . ., is given by

Xn(x) =
√

2 sin
( √
λnx

)
.

In addition, as shown in [27], the system of eigenfunctions Xn(x), n = 1, 2, .., that is, the system of
eigenfunctions of problem (2.1), with one of them deleted, is a Riesz basis in L2[0, 1], and the system

Yn(x) =
√

2
√
λ0 sin

√
λ0(1 − x) −

√
λn sin

√
λn(1 − x)

√
λn cos

√
λn + sin

√
λn

, n = 1, 2, ... (2.3)

is bi-orthogonal to the system Xn(x), n = 1, 2, ....

Definition 2.1. The class of functions denoted by

F 3 [0, 1] ≡

 φ(x) ∈ C3 [0, 1] : φ(1) = φ′′(1) = 0, φ(0) = φ′(0) = φ′′(0) = 0,∫ 1

0
φ(x) sin

(√
λ0(x − 1)

)
dx = 0.


is called a class of admissible data.
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Note that, in the present paper, the class of admissible data requires less stringent conditions than
the class of admissible data introduced in [23], and it includes a wide class of functions. Indeed, all
C∞0 (Ω)-functions that belong to the orthogonal complement of the subspace

S 0 =
{
k sin

( √
λ0(x − 1)

)
, k ∈ C

}
in L2[0, 1] are members of F 3 [0, 1]. Of course, for any given w ∈ C∞0 (Ω) such that(

w, sin
( √
λ0(x − 1)

))
= 0,

it is clear that w ∈ S ⊥0 and w ∈ F 3 [0, 1]. On the other hand, if w ∈ C∞0 (Ω) but w < S ⊥0 , let g = w(c−w),

where c =

(
w2, sin

(√
λ0(x − 1)

))(
w, sin

(√
λ0(x − 1)

)) . It is readily seen that g and all of its derivatives vanish at x = 0 and

x = 1; thus, g ∈ S ⊥0 , that is, g ∈ F 3 [0, 1].

The pair {r(t), u(x, t)} from the class C[0,T ]× (C2,1(ΩT )∩C2,0(ΩT )), for which the conditions given
by Eqs (1.1)–(1.4) and (1.6) are satisfied, is called a classical solution of the inverse problem defined
by Eqs (1.1)–(1.4), (1.6).

The lemma below establishes conditions under which a Fourier series expansion of a continuous
function on [0, 1] in terms of the system Xn, n = 1, 2, . . . , is uniformly convergent.

Lemma 2.1. [23] Suppose that φ ∈ C[0, 1] has a uniformly convergent Fourier series expansion in
the system sin(πnx), n = 1, 2, . . . , on the interval [0, 1]. Then, this function can be expanded in a
Fourier series in the system Xn(x), n = 0, 1, 2, . . . and this expansion is uniformly convergent on [0, 1]
if (φ, sin(λ0(1 − x)) = 0. Moreover, if φ ∈ F 3 [0, 1], then the inequality

∞∑
n=1

|λnφn| ≤ c ∥φ′′′∥2L2(0,1) , c = const > 0,

holds, where φn = (φ,Yn).

The matter about the existence and uniqueness of the solution of the inverse problem under study is
established in the following theorem.

Theorem 2.1. (Existence and uniqueness) Let the following conditions be satisfied:

1. E(t) ∈ C1 [0,T ];

2. φ(x) ∈ F 3 [0, 1] and E(0) =
1∫

0
φ(x)dx;

3. f (x, t) ∈ C
(
ΩT

)
and f (x, t) ∈ F 3 [0, 1] ,

1∫
0

f (x, t)dx , 0, ∀t ∈ [0,T ] .

Then, the inverse source problem defined by Eqs (1.1)–(1.4) and (1.6) has a unique classical solution
{r(t), u(x, t)} ∈ C[0,T ] × (C2,1(ΩT ) ∩C2,0(ΩT )). Moreover, u(x, t) ∈ C2,1(ΩT ).

Analogous results were established in [23] under the stronger assumption that

(φ(x), sin (
√
λn(1 − x))) = ( f (x, t), sin (

√
λn(1 − x))) = 0, n = 0, 1, 2, . . . , nα. (2.4)
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In essence, such an assumption ensures that the contribution of complex valued eigenfunctions to the
solution is neglected. Here, in view of definition of F 3[0, 1] and conditions 1, 2 and 3 from Theorem
2.1 above, the only orthogonality condition we require is that
(φ(x), sin (

√
λ0(1 − x))) = ( f (x, t), sin (

√
λ0(1 − x))) = 0. This is explained as follows. From [23], the

solution u(x, t) of the forward problem defined by Eqs (1.1)–(1.4) can be expressed as

u(x, t) =
nα∑

n=1

un(t)Xn(x) +
∞∑

n=nα+1

un(t)Xn(x), (2.5)

where nα is the number of complex eigenvalues, and un(t) = φne−λnt +
∫ t

0
r(τ) fn(τ)e−λn(t−τ)dτ, with

φn = −

√
2
√
λn

√
λn cos

√
λn + sin

√
λn

∫ 1

0
φ(x) sin

( √
λn(x − 1)

)
dx, n = 1, 2, ..., nα,

φn = −

√
2
√
λn

√
λn cos

√
λn + sin

√
λn

∫ 1

0
φ(x) sin

( √
λn(x − 1)

)
dx, n > nα,

and

fn(t) = −

√
2
√
λn

√
λn cos

√
λn + sin

√
λn

∫ 1

0
f (x, t) sin

( √
λn(x − 1)

)
dx, n = 1, 2, ..., nα,

fn(t) = −

√
2
√
λn

√
λn cos

√
λn + sin

√
λn

∫ 1

0
f (x, t) sin

( √
λn(x − 1)

)
dx, n > nα.

