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Abstract: In this paper, we consider the global existence, regularizing decay rate and asymptotic
behavior of mild solutions to Cauchy problem of fractional drift diffusion system with power-law
nonlinearity. Using the properties of fractional heat semigroup and the classical estimates of fractional
heat kernel, we first prove the global-in-time existence and uniqueness of the mild solutions in the
frame of mixed time-space Besov space with multi-linear continuous mappings. Then, we show the
asymptotic behavior and regularizing-decay rate estimates of the solution to equations with power-
law nonlinearity by the method of multi-linear operator and the classical Hardy-Littlewood-Sobolev
inequality.

Keywords: Drift-diffusion system; Keller-Segel equations; global solutions; fractional Laplacian;
asymptotic behavior; multi-linear operator

1. Introduction

In this paper, we consider the global solution to the Cauchy problem of fractional drift diffusion
system with power-law nonlinearity,

0+ A% =-V.-("V¢), t>0,xeRV,
ow+ Aw =V -(wW"Vg), t>0,xeRY, (1.1)
Ap=v—w, t>0,xeRY, :

v(x,0) = vo(x), w(x,0) = wy(x), x € RV,

where m > 1 is an integer, v(x, 1), w(x, t) are the densities of negatively and positively charged particles,
¢(x, 1) is the electric potential determined by the Poisson equation A¢ = v — w. The difficulties mainly
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come from higher-order nonlinear couplings.
By the fundamental solution of Laplacian:

—%l)(fl, N = 17
Dy(x) =4 —xInlx, N =2, (1.2)
L N >3,

NN-2)w(N)x[N-2°

where w(N) denotes the volume of the unit ball in RY, the electric potential ¢ can be expressed by the
convolution:

$p=(=A)"W=v)=Dyx(w-v)= fN Oy (x = y)(w —v)(y)dy. (1.3)
R

A = V-A is the Calderén-Zygmund operator, and the fractional Laplacian A® = (—A)? with 1 < & <

2N is a non-local fractional differential operator defined as Eq (1.4)

A"v(x) = FEF o), (L.4)

where ¥ and ! are the Fourier transform and its inverse [1].

In probabilistic terms, replacing the Laplacian A with its fractional power —A® = —(=A)?, it leads
to interesting and largely open questions of extensions of results for Brownian motion driven stochastic
equations to those driven by Lévy a—stable flights.

In the physical literature, such fractal anomalous diffusions have been recently enthusiastically
embraced by a slew of investigators in the context of hydrodynamics, acoustics, trapping effects in
surface diffusion, statistical mechanics, relaxation phenomena, and biology [2].

An important technical difficulty is that the densities of the semigroups generated by —A® = —(=A)?
do not decay rapidly in x € R" as is the case of the heat semigroup S(¢) = e (o = 2), the Gauss-
Weierstrass kernel K,(x) = F(e"#") decays exponentially while the densities ' (¢”€")(0 < & < 2)
of non-Gaussian Lévy a—stable semigroups S ,(7) = e have only an algebraic decay rate |x|™¥7¢.

For a more general nonlinear term in Eq (1.1), the motivation is the Keller-Segel model [3,4], a
prototype of cross-diffusion models related to pattern formation, it describes the time and space
dynamics of the density of cells (or organisms) n(t,x) interacting with a chemoattractant S (z, x)
according to the following system:

{ on=V,-(D,(n,s)Vn— x(n,snV.s)+ F(n,s), (1.5)

0:s = Dy(n, s)As + G(n, s),

where F' and G are the source terms related to interactions [S]. The positive definite nonlinear terms

D, (n, s) and Dy(n, s) are the diffusivity of the chemoattractant and of the cells, respectively. In many

applications the cross-diffusion function y(n, s) has a complicated structure, and even it has a very

simple structure, for example, a polynomial y(n, s) = n™, it fails to satisfy a global Lipschitz condition.
For m = 1, Eq (1.1) becomes a fractional drift-diffusion system Eq (1.6),

o+ A =-V-(Vg), t>0,xeRV,
ow+ A'w=V-wVg), t>0,xeRV, (1.6)
Ap=v—w, t>0,xeRY, ’

v(x,0) = vo(x), w(x,0) = wo(x), x € RV,
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Zhao-Liu [6] established global well-posedness and asymptotic stability of mild solutions for the
Cauchy problem Eq (1.5) with small initial data in critical Besov spaces, and proved the
regularizing-decay rate estimates which imply that mild solutions are analytic in space variables.
Ogawa-Yamamoto [7] considered the global existence and asymptotic behavior of solutions for the
Cauchy problem Eq (1.5), they showed that the time- global existence of the solutions with large
initial data in Lebesgue space L”(R") and Sobolev space W*P(R") and obtained the asymptotic
expansion of the solution up to the second terms as t — +oo.
For @ = 2, Eq (1.6) corresponds to the usual drift-diffusion system,

dv—Av=-V-OVp), t>0,xeRY,

ow—Aw =V - (wVe), t>0,xeRY, (1.7)
Ap=v—w, t>0,xeRV, ’
v(x,0) = vo(x), w(x,0) = wp(x), xeRV,

it has been studied widely [8—14]. Karch [15] considered the Cauchy problem of a scalar equation with
a bilinear operator B

o = Au+ B(u, u), t>0,xeRY,
u(x,0) = up(x), x e RV,

For w = 0, Eq (1.6) corresponds to the generalized Keller-Segel model of chemotaxis:

0v+ A =-V.-(Ve), t>0,xeRV,
Ap =, t>0,xeRY, (1.8)
v(x, 0) = vo(x), x € RV,

For 1 < @ < 2, Escudero [16] proved that Eq (1.8) admits a one-dimensional global solution (the same
result also holds for @ = 2), Biler-Karch [17] studied the Blowup solutions to generalized Keller-Segel
model, and Biler-Wu [18] considered two-dimensional chemotaxis models with fractional diffusion.
For a = 2, Biler-Boritchev-Karch et al., considered the concentration phenomena [19] and gave sharp
Sobolev estimates for concentration of solution [20] to the diffusive aggregation model:

ov—eAv=-V-WVK xv)

with the Poisson kernel function K from the equation A¢ = v.

Wu-Zheng [21] considered the parabolic-parabolic system corresponding to the parabolic-elliptic
system Eq (1.8), the Keller-Segel system with fractional diffusion generalizing the Keller-Segel model
of chemotaxis

ou+ ANu ==V - (uVe), t>0,xeRV,
€00+ N¢ = u, t>0,xeRV, (1.9)
I/l(.x, O) = MO(X)7 V(xa 0) = VO(X)’ DS RN’

for initial data (1, vo) in the critical Fourier-Herz space B, **(R") x B *(R") with 2 < ¢ < oo for
e>0and 1l <a <2
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For the fractional evolution equations with higher order nonlinearity, Miao- Yuan-Zhang [22] studied
the Cauchy problem for the semilinear fractional power dissipative equation

o, _ N
{atu+Au—F(M), t>0,xeRY, (1.10)

I/t(.x, O) = MO(-X)’ X € RN,

with the nonlinear term F(u) = f(u) or F(u) = Q(D)f(u), where Q(D) is a homogeneous pseudo
differential operator and f(u) = |u|’u or |[u|”'u + |u|’>u with b > 0,b; > 0 and b, > 0. For example, the
equation in Eq (1.10) contains the semilinear fractional power dissipative equation d,u + A% = +|u|’u,
the generalized convection-diffusion equation 8,u + A% = a - V(Ju|’u), and so on.

Following the idea of Karch [15], due to the fractional heat semigroup S ,(¢) = e™" and the well-
known Duhamel principle, we rewrite the system Eq (1.1) as a system of integral equations

v(it) =S, (Hvo+ B, - ,v,w),
{w(t) — S (DWo + BOw, -+, w,v), (L.11)
where
B, ---,v,w) = f S (t=1)V-("VP)(1)dT, ¢ = (—A)_l(w —V). (1.12)
~—— 0

m

A solution of Eq (1.11) and Eq (1.12) is called a mild solution of Eq (1.1).

