In this paper, we consider the global existence, regularizing decay rate and asymptotic behavior of mild solutions to Cauchy problem of fractional drift diffusion system with power-law nonlinearity. Using the properties of fractional heat semigroup and the classical estimates of fractional heat kernel, we first prove the global-in-time existence and uniqueness of the mild solutions in the frame of mixed time-space Besov space with multi-linear continuous mappings. Then, we show the asymptotic behavior and regularizing-decay rate estimates of the solution to equations with power-law nonlinearity by the method of multi-linear operator and the classical Hardy-Littlewood-Sobolev inequality.
Citation: Caihong Gu, Yanbin Tang. Global solution to the Cauchy problem of fractional drift diffusion system with power-law nonlinearity[J]. Networks and Heterogeneous Media, 2023, 18(1): 109-139. doi: 10.3934/nhm.2023005
In this paper, we consider the global existence, regularizing decay rate and asymptotic behavior of mild solutions to Cauchy problem of fractional drift diffusion system with power-law nonlinearity. Using the properties of fractional heat semigroup and the classical estimates of fractional heat kernel, we first prove the global-in-time existence and uniqueness of the mild solutions in the frame of mixed time-space Besov space with multi-linear continuous mappings. Then, we show the asymptotic behavior and regularizing-decay rate estimates of the solution to equations with power-law nonlinearity by the method of multi-linear operator and the classical Hardy-Littlewood-Sobolev inequality.
[1] | N. Jacob, Pseudo Differential Operators and Markov Processes. Vol. III: Markov Processes and Applications, London: Imperial College Press, 2005. |
[2] | C. Gu, Y. Tang, Chaotic characterization of one dimensional stochastic fractional heat equation, Chaos Soliton Fract, 145 (2021), 110780. https://doi.org/10.1016/j.chaos.2021.110780 doi: 10.1016/j.chaos.2021.110780 |
[3] | E.F. Keller, L.A. Segel, Initiation of slide mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399–415. https://doi.org/10.1016/0022-5193(70)90092-5 doi: 10.1016/0022-5193(70)90092-5 |
[4] | E.F. Keller, L.A. Segel, Model for chemotaxis, J. Theor. Biol., 30 (1971), 225–234. https://doi.org/10.1016/0022-5193(71)90050-6 |
[5] | N. Bellomo, A. Bellouquid, N. Chouhad, From a multiscale derivation of nonlinear cross diffusion models to Keller Segel models in a Navier-Stokes fluid, Math. Models. Methods. Appl. Sci., 26 (2016), 2041–2069. https://doi.org/10.1142/S0218202516400078 doi: 10.1142/S0218202516400078 |
[6] | J. Zhao, Q. Liu, On the Cauchy problem for the fractional drift diffusion system in critical Besov spaces, Appl Anal, 93 (2014), 1431–1450. https://doi.org/10.1080/00036811.2013.833608 doi: 10.1080/00036811.2013.833608 |
[7] | T. Ogawa, M. Yamamoto, Asymptotic behavior of solutions to drift diffusion system with generalized dissipation, Math. Models. Methods. Appl. Sci., 19 (2009), 939–967. https://doi.org/10.1142/S021820250900367X doi: 10.1142/S021820250900367X |
[8] | P. Biler, Singularities of Solutions to Chemotaxis Systems, Berlin: De Gruyter, 2020. |
[9] | G. Wu, J. Yuan, Well-posedness of the Cauchy problem for the fractional power dissipative equation in critical Besov spaces, J. Math. Anal. Appl., 340 (2008), 1326–1335. https://doi.org/10.1016/j.jmaa.2007.09.060 doi: 10.1016/j.jmaa.2007.09.060 |
[10] | N. Ben Abdallah, F. Méhats, N. Vauchelet, A note on the long time behavior for the drift diffusion poisson system. Comptes Rendus Math, 339 (2004), 683–688. https://doi.org/10.1016/j.crma.2004.09.025 |
[11] | P. Biler, J. Dolbeault, Long time behavior of solutions to Nernst-Planck and Debye-Huckel drift diffusion systems, Ann. Henri Poincaré, 1 (2000), 461–472. https://doi.org/10.1007/s000230050003 doi: 10.1007/s000230050003 |
[12] | S. Selberherr, Analysis and Simulation of Semiconductor Devices, New York: Springer, 1984. |