Now because the majorizing series
∞∑

n=1

|λnφn|

and
∞∑

n=1

|λn fn(τ)|

are convergent (by Lemma 2.1), the series given by Eq (2.5), their t-partial derivative and the xx-
second-order partial derivative are uniformly convergent. Then, u(x, t) ∈ C2,1(ΩT ) ∩ C1,0(ΩT ), and
it satisfies the conditions given by Eqs (1.1)–(1.4). In [23], the assumption given Eq (2.4) was used
to ensure that u(x, t) is a real-valued function. However, such an assumption is not needed. Indeed,
as α is supposed to be real, if λ ∈ C is an eigenvalue of Eq (2.1), then λ is also an eigenvalue with

a corresponding eigenfunction given by
√

2 sin(
√
λx). This means that nα is odd and the complex

eigenvalues are ordered as follows:

λ0, λ1 = λ0, λ2, λ3 = λ2, . . . , λnα−1, λnα = λnα−1.

The corresponding eigenfunctions that are members of the Riesz basis are given by
X1(x) =

√
2 sin(

√
λ0x), X2(x) =

√
2 sin(

√
λ2x), X3(x) =

√
2 sin(

√
λ2x),. . . ,

Xnα−1(x) =
√

2 sin(
√
λnα−1 x) and Xnα(x) =

√
2 sin(

√
λnα−1 x) (recall that X0 was deleted). Because φ
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is real-valued and belongs to F 3[0, 1], it is clear that (φ, sin (
√
λ0(1 − x))) = 0 so that, taking into

account Eq (2.3), it holds that φ1 = (φ,Y1) = 0; also, as it is readily seen, we have that

(φ,Yn+1) = (φ,Yn), n = 2, . . . , nα − 1. Consequently, the term
nα∑

n=1
φne−λntXn(x) in Eq (2.5) comprises

(nα − 1)/2 sums of the form

(φ,Yn)e−λnt
√

2 sin(
√
λnx) + (φ,Yn)e−λnt

√
2 sin(

√
λnx),

which, clearly, is a real-valued expression. Since r(t) and f (x, t) are also supposed to be real-valued,
we can argue analogously to conclude that the sum

nα∑
n=1

∫ t

0
r(τ) fn(τ)e−λn(t−τ)dτXn(x)

is also real-valued. Hence, u(x, t) is a real-valued function.
Equations (1.6) and (2.5) yield the following Volterra integral equation with respect to r(t):

E(t) = F(t) +
∫ t

0
K(t, τ)r(τ)dτ, (2.6)

where

F(t) =
nα∑

n=1


√

2
√
λn

(1 − cos
√
λn)φn

 e−λnt +

∞∑
n=nα+1

 √2
√
λn

(1 − cos
√
λn)φn

 e−λnt,

K(t, τ) =
nα∑

n=1


√

2
√
λn

(1 − cos
√
λn) fn(τ)

 e−λnt +

∞∑
n=nα+1

 √2
√
λn

(1 − cos
√
λn) fn(τ)

 e−λn(t−τ).

Alternatively, upon time differentiation of Eq (2.6) we have

r(t) +
1

1∫
0

f (x, t)dx

t∫
0

Kt(t, τ)r(τ)dτ =
E′(t) − F′(t)

1∫
0

f (x, t)dx

.

By using Lemma 2.1, the functions F′(t) and E′(t) and kernel Kt(t, τ) are continuous functions in
[0,T ] and [0,T ]× [0,T ], respectively. We therefore obtain a unique function r(t), continuous on [0,T ],
which, together with the solution of the problem defined by Eqs (1.1)–(1.4) given by the Fourier series
expressed as Eq (2.5), form the unique solution of the inverse problem. Evidently, because (u(x, t), r(t))
satisfies Eq (1.1) and u(x, t) and f (x, t) are real-valued, the resulting r(t) is real-valued.

We emphasize that finding examples where the solution of the inverse problem, (u(x, t), r(t)), is
given explicitly, with φ(x), f (x, t) and E(t) satisfying the assumptions of Theorem 2.1, is a difficult
task. However, since conditions 1, 2 and 3 of Theorem 2.1 are just enough to guarantee the existence
of a solution to the inverse problem, there are cases in which such a solution exists, even for data that
do not meet these conditions, as we will see later.

The following result on the continuous dependence on the data of the solution of the inverse problem
holds.
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Theorem 2.2. [23] (Continuous dependence upon the data) Let 𭟋 be the class of triples in the form of
{ f , φ, E} which satisfy the assumptions of Theorem 2.1 and

∥ f ∥C3,0(DT ) ≤ M0, ∥φ∥C3[0,1] ≤ M1, ∥E∥C1[0,T ] ≤ M2, 0 < M3 ≤

∣∣∣∣∣∣∣∣
1∫

0

f (x, t)dx

∣∣∣∣∣∣∣∣
for some positive constants Mi, i = 0, 1, 2, 3. Then, the solution pair (u, r) of the inverse problem
defined by Eqs (1.1)–(1.4) and (1.6) depends continuously upon the data in 𭟋.