Inspired by the contributions summarized in the above items, we aim to extend the results to the
system Eq (1.1) with higher-order nonlinear terms V - (v"V¢) and V - (w"V¢). The goal of this article
is to prove the global well-posedness of mild solutions to the Cauchy problem Eq (1.1) with small
initial data in critical Besov spaces. When m = 1 in the higher order nonlinear term V - (V"V¢), we
recover the result proved in [6]. The outline of the rest of the article is as follows. In Section 2 we
give the definition of homogeneous Besov space by the fractional heat semigroup operator and present
some useful estimates. In Section 3 we establish the global existence and uniqueness of the mild
solution. In Section 4 we discuss the asymptotic stability of the mild solution. In Section 5 we give
the regularizing-decay rate estimates of the mild solution. In Section 6 we consider a fractional drift
diffusion system with a generalized electric potential equation and we also give the global existence
and asymptotic stability of the mild solution.

2. Preliminaries

Let S(R") be the Schwartz space and S’(R") be its dual. Now, we introduce a definition of the
homogeneous Besov space by the semigroup operator S ,(f) = e™™".

Definition 2.1. [6] Let/ > 0 and 1 < p < co. Define

Bu(®Y) = {f € S®Y) : Suf € C((0,+00), L), sup 1S, fllr < oo @.1)
>0
with the norm
WAl vy = Suéo té'lsa(t)f”l}’- (2.2)
>

(Bl R, |-l 5;.,) is a Banach space.
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If (v(x, 1), w(x, 1)) is a solution of the Cauchy problem Eq (1.1), for any 4 > 0, denote
va(x, 1) = Anv(Ax, A7), wa(x, 1) = Anw(dx, A1), (2.3)
(va(x, 1), wa(x, 1)) is also a solution of the Cauchy problem Eq (1.1) with the initial data
(Va(x, 0), wa(x, 0)) = (A7 vo(Ax), A" wo(Ax)),

then (v, (x, 1), wy(x, 1)) is called a self-similar solution to Eq (1.1). We can verify that B (R”) is a
critical space, i.e., the self-similar solution is invariant under the norm || - || ,W; , which deﬁned in [6],
for initial data (vo(x), wo(x)) of the system Eq (1.1). In the case the 1ndex sc := 2 — = provides the
minimal regularity for the initial data to ensure the well-posedness of the Cauchy problem Eq (1.1).
In order to find a critical space for the solutions of the Cauchy problem Eq (1.1), we define some
time-weighted space-time space.

Let X be a Banach space and I be a finite or infinite interval. We define the time-weighted space-

time Banach space,

<

Col; X) = {f € CUs X) : supr#|IfD)lx < oo (2.4)

>0

with the norm ||fllc,.x) = sup,. till f(@®|lx. The corresponding homogeneous time-weighted space-
time Banach space,

Coll: X) = {f € Col: X) = Tim 7|l f(Dx = O}, (2.5)

We denote C.([0, o); X) by the set of bounded maps from [0, co) to X which are continuous for # > 0

and weakly continuously for ¢ = 0.
a, N

For initial data (vo(x), wo(x)) in critical homogeneous Besov space B A (RY) with minimal
regularity, we want to find a mild solution of the Cauchy problem Eq (1. 1) and discuss the global
existence of mild solution in the following critical space,

aN

X = C.([0, ), B, "7 RY) N C e ([0, 00), LP(RM)) (2.6)
with the norm
1_N
llullx = SUPIIM(I)II oy sup o |l gy (2.7)
>0 B,o " ®RN >0

For the Laplacian operator A and the Calderon-Zygmund operator A = V—A, we have the following
classical Hardy-Littlewood-Sobolev inequality.

Lemma 2.2. [23,24] Let 1 < p < N, the nonlocal operator (—A)‘% is bounded from LP(R") to
L¥5(RY), ice., Vf € LP(RV),

I=A) 2l s < CON, Pl (2.8)
LN‘/’(RN)

V=A) Al v < C(N, (RN 2.9

VA g < CO Pl (2.9)
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For the fractional power operator A® = (—A)? and the semigroup operator S, () = e, we first
consider the Cauchy problem for the homogeneous linear fractional heat equation
ou+Au=0, t>0,xeRY,
{ u(x,0) = up(x), x e RV, (2.10)
By the Fourier transform the solution can be written as:
utx) = FFuo@) = ) o)
= Ki(x) * up(x) = So(Dug(x), (2.11)
where the fractional heat kernel Eq (2.12),
K/(x) = 2n) 2 f e qg = 5 K (xt W), (2.12)
RN

the function K(x) € L*(RY) N Co(R"), where Cy(R") denotes the space of functions f € C(RY)
satisfying that lim;_. f(x) = 0.
For the semigroup operator S ,() we have L” — L9 estimates

Lemma 2.3. [9] Let 1 < p < g < oo. Then, Vf € LP(RY),

N(l

N1
IS o) flles < CN, )™= fll0, (2.13)
_Y N1
IA7S o(®) fllze < C(N, @)t === 57| ]|, (2.14)
fora > 0andy > 0.

Following the work of Kato [25,26] and Lemarie-Rieusset [23] for the Navier-Stokes problem,
Miao-Yuan [27] gave a general existence and uniqueness result for an abstract operator equation via a
contraction argument.

Lemma 2.4. [27] Let X be a Banach space and B : XXX X---XX — X be a (m+ 1)—linear continuous
operator satisfying

1By, ua, - s ths)llx < Klluagllxllsollx - - - ety llx, (2.15)

Yuy,uz, -+ ,uue1 € X for some constant K > 0. Let € > 0 be such that (im + 1)(2e)"K < 1. Then for
everyy € X with ||yl|lx < € the equation

u=y+ Bu,u,---,u) (2.16)
has a unique solution u € X satisfying that ||ul|lx < 2&. Moreover, the solution u depends continuously
ony in the sense that, if ||y|llx < e andv = y; + B(v,v,---,v), |Vllx < 2¢, then

=il < 1 by =l @.17)
u—vlx < — . .
X2 1" m+ Dok > K

We will use the Lemma to prove the global-in-time existence and uniqueness of the mild solutions
to the Cauchy problem Eq (1.1) in the mixed time-space Besov space.
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3. Global existence and uniqueness in Besov space

In this section we give the global existence and uniqueness of mild solution to the Cauchy problem
Eq (1.1).

Theorem 3.1. Let N > 2 be a positive integer, 1 < a < 2N and

N 1N
max(1, ™Y} < p < miny, DV, 3.1)
a a

If (vo, wo) € B P (RM), there exists € > 0 such that if ||(vo, wo)ll oy S8 the Cauchy problem Eq
B,n

(1.1) has a unique global mild solution (v,w) € X such that ||(v, w)II,\» < 2&. Moreover, the solution
depends continuously on initial data in the following sense: let (v, W) € X be the solution of Eq (1.1)
with initial data (v, Wo) such that ||(vo, Wo)|| _W, < g, then there is a constant C such that
P (R
v =v,w—=w)llx < Cll(vo — Vo, wo — W0)|| Y
B} I(RN)
For the integral system Eqs (1 11) and (1.12) we first consider the term S ,(£)vy = e vy.
Lemma 3.2. Let vo(x) € B (RN ) and Eq (3.1) hold true. Then S ,(t)vy € X and

1S «(Ovollx < C(N, a)llVolI e (3.2)

mTp (RN)

mtp
P>

Proof. According to the definition of the norm || - || _e,» N and L” — L9 estimates for the semigroup
B! )

A
A" we have

IS o (®voll s

p (RN )

operator S (1) = e

= sup s" IS o (8)S o (tVollr = sup 57 IS o (1) o (s)vollLr

s>0 s>0

C(N, @) sup 57~ IS o (s)vollr = C(N, @)lvoll _7+% ,
>0 RM)