[13] | T. Ogawa, S. Shimizu, The drift diffusion system in two dimensional critical Hardy space, J. Funct. Anal., 255 (2008), 1107–1138. https://doi.org/10.1016/j.jfa.2008.05.020 doi: 10.1016/j.jfa.2008.05.020 |
[14] | T. Ogawa, S. Shimizu, End-point maximal regularity and its application to two-dimensional Keller–Segel system, Math. Zeitschrift., 264 (2010), 601–628. https://doi.org/10.1007/s00209-009-0481-3 doi: 10.1007/s00209-009-0481-3 |
[15] | G. Karch, Scaling in nonlinear parabolic equations, J. Math. Anal. Appl., 234 (1999), 534–558. https://doi.org/10.1006/jmaa.1999.6370 doi: 10.1006/jmaa.1999.6370 |
[16] | C. Escudero, The fractional Keller-Segel model, Nonlinearity, 19 (2006), 2909–2918. https://doi.org/10.1088/0951-7715/19/12/010 doi: 10.1088/0951-7715/19/12/010 |
[17] | P. Biler, G. Karch, Blowup of solutions to generalized Keller-Segel model, J. Evol. Equ., 10 (2010), 247–262. https://doi.org/10.1007/s00028-009-0048-0 doi: 10.1007/s00028-009-0048-0 |
[18] | P. Biler, G. Wu, Two dimensional chemotaxis models with fractional diffusion, Math. Meth. Appl. Sci., 32 (2009), 112–126. https://doi.org/10.1002/mma.1036 doi: 10.1002/mma.1036 |
[19] | P. Biler, A. Boritchev, G. Karch, P. Laurencot, Concentration phenomena in a diffusive aggregation model, J. Differ. Equ., 271 (2021), 1092–1108. https://doi.org/10.1016/j.jde.2020.09.035 doi: 10.1016/j.jde.2020.09.035 |
[20] | P. Biler, A. Boritchev, G. Karch, P. Laurencot, Sharp Sobolev estimates for concentration of solutions to an aggregation-diffusion equation, J. Dyn. Diff. Equat., (2021). https://doi.org/10.1007/s10884-021-09998-w |
[21] | G. Wu, X. Zheng, On the well posedness for Keller-Segel system with fractional diffusion, Math. Meth. Appl. Sci., 34 (2011), 1739–1750. https://doi.org/10.1002/mma.1480 doi: 10.1002/mma.1480 |
[22] | C. Miao, B. Yuan, B. Zhang, Well posedness of the Cauchy problem for the fractional power dissipative equations, Nonlinear Anal Theory Methods Appl, 68 (2008), 461–484. https://doi.org/10.1016/j.na.2006.11.011 doi: 10.1016/j.na.2006.11.011 |
[23] | PG. Lemarié-Rieusset, Recent developments in the Navier-Stokes problem, Boca Raton: CRC Press, 2002. |
[24] | W.P. Ziemer, Weakly Differentiable Functions, Berlin: Springer Verlag, 1989. |
[25] | T. Kato, Strong $L^{p}$ solutions of the Navier-Stokes equations in $\mathbb{R}^{m}$ with applications to weak solutions, Math. Zeitschrift., 187 (1984), 471–480. |
[26] | T. Kato, Strong solutions of the Navier-Stokes equation in Morrey spaces, Bol. Soc. Bras. Mat, 22 (1992), 127–155. https://doi.org/10.1007/BF01232939 doi: 10.1007/BF01232939 |
[27] | C. Miao, B. Yuan, Solutions to some nonlinear parabolic equations in pseudomeasure spaces, Math. Nachrichten., 280 (2010), 171–186. https://doi.org/10.1002/mana.200410472 doi: 10.1002/mana.200410472 |
[28] | Y. Giga, O. Sawada, On regularizing-decay rate estimates for solutions to the Navier-Stokes initial value problem, Nonlinear analysis and applications: to V. Lakshmikantham on his 80th birthday, Berlin: Springer, 2003. |
[29] | H. Miura, O. Sawada, On the regularizing rate estimates of Koch-Tataru's solution to the Navier-Stokes equations, Asymptot. Anal., 49 (2006), 1–15. |
[30] | O. Sawada, On analyticity rate estimates of the solutions to the Navier-Stokes equations in Bessel potential spaces, J. Math. Anal. Appl., 312 (2005), 1–13. https://doi.org/10.1016/j.jmaa.2004.06.068 doi: 10.1016/j.jmaa.2004.06.068 |
[31] | C. Kahane, On the spatial analyticity of solutions of the Navier-Stokes equations, Arch. Ration. Mech. Anal., 33 (1969), 386–405. https://doi.org/10.1007/BF00247697 doi: 10.1007/BF00247697 |
[32] | L. Nirenberg, On elliptic partial differential equations, ANN SCUOLA NORM-SCI, 13 (1959), 115–162. |
[33] | P. Biler, W.A. Woyczynski, Global and exploding solutions for nonlocal quadratic evolution problems, SIAM J. Appl. Math., 59 (1998), 845–869. https://doi.org/10.1137/S0036139996313447 doi: 10.1137/S0036139996313447 |