3. Semi-discrete model

For simplicity, let us derive a semi-discrete heat model, which we obtain by discretizing the spatial
derivative at equally spaced points xk = kh, k = 0, . . . ,m, with h = 1/m. We are going to build
approximations for the solution of the problem defined by Eqs (1.1)–(1.4) at the points xk,
k = 1, . . . ,m − 1, based on finite differences and a collocation method. In fact, the key observation
here is that, if u(x, t) denotes the exact solution of the continuous model, then the relation

ut(xk, t) = u′′(xk, t) + r(t) f (xk, t), (3.1)

holds at the grid points xk, k = 1, . . . ,m − 1. In addition, it is clear that, if the spatial derivative is
approximated by centered finite differences, the approximate relation

ut(xk, t) ≈
u(xk−1, t) − 2u(xk, t) + u(xk+1, t)

h2 + r(t) f (xk, t) (3.2)

is still valid. This leads to a search for an approximation vk(t) of u(xk, t) by neglecting the
approximation errors associated with Eq (3.2) in such a way that vk(t) is enforced to solve the
following system of ordinary differential equations:

v′k(t) =
vk−1(t) − 2vk(t) + vk+1(t)

h2 + r(t) f (xk, t), k = 1, . . . ,m − 1, (3.3)

v′m(t) = −
1
αh

v1(t) + r(t) f (xm, t), (3.4)

where v0 is taken to be identically zero because of the boundary condition given by Eq (1.3), and where
we have taken into account the boundary condition given by Eq (1.5) to derive the last equation. More
precisely, the last equation is obtained by using a forward finite difference to approximate ux(0, t).
Further, for the approximate solution to satisfy the initial condition given by Eq (1.2) we take

vk(0) = φ(xk), k = 1, . . .m. (3.5)

The system defined by Eqs (3.3) and (3.4), together with the initial condition given by Eq (3.5), can
now be written as follows: {

v′(t) = Av(t) + r(t)f(t),
v(0) = φ,

(3.6)

where
φ = [φ(x1), . . . , φ(xm)]T , f(t) = [ f (x1, t), . . . , f (xm, t)]T ,
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and

A = −
1
h2



2 −1 0 · · · 0

−1 2 −1
...

0 . . .
. . .

. . . 0
... −1 2 −1
h
α

0 · · · 0 0


. (3.7)

It is known that the numerical stability of numerical solutions of the initial value problem given by
Eq (3.6) depends on the eigenvalues of the system matrix A. This encourages the eigenvalue analysis
described below.

If {λ, v} is an eigenpair of A, we look for eigenvectors in the form

v = [sin(ah), sin(2ah), · · · , sin(mah)]T ,

where a is a constant to be determined and constrained to ah , π (otherwise, v = 0). For this, we first
note that the matrix-eigenvector product Av,

Av = −
1
h2



2 sin(ah) − sin(2ah)
− sin(ah) + 2 sin(2ah) − sin(3ah)

...

− sin((k − 1)ah) + 2 sin(kah) − sin((k + 1)ah)
...

h
α

sin(ah)


, (3.8)

has entries given by

[Av]k = −
2[1 − cos(ah)]

h2 sin(akh), k = 1, . . . ,m − 1,

[Av]m = −
sin(ah)

hα
,

(3.9)

where the first m − 1 entries can be obtained by using trigonometric identities. The last equation,
together with the fact that Av = λv, show that all eigenvalues of A are of the form

λ = −2
(1 − cos(ah)

h2 ,

with a satisfying

sin(ah)
hα sin(a)

= 2
[1 − cos(ah)]

h2 . (3.10)

Note that

lim
h→0

sin(ah)
hα sin(a)

= lim
h→0

2
[1 − cos(ah)]

h2
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results in the equation
α a sin(a) = 1,

the roots of which are shown to provide the eigenvalues of the continuous eigenvalue problem given
by Eq (2.2).

The main conclusions of the above analysis are summarized in the following theorem.

Theorem 3.1. The eigenpairs {λ, v} of the system matrix of the semi-discrete model expressed as Eq
(3.6) are given by

λ = −2
[1 − cos(ah)]

h2 , v = [sin(ah), sin(2ah), · · · , sin(mah)]T , (3.11)

where a is a root of the nonlinear equation

sin(ah)
α sin(a)

= 2
[1 − cos(ah)]

h
, 0 < a < mπ. (3.12)

Further, as h→ 0, we have that λ→ −a2.

Proof. It is enough to say that the last assertion of the theorem follows from taking the limit as h→ 0
to λ in Eq (3.11). ■

To understand more about the eigenvalues λ, for ease of analysis, we will allow the value a to vary
continuously and replace it for x. With this notation, if

φα(x) =
h

2α
sin(hx)

[1 − cos(hx)]
, 0 < x < mπ, (3.13)

then the nonlinear equation given as Eq (3.10) can be rewritten in a more convenient form:

φα(x) = sin(x), 0 < x < mπ. (3.14)

It is apparent that, depending on the constant α, all roots of this equation can be complex, all roots can
be real or there can even be just a few complex conjugate roots. The main result of the section provides
conditions under which all roots of Eq (3.14) are distinct and real.