IA

and

sup 17 1S o (volly = ||V0|| 5§
>0 (RN)

Therefore, we have

So(vy € L7((0, o), B (RN)) 17758 o (H)vo € L7((0, 00), L' (RY)),

Moreover, following the method of [23] (Proposition 4.4, P33) we obtain that

S o(H)vo € C.([0, o0), B_E ;(RN))
On the other hand, from vo(x) € B (RN ) and Definition 2.1, we have
Sa(t)vo € C((0,00), LP(RY)), 17758 o (1)vy € C((0, 0), LP(RY)).
Hence, we have S ,(f)vy € X and Eq (3.2) holds true. O
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Lemma 3.3. Let (v,w) € X and Eq (3.1) hold true. Then B(v,--- ,v,w) € X and
1B, - ,v,wllx < C(N, a, p)Ivlixlly — wilx. (3.3)

Proof. According to the definition of the norm || - || _

ps

«.n ,we have
o T@®Y)

1B vl gy = sup s 1S (B, -+ v, WY(Dllr,
RN) >0
by the expression Eq (1.12) of B(v, - -- , v, w)(), that is,
!
By, - ,v,w) = —f So(t =DV - (V"Ve)(D)dr, ¢ = (=A) " (w—v), (3.4)
0

e mereae’
m

hence, by the Minkowski inequality, we get

B R t
1B, -, v,w)( )II 8%

sup 57 1S 4(s) f So(t =)V - (V*V) (D)l
0

s>0

< f sup 57 1S o (8)S ot = TV - (V"VO)(D)llirdr. (3.5)
0

5>0

For 0 < s < t — 7, using the L” — L7 estimates Eq (2.13) and Eq (2.14) for the semigroup operator
S.() = e™, we have

sup s7|S o ()S ot = DV - (V"'VS)(D)l1s

O<s<t—71

C(N, )(t = 1) 1S o(t = DV - V"V (DIl
CN, )t = )1V - St = D" VAl
C(N, @, p)(t — T)"" w(r— )75 (V)@

C(N, . p)(t — )5 5" IIVIILplqu)(T)II No s

I IA

IA

L l)N

IA

the last inequality comes from the Holder inequality for the productv-v---v - (v —w) and % + NN—;;” =
(m+1)N— . . . ) )

%. Using the classical Hardy-Littlewood-Sobolev inequality Eq (2.8) and Eq (2.9), we have Eq
(3.6):

sup 51718 o ()8 ot = DIV - V"V(=A) " (v = W)@l

O<s<t—-1

< CN, a0, p)(t = )75 V@I = W)@l (3.6)

For s > t — 7, using the L” — L7 estimates Eq (2.13) and Eq (2.14) for the semigroup operator S ,(¢) =
e ™" we have

sup 57 1S o (5)S ot = TV - (V"VO) ()l

s>1—-T
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1N m
= sup 57 @ ||So(t + 5 =DV - (V' V(D1

s>1-T

< C(N,a) sup s7 75 (1 + 5 — 1) V" V()

§>1-T

10 l)N

< C(N,a) sup s “P(t+ s — )_W|IVIIL,,||V¢(T)|| o .

§s>1—T

From the condition Eq (3.1): max{l, %} < p < min{N, M} and s > t — 1, the function f(s) =

1_N _mN )
sm~ar(t+ s —T) e has the maximum

- (Z; l_(erl)N
maxf(s) = f(W(f -7)=C{- @,

ap m

where C is a constant, by Eq (2.9) we have

sup s 1S o ()S ot — DV - "V(=A) " (v = W)@l

s>1-1

<C(N,a, p)t - Ty IIV(T)II AV = W)@
Together with Eq (3.6) and Eq (3.7) we have:

sup 57|18 o () o(t = DIV - V" V(=AY (v = WDl

5>0

< C(N, @, p)(t —T)n 7" IIV(T)II’" v = w)( @)
Putting Eq (3.8) into Eq (3.5), we have

IB(v,---,v, w)(t)ll el

I RN

C(N,a, p) f (t - T)TTIIV(T)II"&II(V W) Oppdr
0

IA

1N m 1N
< C(N,a, p)sup(r e [[v(T)[[z»)" sup(z™ e ||(v = w)(T)l|r)
™0 >0
[,

1 _(m+DN (m+DN 1 1

!
C(MmP)IIVIIS?IIV-WIIxf(t—T)'"_ T e T
0
CN, a, p)IVIllly — wllx,

IA

IA

in the last inequality we use the fact that the Beta function

!

t-7 W e
0
m+1 (m+1)N (im+1)N 1
= B - , -)

m ap ap m

(3.7)

(3.8)
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converges to a constant, since the condition Eq (3.1) implies that

m+1 (m+1)N m+1
m ap " mp
m+DN 1 1 (m(m+ N

ap m mp a

mN
(p——)>0,
a
p) > 0.

Therefore, we have

IB(v,---,v, W)(I)”B-%*%(RN) < C(N, a, p)IvIxly — wilx. (3.9)

Next, we consider the estimate of ||B(v, -, v, w)(?)||». From Eq (1.12) we have
1B, -, v, w)(®)l|r

= |l f So(t =)V - (V*V)(1)dT|1r
0

(m+1)N-p

< C(N,a) f (t - T)f%llvmV(—A)_l(v - w)](r)llL np dt
0

< CN,a) f (t = 1) % IMELIV(=2)" (v ~ WIOI e dr
0 P

mN 1 (m+1)N

t
< C, a’p)“"”%”"—wﬂxf(t—f S dr
0

_1., N
< C(N, a, p)IVIFIly — wllxt = ar,
thus,

1_N m
sup 7@ ||B(v, - -, v, w)(D)llr < C(N, @, p)IVlxllv — wllx. (3.10)

>0

In order to prove that B(v,--- ,v,w) € X, it suffices to prove that B(v,---,v,w) is continuous for

_a N
t > 0 and weakly continuous for = 0 in Bp,’;’:” (RV), and it is continuous for ¢ > 0 in LP(R").
For any 0 < 1; < 1,, due to Eq (3.4) we have

B, - ,v,w)(t,) — B(v,--- ,v,w)(t))
= fl[Sa(tz —7) = So(ti = DIV - V"V(=A) (v —= w)l(r)dT
0

+ ]‘2 Sqotr —T)V - [vmV(—A)fl(v —w)](t)dr

1

I(t1, ) + (11, 1p). (3.11)

Similar to the estimate of ||[B(v, -+, v, w)(@)|| ey We have
B, 7 (®N)

1_N
[1(z, )] gl = sup sm o ||S o (I (21, 22)ll 10
Bp,oc >0
5]
< f sup s IS o (5)S otz — TV - [V"V(=A) "' (v = WD)l dt
o >0
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1 _(m+DN  (m+DN 1|

15}
< C(N, a, p)lvilxllv — W”Xf (t — D) e w e

1, (mDN 15} 1 msDN
< C(N, @, pIMEIY = wllxt, ™" f (h—7)"" @ dr
1

(m+1)N

m -1- m+ ap l @+hN
< C(N, a, p)IVllxllv — wllxt, (t—t) ",
the condition Eq (3.1) implies that 1 + % - % > 0, hence as t, — 11,

I1(7,, )| ¥ o, T SUP s (1S o ()11, 1)l — 0. (3.12)

M
) s>0

According to the property of semigroup,

Sola =1) =St = 7) =[Sty — 1)) = I1S o(t; — 7T), (3.13)

for ¢ = (=A)"'(w —v) we get

L_N
(11, Il s Y, = SUPS” P |IS o ($)I(t1, 1)l

5>0

< f sup 577 | o ($)[S o2 = 11) = 1 (11 = T)V - (V'V) (D) odT
0

>0

151 N Ir—1]
- f sup s || A"S (1S o(5)S oty = D)V - (V'V)(D)dpllrdT
0

>0 0

11 N I —1
= f sup 57| f VS e (WA?S o(5)S ot — DOV V@) T)dpllrrdT
0 0

>0
11 I —11
< f sup 57 f IVS o (tAS o()S olt1 = DOVl dpadr, (3.14)
0 0 0

by the L” — L9 estimates Eq (2.13) and Eq (2.14) for the semigroup operator S ,(f) = e”*A", we have
1 —11
f IVSo(IA"S o ()S o (t1 = DOV V)Tl dpt
0