Theorem 3.2. Suppose that the curves defined by y = φα(x) and y = sin(x) are denoted by C1 and C2,
respectively; there exists a pair of positive numbers {x∗, α∗} such that C1 and C2 have the same tangent
line at x = x∗ when α = α∗. In addition, provided that α > α∗, all eigenvalues of the system matrix A
are real and distinct.

Proof. First, we note that

φ′α(x) = −
h2

2α
1

[1 − cos(hx)]
< 0 and φ′′α (x) =

h3

2α
sin(hx)

[1 − cos(hx)]2 > 0. (3.15)

Also, from elementary properties of limits, it is not difficult to see that

0 < φα(x) ≤
1
α

1
x
. (3.16)
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Consequently, φα is positive, decreasing, convex and bounded above. In order to proceed, if C1 and C2

share the same tangent line at some point x, then φ′(x) = cos(x), which implies that

−
h2

2α
1

[1 − cos(hx)]
= cos(x). (3.17)

But, since both curves contain the point of tangency, then we must have

h
2α

sin(hx)
[1 − cos(hx)]

= sin(x), (3.18)

and a simple manipulation of Eqs (3.17) and (3.18) gives

cos(x)
sin(hx)

h
+ sin(x) = 0. (3.19)

Now, to simplify the exposition, we restrict ourselves to 0 < x < π. In fact, as it is apparent that the
left-hand side of the above equation changes sign in the interval [

π

2
, π], there will be at least one real

root. Therefore, if C1 and C2 share the same tangent line at (x∗, y∗), then x∗ has to be a root of the
nonlinear equation given as Eq (3.19) and, consequently, of Eqs (3.17) and (3.18). From this fact, by
substituting x = x∗ in Eq (3.18) and isolating the α parameter, we obtain

α∗ =
h
2

sin(hx∗)
[1 − cos(hx∗)] sin(x∗)

.

With this choice of α, it is immediate to check that φα∗(x∗) = sin(x∗) and φ′α∗(x∗) = cos(x∗). Therefore,
x∗ is actually a root of both Eqs (3.17) and (3.18); that is, x∗ is a double root of Eq (3.14). Moreover, if
ξ(x) = φα∗(x) − sin(x), based on Eq (3.15), because ξ′′(x∗) > 0, we conclude that x∗ cannot be a triple
root. This ends the proof of the first part of our theorem.

To end the proof, now suppose that the parameter α is chosen such that α = ρα∗ with ρ > 1. In this
case, we have

φα(x∗) =
1
ρ
φα∗(x∗) =

sin(x∗)
ρ
< sin(x∗).

Hence, if we restrict ourselves to the interval [0, 2π], because φα(x) is decreasing, C1 passes below the
point of tangency (x∗, y∗) with y∗ = sin(x∗), producing two intersection points, as seen in Figure 1.
The abscissas of the intersection points are obviously roots of Eq (3.13). As in [0,mπ], the same event
occurs m − 1 times if m is even; we conclude that the nonlinear equation given as Eq (3.18) admits m
distinct roots, which give m distinct eigenvalues of the system matrix A. A similar conclusion can be
drawn if m is odd. This ends the proof. ■

Remark 3.1. In practice, the root x∗ is not known in advance and the condition α > α∗ may not be
simple to achieve. In that case, the simplest choice of α to guarantee that all eigenvalues of A are
distinct may be α > 2/π. This conclusion follows from Eq (3.16).
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Figure 1. Roots of Eq (3.14) from the intersection of φα(x) and sin(x) for m = 4.

4. Surrogate model for source reconstruction

From elementary theory of ordinary differential equations it follows that the unique solution of the
initial value problem given by Eq (3.6) can be expressed as

v(t) = eAtv(0) +
∫ t

0
eA(t−τ)r(τ)f(τ)dτ. (4.1)

In our case, this is easy to calculate because, thanks to Theorem 3.2, with a proper α, the system matrix
A is diagonalizable. Let α be chosen as in Theorem 3.2, and let A = VΛV−1 with

V = [v1, . . . , vm], Λ = diag(λ1, . . . , λm), and 0 > λ1 > λ2 > · · · > λm.

Based on the eigenpairs of A, the solution can be expressed as

v(t) = VeΛtV−1φ + V
∫ t

0
eΛ(t−τ)V−1r(τ)f(τ) dτ,

or, even with the left eigenvectors of A being denoted by y j, that is,

yT
j = eT

j V−1, 1 ≤ j ≤ m,

where e j stands for the j-th canonical vector in Rm, with g(t) = V−1f(τ) and

γ j = yT
j φ, g j(t) = yT

j f(t),

the solution can be rewritten as

v(t) =
m∑

j=1

[
γ jeλ jt +

∫ t

0
r(τ)g j(τ)eλ j(t−τ)dτ

]
v j, (4.2)

which looks essentially the same as Eq (2.5). Now, proceeding in the same way as we did for the
infinite series expression of u(x, t), if the energy E(t) is approximated by using a quadrature rule with
weights ωk and points xk, i.e.,

E(t) ≈
m∑

k=1

ωku(xk, t) ≈
m∑

k=1

ωkvk(t) = ωT v(t), (4.3)
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whereω is the vector of weights, neglecting approximation errors the energy function can be expressed
as

E(t) =
m∑

j=1

[
γ jeλ jt +

∫ t

0
r(τ)g j(τ)eλ j(t−τ)d τ

]
ωT v j, (4.4)

or even as a Volterra integral equation:

E(t) = F(t) +
∫ t

0
K(t, τ)r(τ)dτ, (4.5)

where

F(t) =
m∑

j=1

γ jeλ jtωT v j, K(t, τ) =
m∑

j=1

g j(τ)ωT v jeλ j(t−τ).