<CN,a) f T AUIAS o(9)S ot = D"V

LG
= C(N, @)t = 1))~ IA”S o ()S 11 ~ T)(V'"V</>)(T)IIL( - (3.15)
For 0 < s < t; — 1, we have
0<Syl<ltrl> TS"’ " [IATS o($)S oty — T)(vmeﬁ)(T)llL( L7
= O<Ssl<1£>_T s 1S W()A”S o (11 = IV .
SCO) swp st =0 VOO,
<s<ti—t

< C(N,a)(t) - T)'" ! IIVIIZ:||V¢IILNN7_1;
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< C(N,a, p)t; - Tyn VIl = wilz. (3.16)
For s > t; — 7, we have

sup 57 [|A7S o(5)S oty = DOV

s> -T L0 +1>N
= sup 57 W ||ASo(t; — T + )O"VHD
s> -T L (m+DN-p
< C(N,a) sup s" @ (t; — 7+ 5) " [V"Vg|
s> -T L(m +1)N
< C(N, @, p)(ty = 1) "o W[y = wll .- (3.17)

Putting Eqgs (3.15)—(3.17) into Eq (3.14), we have

Ji t ,t _a N
Ml e

mN " 1 _N_ m
< Clip—1) "o f =) VIV = WOl dr
0
|—mN 1_N m 1_N
< Cty—1) o sup(rm @ |v(D)llLr)" sup(z e ||(v = w)(T)l|r)
™0 ™0
11 .
xf (t — 7)o e i dr
mN_l
< Cl—-t)' IIVIIXIIV - wllxBt," (3.18)
where C = C(N, a, p) the Beta function B = B(l - l %\/ - —) converges due to the condition Eq
(3.1), thus we have
mN ”’2’ 1
I (zr, Il 5% am < CIVIGIY = willx(ta = 1) "o 17, (3.19)
poo
that is,
1_N
(21, Il ‘W*(RN) =sup s @IS (D11, D)l — 0 as r — 1. (3.20)
s>0

Putting Eq (3.12) and Eq (3.20) into Eq (3.11) we have

IB(v, -, v,w)(t;) = B, -+ ,v,w)(t)Il %+%( Y —0asn - 1. (3.21)
R
This means that B(v, - - - , v, w) is continuous for ¢ > 0 in B (RN ).
_a N
Similarly, we can prove that B(v,--- ,v,w) is weakly continuous for # = 0 in B B ’;, ”(RM) and it is

continuous for ¢ > 0 in L?(RM). Therefore, we have

B, ,v,w) € C.([0, 00), B p(RN)) N C oy ([0, c0), LP(RM)), (3.22)
that is, B(v,--- ,v,w) € X and Eq (3.3) holds true, i.e.,

1B, - ,v,wlllx < C(N, a, p)IVlixllv — wllx. (3.23)
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This ends the proof of Lemma 3.3. O
The proof of Theorem 3.1. Now for the integral system Eq (1.11) and Eq (1.12) from the Cauchy
problem Eq (1.1), we have

(@), w(®)) = SO, W) + (B(v,--- ,v,w), Blw,--- ,w,v)), (3.24)

in Lemma 3.2 and Lemma 3.3 we deal with the terms S ,(#)(vo, wo) and
!
B, -+ ,v,w) = f So(t =)V - [V'V(=A)"' (v = w)](7)dr,
0

Bw, - ,w,v) = f S, (t =)V - [W"'V(=A)"'(w = v)](r)dr,
0

respectively. For the Banach space X and multi-linear operator B(v,--- ,v,w), which satisfies the
N

estimate Eq (3.23), following the Lemma 2.4, for every (vo, wy) € B,_,EOJrF(RN ), there exists € > 0
such that (m + 1)(2e)"C(N, a, p) < 1, then Eq (3.24) has a unique solution (v,w) € X such that
l|(v,w)|lx < 2¢. Therefore, the Cauchy problem Eq (1.1) has a unique global-in-time mild solution in
the mixed time-space Besov space. This completes the proof of Theorem 3.1. O

4. Asymptotic stability analysis

Theorem 4.1. Let N be a positive integer, 1 < a < 2N and Eq (3.1) hold true and (v, w) and (v, W) be
two mild solutions of the Cauchy problem Eq (1.1) described in Theorem 3.1 corresponding to initial

(1+N

conditions (vy, wo) and (v, Wy), respectively. If (vo, wy), (o, W) € B,_,fo P (RY) such that

lim [|S o()(vo = Vo, wo = Wo)ll s,y =0, (4.1)
t—00 B,% 7 (RV)

then, we have the following asymptotic stability
. - - a_N ~ ~
lim (ll(v = V,w=wW)| _a,n +tn (v =P, w— W)”LP(RN)) =0. 4.2)
100 B,I7 ®N)

_a N
Proof. Since (vo, wy), (¥, W) € Bp,’c’fo ”(RY), by Theorem 3.1, there exists a constant £ > 0 such that if

[l(vo, wo), Vo, Wo)ll _e.nx < &, then the mild solutions (v, w) and (¥, W) satisfy that ||(v, w), (¥, W)||x < 2e.
B mTp

From Eq (1.11) an(limEq (1.12) we have

m—1
V_\’;' = Sa(t)(V() _‘70) + Z Bk(v_v,v,i},v_W)
k=0

+Bm(‘7, (V - ‘7) - (W - ﬂ/’)),
w=w =S8, (wo — Wo) + mZ_ll Bi(w = w,w,w,w =)
k=0
+Bm(w’ (W - W) - (V - ‘7))9

where

B(v—-v,v,9,v—w)=By—-7,v,--- ,V, V-, V, v —W)
—— —
k m—1-k
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= f So(t =)V - [(v = IV V(=AY (v = w)l()d,
0
By, (v=7) = (w=w) =B, ,0,(v=7) - (w=-W)
N——

m

!
= f S (t—=1)V- [ﬁmV(—A)_l((V —P) = (w—w))](n)dr.
0
By the definition of B A (R¥)—norm, we have

m—1
v =9l < ISo@00 =Tl g5, + > L+,
B (R =0

N ? ®N)

where

(Ui In) = I(Be(v =, v, 9, v = w), BV, (v = V) — (W — W)))II 8% '

For a constant 8 € (0, 1) determined in later we have

I = sup 57 1S o(s) f S o(t = DV - [(v = DWT" V(=AY (v = w)l(Ddall
0

>0

f sup 57|18 o (8)S ot = IV - [(v = DVF" I H4V(=A) " (v = W@l pdT
>0

<( f f sup s WIS o (t + 5 — TV - [(v — IWF IRV (=AY (v — w)lldr

s>0
= Ikl + Ik2~

4.3)

4.4)

4.5)

(4.6)

In the procedure of estimate of Eq (3.5), instead of the product v-v---v-(v—w) with m+ 1 exponents

_ (m+D)N-p
Np T Np

exponents such that 11—7 + 15) +

such that oy

m—1-k + _ (m+1)N-p

> Np = —x, > We can prove that

0t

Lo <C | =0 v = Sl MBI I - wildr
0

g
< Cen f (1 = )i 1 58 (=35 () = Sl o,
0

and

1 (DN 1-k
Lo < C | @t=or o |v="lwlV 000y - wilpdr
!
1_(@m+tHN (m+1)N 1
S Cgmf(l'_'r m ap Tl mt ap (Tm UP”V_VHLl)dT
or
1_N -
< CE"[sup tn @ ||lv(t) — W(T)||10].

Ot<t<t

, use the Holder inequality for the product (v PRy —w) with m + 1

4.7)

(4.8)
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Together Eq (4.7) with Eq (4.8) we have

L _mthN _1_7

I, < C&” f(l— e S () n () = Sen)l)dn

+ Cgm[ Sup Tm ap“v(T) - V(T)”L]’]’ k = 172’ e ,m — 1'

Ot<t<t

Similarly we have

1 (m+DHN
I, < Ce" fo (e 51w = 9. O = W)l e
nom ap
+ C&"[sup T w||((v = P)(T), (W = W)@l ]

Or<t<t
We next consider the term |[v — V|| p@ny:
m—1
I = Fllremy < IS ()00 = Tl + D Je + Jon
k=0
where

(Jis Im) = (Bi(v = ¥, v, 0,v = w), B, (v = V) = (W = W)llr@n).-

For the first term we have

1N .
tnar S, (f)(Vo — Vo)ll» RN)

< 25w sup( )'" “"IISQ( )(VO_VO)“LP ®")
>0
< 207w IS 4 (D) (vo — Fo)ll 5

7 RNy

For the term J; and ¢ = (=A)~'(w — v), we have

Ji =l f Salt =)V - [(v = IWVT" VLD

ot
f f O [ | A 0 8 AL,

ot

< C f f (t =775 Iy = Tl VI, 912l = wiledr

ot mN (m+DN
<Ce"” f +f (t - T)_WT_I_'"+ ap (T’” a [lv = V|»)dT
ot

< Ce"t Tt f (1= 5 =4 55 (e~ w5 (i) — (el el

+Ce"t™m ap[sup o ”P”V(T)—V(T)”Lp], k=1,2,--- ,m—1.

Ot<t<t
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Similarly, for the term J,, we have

+7 1 _N
I < Cerpmtd i (1 1”fmﬂw ()77 (v = D)), (w = WY en)llo )y

T CEMTITER [sup T4 (v = D)D), (w — WOl . 4.14)

Or<t<t

Together Eq (4.5) with Eq (4.11) we have

. 1_N -
v - V||B;i+%(RN) + 1o |[v = Vg

< C|IS o(H)(vo — Vo)”
P(RN)

1 (m+1)N

Hee” f %((m)#-%n«v—v)(rm,(w—wxm))||u>dn

m ap

o ap

+Ce” f C 1'73,”.; ()~ (v = D)(m), (w — D))l )

+Ce"[ sup 77w {|((v = D)D), (W = DOl ). (4.15)

Ot<t<t

For w — w we can get the same estimate similar to Eq (4.15).
For the convenience we denote

1 (m+D)N -1 1, (m+)N

0
0O) = | (L—pyn "y
0

f (L= %55 an,

F(0) = IS o«()(vo — Vo, wo — Wo)||

e p(RN)

GO =lv-7ll a.n
B

mTp
p,oo

+ (i ||V = V@M.

Due to the condition Eq (3.1), max{l, %V} < p < min{N, W}, we have

1 m+1)N m+1 mN

1+ = - =T (p-") >0,
m ap mp a
1 + 1N 1 + 1N
L e DN 1 mns DN
m ap mp a
N
- - -0,
ap p a

then, we obtain that Q(€) converges and %ir% 0e)=0
Due to the condition Eq (4.1) we have lim F(z) = 0 and F(z) € L*[0, +00). Passing the limit in Eq
[—+00
(4.15) we get

M =limsup G(t) < C(N, a, p)e"(Q(6) + 1) M, (4.16)

t—+00

Choosing 6 and & small enough such that Q(0) < 1 and 2C(N, a, p)e™ < 1 respectively, then Eq (4.16)
implies that M = 0. That is, Eq (4.2) holds true. The proof is complete. O
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5. Regularizing-decay rate estimates

In this section we consider the regularizing decay rate estimates of the mild solutions to the system
Eq (1.1). Compared to the case m = 1, the main difficulty is caused by the power-law nonlinearity
term V" as m > 1 in the first two equations of Eq (1.1). To overcome this difficulty, we will apply
multiple Leibniz’s rule. For the regularizing-decay rate estimates of mild solutions to the Navier-
Stokes equations, we refer the reader to [6,28-30].

In what follows, for x = (x;,---,xy) € RV and,B = (B, -+ ,By) € N¥, where Ny = N {0} and
N:{1,2,---},wedenote(9§:8§i f”andlﬁl + -+ fBy.

We first describe the main result on regularlzlng decay rate estimates of the mild solutions to the
system Eq (1.1).

Theorem 5. 1 Let N > 2 be a positive integer, 1 < a < 2N. Assume that p satisfies Eq (3.1) and

(vo, Wwo) € B (RN ), and (v,w) is the mild solution to the system Eq (1.1) with initial data (vy, wy).
F urthermore, assume that there exist two positive constants M, and M, such that

sup [|(v(2), W(t))ll e <M, (5.1
0<t<T (RN)

sup 17 “f’ll(v(t),w(t))llu(m < M. (5.2)
0<t<T

Then, there exist two positive constants K, and K, depending only on M, M,, N, a, m and p, such that
1(@v(0), Fw (D))l aery < Ki(K|B)) B (5.3)

forallquSOO,te(O,T)and,BeNév.

Remark 1. In fact, Eq (5.3) is equivalent to the claim

1

_B_1,N
1@v(e), wO)lies < Ki(KalB)P0r e g (5.4)
for some ¢ € (1, 2] and sufficiently large constants K; and K.

Let us first prepare the refined L” — L7 estimate for semigroup operator S , (7).

_a N
Lemma 5.2. Let 1 < p < g < co. Then for any f € B,,,’;f” (RN), we have

_B_1
1658 o (1) fll oy < CP1BI7 10 wllfll (5.5)

pen T ®Y)
forallt > 0,8 €NV, and Cy is a constant depending only on N and a.

Proof. As S ,(t) is the convolution operator with fractional heat kernel K,(x) = F~'(e™*!"), by scaling
we see that

Kt(x) = (27'[)_% f elee_tlfladg — t_%K(xt_i)’
RN

where K(x) = (2n)"2 fRN ek dé Tt is clear that [22] (Lemma 2.2)

VK(x) € L’(RY), VK,(x) € L’(RN), ¥V t € (0, 00), V¥ p € [1, o0},
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thus, the Young inequality implies that

10,8 o(®) fllzs < 10K Ollr[1flls < CoN, )t~ | fllo- (5.6)
By the semigroup property of S,(f) and the commutativity between semigroup and differential
operators, we get

N

.0 = | (0S5 S(3)7 (57)

Combining Eq (5.6) and Eq (5.7), and using Definition 2.1, we obtain

N t \||Bi t
D 8XiS(l(2_|B|)”£(quLq) S(I(E)f

P\-a\Bl NN G-D)
(Co.axz5) ") (3)
B_1,N LW

t L0
CoN. B 2% sup (L)
o(N, )" | qstl:([))(4)
Bl_1

B _B_1,N
Co(N, )|Bl 1= "’“qllfIIB a.N

—mty s
P (RY)

||5€S oD fllza@my

IA

L4

S(3

IA

P
t

Su(3)f

IA

P

IA

where ||T|| £;r..4) denotes the norm of linear operator T from L? to L?. This proves the Lemma 5.2. O
Next we recall some useful results.

Lemma 5.3. [31, Lemma 2.1] Let 6 > % Then there exists a positive constant C depending only on 6,
such that

> ( g )|a|'“'—5L3 — off < C@)|BP, v B e NY. (5.8)
a<f

N
Here the notation a < 8 means that a; < B;,Vi € N, ( 5 ) =11 #la), and the dependence of C(0)
l:l L 1 t)-

on 8 is merely of the form Z;’;l ]'—6—%.