In a sense, Eq (4.5) can be thought of as a discrete version of the Volterra equation given by
Eq (2.6) for the unknown continuous function r(t); hence, it can be used as a surrogate model for
source reconstruction. In fact, through the numerical integration of Eq (4.5) with time spacing ∆t, it is
easy to show that the above equation can be transformed into a triangular system of linear equations
with unknowns ri.

4.1. Implicit midpoint rule

As an alternative to the use of the above surrogate model for source reconstruction, we propose the
numerical integration of the semi-discrete model given by Eq (3.6) so as to avoid eigenvalue
computations followed by the construction of another linear system from which the source term is
recovered. To this end, notice that, among a number of possibilities for the numerical solution of the
general evolution initial value problem

y′(t) = f (t, y(t)), y(a) = y0, (4.6)

on the mesh points t j, j ≥ 0, with timestep ∆t such that t j+1 = t j +∆t, t j+1/2 = t j +
1
2
∆t, we consider the

midpoint method

y j+1 = y j − ∆t f
(
t j +
∆t
2
,

y j+1 + y j

2

)
, j ≥ 0. (4.7)

This method is an implicit second-order, absolutely stable, time stepping method that is frequently
used to solve evolutive conservative systems of partial differential equations [8].

Applying Eq (4.7) to the semi-discrete problem given by Eq (3.6), after a rearrangement, successive
approximation v j and v j+1 satisfy

Bv j+1 = Cv j + ∆t r̂ ĵf j, j = 0, 1, . . . , (4.8)

where

B =
(
I −
∆t
2

A
)
, C =

(
I +
∆t
2

A
)
, r̂ j = r(t j+1/2) and f̂ j = f(t j+1/2).
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Obviously, as all eigenvalues of matrix A are negative, matrix B is nonsingular. Then, an expression
for v j+1 reads as

v j+1 = Gv j + ∆t r̂ jB−1 f̂ j, j = 0, 1, . . . , with G = B−1C. (4.9)

We now build up an expression for vm iteratively:

v1 = Gv0 + ∆t r̂0B−1 f̂0,

v2 = Gv1 + ∆t r̂1B−1 f̂1,= G2v0 + ∆t r̂0GB−1 f̂0 + ∆t r̂1B−1 f̂1,

v3 = Gv2 + ∆t r̂2B−1 f̂2 = G3v0 + ∆t r̂0G2B−1 f̂0 + ∆t r̂1GB−1 f̂1 + ∆t r̂2B−1 f̂2,

...

vm = Gmv0 + ∆t r̂0Gm−1B−1 f̂0 + ∆t r̂1Gm−2B−1̂f1 + · · · + ∆t r̂m−1B−1 f̂m−1.

If we use Eq (4.3) to compute approximations of energy values E(tk), neglecting the approximation
errors, the set of above relationships respectively yields

E1 = ω
TGv0 + ∆t r̂0ω

T B−1 f̂0,

E2 = ω
TG2v0 + ∆t r̂0ω

TGB−1 f̂0 + ∆t r̂1ω
T B−1 f̂1,

E3 = ω
TG3v0 + ∆t r̂0ω

TG2B−1 f̂0 + ∆t r̂1ω
TGB−1 f̂1 + ∆t r̂2ω

T B−1 f̂2,

...

Em = ω
TGmv0 + ∆t r̂0ω

TGm−1B−1 f̂0 + ∆t r̂1ω
TGm−2B−1̂f1 + · · · + ∆t r̂m−1ω

T B−1 f̂m−1.

The above set of linear equations can be rewritten in matrix form as

∆t F r̂ = g, (4.10)

where

F =



ωT B−1 f̂0 0 · · · 0
ωTGB−1 f̂0 ωT B−1 f̂1 0 · · · 0
...

...
. . . 0

ωTGm−1B−1 f̂0 ωTGm−2B−1 f̂1 · · · ωT B−1 f̂m−1


,

r̂ = [̂r1, . . . , r̂m]T ,

g = [E1 − ω
TGv0, . . . , Em − ω

TGmv0]T .

(4.11)

Thus, provided that we are given a set of energy values E j, j = 1, . . . ,m, the unknowns r̂ j can
be obtained by solving the linear system given by Eq (4.10) in conjunction with some regularization
method to mitigate any possible effects of bad conditioning.