Lemma 5.4. [28] Let Yy be a measurable and locally bounded function in (0, o) and {y J};il be a
sequence of measurable functions in (0, o). Assume that @ € R and u,v > 0 satisfying u+v = 1. Let
B, > 0 be a number depending on n € (0, 1) and B, be non-increasing with respect to 1. Assume that
there is a positive constant o such that

t

0<yp() < Bt "+ af (t — 1) "1t "Yo(r)dT, (5.9
(1-mt

0<yj(t) <Bt "+ O'f (-1 7Y (ndr (5.10)

(-t
forall j>0,t>0andn € (0,1). Let ny be a unique positive number such that
1

I(n0) = miﬂ{%, IO} with I = | (1= 0)*77dr.
1-n
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Then, for any 0 < n < noy, we have
i) 2B, ¥V j>0,t>0.

We now prove the Theorem 5.1. Following the idea in Giga-Sawada [28], we first prove the Remark
1, a variant of Theorem 5.1 under extra regularity assumption.

Proposition 1. Under the same assumptions in Theorem 5.1. Assume further that
(Fv(0), w(®)) € C((0,T), LIR™)) (5.11)

forallp < g < ocoandp € Ng’. Then for any 6 € (1,2], there exist two positive constants K, and K,
depending only on My, M, N, a, m and p, such that

1Pv(t), Pw (@)l < Ky (Ko|B)2 P01 @ ntag (5.12)

forallquSOO,te(O,T)and,BeNév.

Proof. We split the proof into the following two steps by an induction |5| = m.

Step 1. We will prove Eq (5.12) for m = 0. Equation (5.2) implies that Eq (5.12) is trivial if ¢ = p, thus
it suffices to consider g € (p, oo]. Let n € (0, 1) be a constant to be determined later, we take LY—norm
of the first equation in Eq (1.11) and split the time integral into two parts as follows:

V@llze < 1S a(Ovollzs
t(1-n) t
+( f + f IS ot =)V - V'V(=2)"' (w = V)@ l|edr
0 1(1-n)
=F +E, + E;. (513)

We will estimate term by term.
For E;, by Lemma 5.2 and Eq (5.1), one can easily see that

Ey < Ci(N. @) "5 lvgll s,y < CL(N, ot My 750, (5.14)
B,

For E; and E3, by Lemma 2.2, Lemma 2.3 and Eq (5.2), we have

E,

t(1-n)
f IS o(t = DV - [V"V(=2)"" (W = V)(D)]l|edr
0

IA

I(l—T]) (m+1)N | N
G (N, a, p)f (=1 = " vOILIE@, wE)lldr
0

m+DON | N 1, (m+thHN

1(1-1)
0

IA

1

-1 L N
CZ(N’ a,p, MZ)U mpomaq (515)

IA

E; = f IS ot = D)V - V'V(=2)"' (W = V)(D)]l|dT

(1-n)
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!

C3(N, a, p) ’ )(t—T)_T’gIIV(T)IILqIIV(T)II'L"p_lII(V(T),W(T))IILpdT
1(1-n

< C(N,a, p, M) (t— 1) T o (D)l ed. (5.16)
t(1-n)

IA

Combining Eqs (5.14)—(5.16), and setting B, = C;(N, a, M;) + C2(N, «, p, M)~ "=, the inequality Eq
(5.13) yields that

!
[(®)lle < Byt "4 + C; f (t — 7)o 5 |(0)| ed. (5.17)
t(1-mn)

The estimate for w(f) can be done analogously as Eq (5.17). Hence, we have

l(v(£), w(t)|| e
s
< B, "t +Cy f (t — 7)" % 75 | (0(T), w(T))||odT, (5.18)
1

-m)

where B, = 2B, and Cy = 2C5(N, @, p, M5).

By applying Lemma 5.4, we get the desired estimate Eq (5.12) for |8| = k = 0 with K, = 2B, for
some 19 = 1o(N, a, p,m, My, M,) € (0, 1).
Step 2. Next we prove Eq (5.12) for |[5| = k > 1. Due to the appearance of nonlocal function ¢, we use
a different argument to prove Eq (5.12) for p < g < N and N < g < oo, thus we split the proof into the
following two cases.
Case 1: p < g < N. In this case, we first differentiate the first equation of Eq (1.11) to obtain the
identity

!
Pv(t) = S o (t)vo — f S ot — TV - V"V(=A) ' (w - v)(1)]dT. (5.19)
0
We take the L?—norm of (fv, for some i € (0, 1) to be chosen later, we split the time integral into the
following two parts:
10 (Dllze < 1858 o(D)voll.s
1(1-1) t
+ f + f NS ot = 1)V - "V (=8) " (w = V(D)o
0 1(1-m)
= Fi+F,+ F;. (520)

We next estimate F;(i = 1,2, 3) term by term.
For Fi, Lemma 5.2 implies that

k _k_1_.n k _k_1_n
F) < Chkat e m+w4||v0||3_%+% < M Chkot e n*ag, (5.21)
0

For F,, using Lemma 5.2, Lemma 2.3 and Eq (5.2), we have
1(1-n)
F, = f 184S o(t = DV - V" V(=A) " (W = )(@)]lledT
0

Networks and Heterogeneous Media Volume 18, Issue 1, 109-139.



129

IA

IA

IA

IA

<

<

where k = k; +k, + - - -

) =2) " w = VOl

(-m o _ - _1 _
Cs(N. @) fo "(’—T) 185

w-m 421 N
C5(N,a/)f ( ﬂllax,S Ik )||L(L‘1L‘1)

i=

xns( V=) 0w = V)Olladr

( -1) t— _E -7 t—T (m+(ly)N—p+%
CS(NOZ)f Co( =) a2l =) "
X|IV"V(=A)” (w—v)(r)n s pdr
. (=n ¢+ _ r —ko N
Cs(N, @, p)Cike f (T) "IN, Wl dr
0
(=) ¢k _Nemel_1 e )N
Cs(N, a, p)M* Chi f (S5 e
0 4
k_1, N

CS(N a, p,Mz)C k(xn E_l_;t_;—a+m]

+kyand k; = |Bi|i=1,2,...,N).

Using Leibniz’s rule, we split F75 into the following three parts:

F3 =

IA

IA

f 1S ot = D)V - [V'V(=8) " (w = v)(@)lledT
1(1-m)

vy [ (S5 (SO = @ e
1(1-m)

e [ (S5 T)"nsa(TT) (@A) w = »)(@)llsdr
1(1-m)

e [ () Is(55)

1(1-n)
) ( b )(azvmxaﬁ‘yw—m*(w —V)(T)ledr
O<y<B Y

vy [ (S0 (SO = @ e
1(1-m)
F31 + F32 + F33.

Here, the notation y < 8 means thaty < g and |y| < |B].
Now, we establish the estimates for F3;(j = 1,2,3). For F3;, using Leibniz’s rule again, we can
split F'3; into two parts as follows:

F3;

Networks and Heterogeneous Media

N [ (55 s
1(1-n)
!

v [ (SIS 2 )5 ) (&)

t(1-n)

-7

@V V(=8)" W = ]lledT

[\)

..l

(5.22)

(5.23)

Volume 18, Issue 1, 109-139.



130

(@) (@) + v (@) V(=8) " w = V) |led

B “~( B )f’ t—T\-% -7
= Cy(N, —_— Sol—
7(Na);];[(ﬁi_l BCONTCS

m

. ﬂ@gi—ﬁi—]vw(—m—l(w — )@l

i=1

+C7(N, @, m) f S, ( 27) "L EVV(=A)" W = V)lledT
1=m)
= G+ Gy,

where we denote Xig = Y.0-p,<, <-<py 1 <Bu=p-
For G,, using Lemma 2.2, Lemma 2.3 and Eq (5.2), we have

mN

G, ) I el (), W)l

IA

Cg(N,a,m, p) —_—

t(1-m) 2

!

Cs(N, @, m, p)M”" f (t— 1) 750 ed.

1(1-n)

IA

For G, using Lemma 2.2, Lemma 2.3, Lemma 5.3, Eq (5.2) and Eq (5.12), we have
“1( Bi ' _-N_ N
Gl S CQ(N, a, p) Z n (t — T) aq ap
i\ Bt ) Jia

Xl—[H@B PVl (v(7), w(D)) | dT

!

Co(N, a, p)M, Z 1—[ ( ) f; (t— T)_(m;f,w_{f}

1(1-n)

IA

m
g gy BBl 1 Y
X n I:Kl(KZIﬂl —ﬁl_llzlﬁl ﬁl—ll 6)7- a m+(yq:|T m (rpdT
i=1

Co(N, @, p, M>) Z ﬂ( )ﬁ |[Ki(KalBi = Bia P17 |

i=1

IA

!

_m-DN_ N _k_qymN_1, N

Xf (l_T) aq ap T «a 1+aq m+apdT
1(1-n)

< Co(N, a, p, My)(C(8))Xm DIk K2 [y~ aa,

where

1
(m-DN N k N _ 1 N
I(n):f (1-17)" @ “wg o e ntudr,
1-n

For F3,, using the same arguments as G, we have

F3, < Cio(N, @) f s ) 2> (’j)@v’")
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(5.25)

(5.26)

(5.27)
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@V (=A" w = v)(D) |llede

<Coa) Y (f)f(l (5 ) s (S @
t(1-n

O<y<p

XV (=AW = v)()lIedT

o 2 (7))

]

x [ [@vm]@ v w - vE)lidr

=1
B ([ v ft =T\
Cio(N, —_—
< Cio(N, ) o;ﬁ( y )Z ljl( Yict ) t(l_n)( D) )
><||S l—[(ay’ TEYMEETTV(-A) T (w = v)(T)lIadT,

according to the property of semigroup we get

- i ! _Nm-1) N
Fy < CpN,a,p) Z (ﬁ )Zﬂ( y )f (t—1) @

oS\ Y 1S\ Vit ] Juaen

x [ 10827 vllalld (o), w)llsde
j=1

_Nm-)_ N
< CIO(Na a, p) Z ( )Z 1_[( )f ([— T) aq ap

1-1)

O<y<g

m iy
2 e _6 - 1
X | | [K1(K2|7j — PP T T
j-1

B=A_1

X[ K1 (Kol =y 0r 5k e
Cro(N, a, p)(C(8))" K K2 D020 fpy a4,

IA

where ), is defined the same as that in estimating F'3; and /(1) is defined in Eq (5.27).

For F33, analogously we have

Fas < Cnf (=) HWIIET(-a) v = W@ o dt
(1) L
< Cn(N, @) (=) I (), Wl e dt

1(1-m)
t

S Cll(Naa) (t_T) ‘YP[KIT m aq]m
t(1-n)

[Kl(KZ(k_ 1))2(k -6 %—7+N&%;7)]dT

< Ci(N, @)K D0k 51(77)t_6‘% ad,

(5.28)

(5.29)
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where /(1) is defined in Eq (5.27).
Combining the above estimates Eqgs (5.20)—(5.29) and setting B,] by

B,] = M]C‘gké + Cscgkgn_g_l_% + C12k2k_61(77),
and
Ciy = CoKTKZ™ + Cio KM K" 4 ¢ K KD,

we obtain

t
- _k_1,N _mN _q,mN
V(DL < Byt e " + Cy f (t =) @ [|Ev(r) | d.

1(1-m)

Similarly, we can deal with 6§w(t). Hence, we conclude that

@v(e), Fw(e)lls < Byt~ n "
!
e f (1= )57 @), (e,
1

(1=m)

where B, = 2B, and C3 = 2Cs(N, a, m, p).

(5.30)

(5.31)

(5.32)

Let n, = %c It is clear that /() is strictly monotone decreasing in k and I(r7;) — 0 as k — oo.

Choosing k sufficiently large, such that I(3;) < 57~ for all k > ko, applying Lemma 5.4, we get

@Pv(e). PwO)les < 2Byt nti

(5.33)

for all # > 0 and |B| = k. Note that from Eq (5.33), we can choose K; and K, sufficiently large such that
Eq (5.12) holds for all S satisfying |5] < ky. Hence, it suffices to prove that it is possible to choose K

and K such that 2B < K, (K>k)**9 for all k > k. Since

1 _m-UN_ N _k_q mN_1, N
I JE— = 1_ aq ap a +(u1 m+a/pd
(Zk) 1_217( 7) T T
1 k 1 1 1 1
< (I-) e m<ew(l-=)""n <16,
< (=5p senll=gp s

we can calculate 2B 1 as follows:

2B, =4B, < A[MChks + CsClk» (2k)«* 17 + 16C1 k%]
< A[MCL+ 25 R CsCR M0 4+ 16C K4,

Obviously, there exists a constant Cy4 > C, such that Cj + 2§“+$C’5k”$+5 < C#~%. Hence,

2B < 4[(M, + C5)Cly™° +16C 1]k,

where C, is defined in Eq (5.30).

(5.34)
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Choosing K := 8(M; + Cs) and K; := max{Ci4,32(Cy + C19)K, 32C11K?}, we obtain Eq (5.12).
This completes the proof of Proposition 1 for p < g < N.
Case 2: N < g < co. Now we are in a position to establish the estimate of ||6§v(t)||Lq for N < g < oo.
For p satisfying Eq (3.1), using the Gagliardo-Nirenberg inequality [32], we have

) N N
12v(Olla < CN, PV NPV, 6=1- 2 + % (5.35)
Now, from Eq (5.35) and the result of Case 1 we see that
1Ev(D)]l1a
< CON, K Kol 1 e i [Ky (K (K + )40 a0
< C(N, p)Ky(Ka(k + 2))2+4=0¢ =t aq. (5.36)

It is clear that there exists a constant Cys > 2 such that k* < C}£7, thus we have

2
(K (k +2))%+70 = K3k (1 + %)2“4—5(1{2@2’“5 < 81" K5 (Cy5K k).

Hence, we can choose K; and K, sufficiently large such that Eq (5.12) holds for all p < g < co. This
completes the proof of Proposition 1. O

Finally, let us show that under the assumptions of Theorem 5.1, the mild solution (v(¢), w(t)) of Eq
(1.1) always satisfies the regularity condition Eq (5.12).

Proposition 2. Under the assumptions of Theorem 5.1, the mild solution (v(t), w(t)) satisfies that
BL1_N ~ & _
to [ v, Bwn)lle < Ki(Ka|B)?P (5.37)

forall p < g < oo, t € (0,T) and B € NY, where K, and K, are constants depending only on
My, M>,m,N, a, p and 6.

Proof. Since the mild solution (v(#),w(z)) is the limit function of the sequence (v;(f),w;(t)) of
appropriate Picard iterations as follows:

(v1(8), wi(0)) = (S a(D)vo, S ()W), for j =2,
vi(t) = So(t)vo + f Salt =DV - V1L V(=) (vjo — wiD](D)dT,
0
wi(t) = S (Hwo + f S, (t—1)V- [WT_IV(—A)_I(Wj_l —v;,_pl()dr.
0
Step 1. We first show that

sup sup £~ ||(v;(0), wi (D)l < M. (5.38)

Jj=1 0<t<T

When j = 1, following from Eq (5.1) we have
v wDller = IS o(D)vo, S o(OWo)ll1r
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_1, N 1_N
< e sup o ||(S o (D)vo, S o (OWo)ll e
0<t<T
N
< i ””||(V0,W0)|| sy < Myt (5.39)

poo

Hence Eq (5.38) holds for j = 1.
When j > 2, using Lemma 2.2 and Lemma 2.3, we have