Regarding the practical details of the matrix calculation for Eq (4.11), we note that the matrix
G = B−1C is never explicitly calculated. Instead, based on the fact that B and C share the same
eigenvectors, which implies that B−1 and C commute, the quantities ωTGpB−1 f̂i can be efficiently
calculated by solving linear systems of the type Bx = fi and BT y = ω. To do so, we take advantage of
the sparseness of matrix A and calculate an LU factorization of B only once.
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5. Numerical experiments

This section includes three numerical examples devoted to illustrating the effectiveness of the
numerical method proposed in the work. In all cases, we consider test problems with a known explicit
solution, using input data that do not satisfy the hypotheses of Theorem 2.1. It is worth emphasizing
that this does not cause any problem here, because, on the one hand, such hypotheses are just
sufficient, not necessary, and, on the other hand, the purpose of the section is to test the reconstruction
method proposed in the work. Effectiveness is assessed by computing relative errors in the
reconstructions of the source function,

RE =
∥r − r̃∥2
∥r∥2

,

where r and r̃ denote the exact and recovered sources, respectively, the latter being obtained from noisy
data of the form

Ẽ = E + ϵ ∈ RN , (5.1)

where ϵ denotes a zero mean random vector ϵ scaled such that ∥Ẽ − E∥2 = NL∥E∥2, with NL
representing normwise relative noise level in the data. In all computations, the noise vector ϵ is
generated by the Matlab routine randn.

Before proceeding, it is worth mentioning that, despite the apparent simplicity in determining the
source estimates by solving the linear triangular system given as Eq (4.10), due to potential
ill-conditioning coming from the discretization of the Volterra integral equation of the first kind, the
reconstructions obtained with a perturbed data vector become unstable and some regularization
method is needed to filter the noise contribution in the solution.

5.1. Regularization by truncation

Perhaps one of the most well-known methods to deal with ill-conditioned problems of the form

x̃ = argmin
x∈RN

∥Ax − b̃∥2, A ∈ RM×N , M ≥ N, b̃ = b + ϵ, (5.2)

is the truncated singular value decomposition (TSVD), based on the singular value decomposition of
A,

A = UΣVT, Σ =

(
Σ0

0

)
, (5.3)

where U = [u1, . . . , uM] ∈ RM×M and V = [v1, . . . , vN] ∈ RN×N are orthogonal matrices and Σ0 =

diag(σ1, . . . , σN), with the singular values σ j ordered such that σ1 ≥ · · · ≥ σN ≥ 0. The naive least
squares solution to Eq (5.2) is thus given by

x̃ =
N∑

j=1

uT
j b̃

σ j
v j. (5.4)

The main problem with x̃ is that noise components in b̃ can be greatly amplified because of the division
by small singular values; in this event, the computed estimate can differ enormously from x+, the
solution of Eq (5.2) with ϵ = 0. To filter out the contribution of noise to the computed solution, the
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TSVD method determines regularized solutions by truncating the summation Eq (5.4) to k ≤ N terms;
see, e.g., [17]. Hence, the k-th TSVD solution is defined as

xk =

k∑
j=1

uT
j b̃

σ j
v j, k ≤ N. (5.5)

The point here is that, if k is poorly chosen, the TSVD solution xk either captures an insufficient
amount of information about the problem, or the noise in the data dominates the approximate
solution. The challenge in connection with TSVD is thus how to choose a proper truncation
parameter. Truncated GSVD solutions are defined similarly based on the GSVD of the matrix pair
(A, L), where L is introduced to incorporate a priori information of the solution. Explicitly, for
A ∈ RM×N and L ∈ Rp×N , with M ≥ N ≥ p, which always occurs in discrete ill-posed problems, the
GSVD of the pair (A, L) reads as

A = U
(

S 1 0
0 IN−p

)
X−1, L = V(S 2, 0)X−1, (5.6)

where U = [u1, . . . , uN] ∈ RM×N and V = [v1, . . . , vp] ∈ Rp×p have orthonormal columns,
X = [x1, . . . , xN] ∈ RN×N is nonsingular and S 1 = diag(σ1, . . . , σp) (with σi ordered in non increasing
form) and S 2 = diag(µ1, . . . , µp) (with µi ordered in nondecreasing form) are p × p diagonal matrices
whose entries are positive and normalized so that

σ2
i + µ

2
i = 1.

The generalized singular values values of (A, L) are defined as the ratios

γi = σi/µi. (5.7)

Obviously, the σi here has nothing to do with the “ordinary” singular value σi of A, as described in
Eq (5.3). The same observation holds for the vectors ui and vi. Turning to the estimation of x+ based
on the GSVD of the matrix pair (A, L), a truncated GSVD (TGSVD) solution is defined as

xk,L =

p∑
i=p−k+1

uT
i b̃
σi

xi +

N∑
i=p+1

(uT
i b̃)xi. (5.8)

It is well known that there exists a close relationship between TGSVD solutions and general form
Tikhonov-based solutions [17, 18]:

x̃λ = argmin
x∈RN

∥Ax − b̃∥22 + λ
2∥Lx∥22, (5.9)

where λ > 0 is the regularization parameter. General-form Tikhonov-based solutions have been used
in inverse heat transfer problems elsewhere; see, e.g., [3, 19]. In this work, we will concentrate on
regularization by truncation or filtering. The challenge associated with TGSVD is the same as that of
TSVD: how to choose a proper truncation parameter.