!
VOl < [ISe@vollrr + f IS o(z = )V - [V;'l_lv(—A)_l(ijl —wi )]l (D)dr
0
!
1N v "
< Myt +C(N,Q/,P)f(f—7) @ Vi1 (O IV -1 (D) i ()| dT
0
_1,N 1_N m+l 1, N
< Mt + C(N,a, p)| sup s e l|(vj-i (), wini ()l | £ 7% B,
O<s<T
where B = fo (1-71)" St dr = B(l -2 L (’"”)N) is the standard Beta function which is

obviously finite.
For w;(t) we have the analogous estimate. Then, for j = 2,3,---, we get

0O, wiE)llr < CN, @, p,m, My, BY w57 2= Mot ™5, (5.40)

where the constant C(N, a, p, m, M1, B) is always finite. Therefore Eq (5.38) holds true.
Step 2. To apply the Lemma 5.4, we need to show that ||(6§v1(t),6§w1(t))||m is locally bounded in
(0,T). Using Lemma 2.3 and Eq (5.1), we have

1981 (Do
_B_Ne1_1
= 18.0(5)Su(5)voll SC(N,a)(f) TS (5 )volls
TN E-SG-D t\w~ap
< CV.a)(5) (5) sup (3) 1S o3 ol
< C(N. a)Ml(z)_lﬁl_':l E

Similarly, we have a similar estimate on w;(#). Then ||(5‘§v1(t), ('}gwl(t))ll 1a 18 locally bounded in (0, T').
Step 3. Similarly to the proof of Proposition 1, let ¢ (¢) = ||<9';v i(Dlgs, forall j > 1 and ¢t € (0,T), we
have

!

Win(t) < Byt e e + Cy f (t—1) T8y (D, (5.41)

1(1-m)

Using Lemma 5.4 (the version of sequences), we can choose appropriate constants K, and K, such that

N

Uit < Ri(Ro|BI)YP-0r et (5.42)

For w;(t) we have the similar estimate. Hence we complete the proof of Proposition 2. O
The proof of Theorem 5.1. Now Theorem 5.1 follows immediately from Proposition 1 and
Proposition 2. We complete the proof of Theorem 5.1. O
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6. A generalized fractional drift diffusion system

In this section, we consider a fractional drift diffusion system with generalized electric potential
equation

ov+Av=V.0"V¢), t>0,xeRY,

dw+ Aw =V - (W"Vg), t>0,xeRY, 6.1)
¢ = K —w)x) = c [, bx,y)v-w))dy, 1>0,xeRY, '
v(x,0) = vo(x), w(x,0) = wy(x), xRV,

where c is a constant and b(x, y) is the kernel function of nonlocal linear integral operator K.
For K = (—A)~! which comes from the Poisson equation A¢ = v—w, Eq (6.1) becomes the fractional
drift diffusion system Eq (1.1). For instance,

Kw)(x) = ¢ fR e b=y, 62)

where c is a constant. If ¢ < 0, the equation u, = Au + V - (uVK (1)) models the Brownian diffusion of
charge carriers interacting via Coulomb forces. If ¢ > 0, the operator K reflects the mutual gravitational
attraction of particles. Furthermore, Biler-Woyczynski [33] considered the equation u, = A% + V -
uVK(u)).

We also give the global existence and asymptotic stability of the mild solution to the Cauchy
problem Eq (6.1).
Theorem 6.1. Let N be a positive integer, 1 < a < 2N and Eq (3.1) hold true. Assume that (vy, wy) €

_a N

Bp,’if: ”(RN). If the derivative of kernel function b(x,y) satisfies

IDb(x, )| < Clx =y ™!, (6.3)

then there exists € > 0 such that if ||(vo, wo)ll _ v < g the Cauchy problem Eq (6.1) has a unique
B

global mild solution (v,w) € X such that ||(v, wS]TX < 2&. Moreover, the solution depends continuously
on initial data in the following sense: let (V, W) € X be the solution of Eq (6.1) with initial data (¥, W)

such that ||(vo, wo)l| . then there is a constant C such that
By 7 (RY)

a
mt

(v =9, w=Wllx < Cll(vo = Vo, wo = Wolll &, . (6.4)
B, 7 (RN
Proof. After a few modifications of the proof to Theorem 3.1, we can prove this theorem. Here we just
give the main difference in the proof.
By the fractional heat semigroup S,(f) = e
integral equations

~A" we rewrite the system Eq (6.1) as a system of

v(t) =S, (Hvo+ B, - ,v,w),
{ WD) = S o(E)wo + BV, -, w,v), 6.5
where
B(v,---,v,w) = f St —1)V-[V'VK({ —w)](r)dr. (6.6)
~— 0

m
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Similar to Eqs (3.4)—(3.8), we have

1B, -, v, w)OIl st

RN)

= sup s [Sa(s) | Salt =DV - V'VK© = w0l

< fsupsm HPIISQ(S)S(,(t—T)V WV'"VK G = w)](0O)||rdt
0 s>0

< C(N, a)f(t—f)’” s llvmW((v—W)(T)ll Lo qv)pN

< C(N,a)fo(t—T)m_ ar IIV(T)IITpIIVW(V—W)(T)IILNL_ppdT,

(6.7)

due to the condition Eq (6.3): |Db(x,y)| < Clx — y|™*!, use Hardy-Littlewood-Sobolev inequality for

the integral fRN Ix — y|™V*|v — w|dy, we have
VKW =Wl ye < CWN, plllv = wllzo-

-r

then

B, , v, )OI _a.n

By U ®N)
1_N
< C(N,a, p)sup(ti o [v(D)l)" sup(r7 = [|(v = w)(@)l»)
™0 ™0
!
1_ (m+DN M_L_
(l‘_T)m ap T ap 1dT
0
L_(n-#l)N (m+1)N_L_1
< C(N,a, p)vilxly — wilx (t— @ Tnd
< C(N,a, p)viixllv - Wllx,

therefore, we have

1B, -+, v, WOl . = CN, a, p)VIxllv — wllx.
poo

Similarly, we have

1_N m
suptm @ ||B(v, - ,v,w)Oller < C(N, a, p)Ivllyllv — wllx.

>0

(6.8)

(6.9)

(6.10)

(6.11)

Following the main estimates Eq (6.10) and Eq (6.11) and the proof of Theorem 3.1, the Cauchy
problem Eq (6.1) has a unique global-in-time mild solution in the mixed time-space Besov space. This

completes the proof of Theorem 6.1. O

Using the same method we can prove that the mild solution of the Cauchy problem Eq (6.1) has the

following asymptotic stability.

Networks and Heterogeneous Media

Volume 18, Issue 1, 109-139.



137

Theorem 6.2. Let N > 2 be a positive integer, 1 < a < 2N, Eq (3.1) and Eq (6.3) hold true. Assume
that (v,w) and (v, W) are two mild solutions of the Cauchy problem Eq (6.1) described in Theorem 6.1

corresponding to initial conditions (vy, wy) and (Vy, Wy), respectively. If (vy, wo), (¥, W) € B (RN )
such that

hm IS o () (Vo — Vo, wo — W0)|| =0, (6.12)

m p (RN)

then, we have the following asymptotic stability

. ~ ~ a_N ~ ~
tim (I = w =Wl g+ 070 = Tw = D) = 0. (6.13)

w 7 @®N)

Theorem 6.3. Let N > 2 be a positive integer, 1 < a < 2N, Eq (3.1) and Eq (6.3) hold true. Assume

that (vo,wp) € B (RN ), and (v,w) is the mild solution to the system Eq (6.1) with initial data
(vo, wp). F urthermore assume that there exist two positive constants M| and M, such that

sup [|(v(2), W(t))ll e < M, (6.14)
0<t<T N

sup 17 "PII(V(t),W(t))IILp(RN> < M,. (6.15)
0<t<T

Then, there exist two positive constants K, and K, depending only on M|, M,, N, a, m and p, such that
1(@2v(2), FwO)|paery < Kl(Kzl,Bl)zLB't_TZ @ (6.16)

forallp < qg<oo,te(0,T)andp € Nf)v.
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