In this work, stable estimates of the source function r(t) are computed by using TGSVD, equipped
with three parameter selection criteria, namely, the DP by Morozov [17], which requires noise
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estimates of ∥Ẽ − E∥2, a criterion introduced recently by Bazán et al. [4] and referred to as MPR and
GCV. While the former enjoys strong theoretical support with regard to the convergence of estimates
to the exact solution as the noise level decreases to zero, the others are heuristics, so they may fail;
but, they do not require any information on the noise level in the data. However, heuristic methods
have become popular in many areas and are frequently used in practical problems.

The truncation parameter chosen by applying the DP in connection with TSVD is defined as the
first k such that

∥Rk∥2 � ∥Axk − b̃∥2 ≤ τδ, δ = ∥̃b − b∥2, (5.10)

where 1 ⪅ τ is a user specified parameter. As for the MPR, it chooses as a truncation parameter the
integer defined as

kMPR = argminΨk, Ψk = ∥Rk∥2∥xk∥2, k > 1. (5.11)

The MPR appeared for the first time in connection with LSQR in [4], and, more recently, in connection
with TSVD in [6]. Finally, the truncation parameter chosen by applying GCV in connection with
TSVD is defined by

kGCV = argmin
k

∥Axk − b̃∥2
(m − k)2 . (5.12)

The DP, MPR and GCV are implemented similarly by considering the residual Rk,L and corresponding
TGSVD solutions xk,L. Matlab m-files that implement TGSVD are available in [18].

5.2. Numerical examples

We now consider three numerical examples devoted to illustrating the effectiveness of the
truncation regularization methods described above in recovering the source function from noisy data.
All computations were carried out in Matlab for several choices of m, with dt = h = 1/m, T f = 1 and
α chosen in such a way that all eigenvalues of matrix A are real.

Example 1.
In this case, we consider a test problem with the analytical solution given by

r(t) = e−t[2 + sin(Υπt)], Υ > 0,

u(x, t) =
36
5

te−t [2 + sin (Υπt)] p(x), p(x) = −8x8 + 29x7 − 35x6 + 14x5,

input data u(x, 0) = 0,

f (x, t) =
504
5

[
t
(
32x6 − 87x5 + 75x4 − 20x3

)
−

(
1 − t +

Υπt cos(Υπt)
2 + sin (Υπt)

)
p(x)

]
and energy function

E(t) =
te−t(2 + sin (Υπt))

2
.

Note that φ(x) = 0, x ∈ [0, 1] simplifies the calculation of the right-hand side vector g in Eq (4.10)
as v0 = 0. For the numerical experiment, we set Υ = 3/2 and, in order to ensure that all eigenvalues of
the system matrix A are real, we chose α = 1.
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First, to illustrate the need to use regularization methods to obtain the inverse problem solution from
noisy data, the linear system given by Eq (4.10) was solved by forward substitution using noiseless and
noisy data; the discrete sources obtained in this way are denoted by r̄ and r̃, respectively. Recovered
discrete sources for m = 50 and data with 1% noise are displayed in Figure 2.

The fact that the reconstructed source becomes unstable when using noisy data is apparent and
reinforces the need for some regularization to overcome instability. Relative errors of the reconstructed
sources presented in Table 1 show that, while, for noiseless data, the reconstruction error decreases as
m increases, for noisy data, the error increases.

0 0.2 0.4 0.6 0.8 1

0

1

2

3

Figure 2. Recovered source function from noise-free and noisy data for NL=1%.

Table 1. Numerical results obtained without regularization.

Relative Errors
m NL = 0% NL= 1%
50 0.0005 0.0786
100 0.0001 0.1473
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Figure 3. Reconstructions obtained by employing the three methods on noisy data for
NL=1%.

We now proceed to describe the results obtained from noisy data with three noise levels: 0.25%,
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1% and 2.5%, under the conditions of the DP, MPR and GCV. Reconstructions, as well as the
corresponding absolute errors, E(·) = |r − r̃(·)|, for data with 1% noise, are displayed in Figure 3. From
this figure, it can be seen that the sources obtained by the three regularization strategies are stably
recovered, and with good accuracy.

For completeness, relative errors for the three noise levels, including the corresponding
regularization parameters, are all concentrated in Table 2. The results not only show that all of the
regularization strategies tested here work well, but they also confirm what is known from
regularization theory regarding the DP: the error decreases as the noise level approaches zero,
contrary to the regularization parameters that increase in this case. It is worth noting that the MPR
and GCV follow this behavior, despite being heuristics.

Table 2. Relative errors and regularization parameters.

m REDP REMPR REGCV kDP kMPR kGCV

NL=0.25%
50 0.0062 0.0027 0.0037 6 10 8
100 0.0025 0.0029 0.0018 8 9 10

NL=1%
50 0.0104 0.0132 0.0104 4 5 6
100 0.0116 0.0086 0.0053 4 5 5

NL=2.5%
50 0.0312 0.0312 0.0141 3 3 4
100 0.0424 0.0372 0.0424 2 3 2

Finally, to illustrate the accuracy of the proposed method regarding the recovery of u(x, t) by using
the estimated source, r̃, and the input data, u(x, 0), f (x, t), the implicit midpoint method has been used
to calculate the approximate solutions that match these data; the results are displayed in Figure 4. As
before, the bar symbol is used to denote the numerical solution obtained with the exact discrete source,
while the tilde symbol is reserved to denote the results obtained for the retrieved source under the
condition of noisy data. The discrete source used in this illustration is the one obtained by applying the
DP for m = 50, data with 1% noise and t = T f . Approximate solutions obtained for the other source
reconstructions were very similar and are omitted here.
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Figure 4. Numerical reconstruction of the solution u(x, t) and absolute error.
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Example 2
For this example, the exact solution of the inverse problem, {r(t), u(x, t)}, is given by

r(t) = et, u(x, t) = et [2 sin(πx) − sin(2πx)] .

Contrary to the previous example, here, the input data involves a nonzero initial condition:
φ(x) = 2 sin(πx) − sin(2πx), x ∈ [0, 1] and
f (x, t) = 2(1 + π2) sin(πx) − (1 + 4π2) sin(2πx).

In this case, the energy function is E(t) =
4
π

et, t ∈ [0, 1], and the numerical results correspond to
α = 2.

Analogous to the previous example, the numerical reconstruction of the source function was
performed by using data with the same noise levels and the same m values as before. The quality of
the reconstructions is very similar to what we saw in the previous example, and there is not much to
comment here. For illustration, Figure 5 presents the recovered sources and the corresponding
absolute errors obtained for data with 1% noise.
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Figure 5. Reconstructions obtained by employing the three methods on noisy data for
NL=1%.

Also, for completeness, the reconstructed approximate solutions ū(x, t), ũ(x, t), as obtained by
applying the DP to data with 1% noise, and the corresponding absolute errors are presented in
Figure 6.
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Figure 6. Numerical reconstruction of the solution u(x, t) and absolute error.
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Example 3
This example differs from the previous ones in that the source function to be recovered is non-

smooth. We want to retrieve the pair (r(t, u(x, t)),

r(t) = 1 + |2t − 1|,

u(x, t) = 100e−t/2(2 + cos(4πt))
(
−

4
7

x8 +
29
14

x7 −
5
2

x6 + x5

)
from the input data

φ(x) = 300
(
−

4
7

x8 +
29
14

x7 −
5
2

x6 + x5

)
,

f (x, t) = −
100e−t/2(2 + cos(4πt))

1 + |2t − 1|

(
−32x6 + 87x5 − 75x4 + 20x3

)
(5.13)

−50e−t/2
(
8π sin(4πt) + 2 + cos(4πt)

1 + |2t − 1|

) (
−

4
7

x8 +
29
14

x7 −
5
2

x6 + x5
)
, (5.14)

and energy function

E(t) =
125
252

e−t/2(2 + cos(4πt)).

In this case, for the numerical experiment, we set α = 2, and to challenge the proposed method,
in addition to considering noise-free data, the retrieved source functions were obtained by using noisy
data with noise levels of NL = 1%, NL = 2.5% and NL = 5%. The results obtained by using noise-free
data behaved as in Example 1, and thus are not presented here. Retrieved source functions obtained
with regularization for NL = 1% and m = 50, as well as the the respective absolute errors, are presented
in Figure 7. As we can see, despite the source function not being smooth, good quality results are again
evident.
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E
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Figure 7. Reconstructions obtained by employing the three methods on noisy data for
NL=1%.

Similar to the first example, all information regarding the relative errors and regularization
parameters for the three noise levels are presented in Table 3. Once again, we see that the quality of
recovered quantities is excellent and is associated with relative errors that were nearly equal to the
noisy level of the input data, regardless of whether the number of data points used was m = 50 or
m = 100.
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Table 3. Relative errors and regularization parameters.

m REDP REMPR REGCV kDP kMPR kGCV

NL=1%
50 0.0208 0.0205 0.0142 3 4 6
100 0.0124 0.0177 0.0143 6 4 7

NL=2.5%
50 0.0283 0.0506 0.0283 3 2 3
100 0.0205 0.0404 0.0311 3 2 6

NL=5%
50 0.0617 0.0441 0.0435 2 1 3
100 0.0427 0.0427 0.0604 1 1 4

Lastly, we also used the recovered source r̃, obtained by applying the DP to calculate the
approximate solution ũ(x, t). Numerical results presented in Figure 8 confirm, again, that the
recovered solution is stable and accurate.
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Figure 8. Numerical reconstruction of the solution u(x, t) and absolute error.

6. Conclusion

In this work, an inverse source reconstruction method for the heat equation subject to a nonlocal
Wentzell-Neumann boundary conditions and the specification of energy/mass data has been
investigated. As a first contribution, we have improved the results on the existence and uniqueness of
classical solutions of the inverse problem presented in [23], noting that the annihilation assumption of
complex terms of the Fourier series expansion can be relaxed. From a numerical point of view,
another major contribution of the work describes a GSVD expansion for the unknown source term r(t)
together with a regularization procedure to calculate stable solutions in the case of noisy data.
Regularization has been achieved by truncating the GSVD expansion with the truncation parameter
selected based on three criteria, namely, Morozov’s DP, MPR and GCV. The method is quite simple to
implement and computationally fast. Three numerical experiments using noisy synthetic data showed
that the proposed method is capable of producing numerical reconstructions of the source term with
the reconstruction error of the same order as the error in the input data, regardless of the parameter
selection criteria and the number of data points used. Extensions of the proposed method to 2D
problems will be the subject of future research.
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