In this paper, we consider the Keller-Segel chemotaxis model with self- and cross-diffusion terms and a logistic source. This system consists of a fully nonlinear reaction-diffusion equation with additional cross-diffusion. We establish some high-order finite difference schemes for solving one- and two-dimensional problems. The truncation error remainder correction method and fourth-order Padé compact schemes are employed to approximate the spatial and temporal derivatives, respectively. It is shown that the numerical schemes yield second-order accuracy in time and fourth-order accuracy in space. Some numerical experiments are demonstrated to verify the accuracy and reliability of the proposed schemes. Furthermore, the blow-up phenomenon and bacterial pattern formation are numerically simulated.
Citation: Panpan Xu, Yongbin Ge, Lin Zhang. High-order finite difference approximation of the Keller-Segel model with additional self- and cross-diffusion terms and a logistic source[J]. Networks and Heterogeneous Media, 2023, 18(4): 1471-1492. doi: 10.3934/nhm.2023065
In this paper, we consider the Keller-Segel chemotaxis model with self- and cross-diffusion terms and a logistic source. This system consists of a fully nonlinear reaction-diffusion equation with additional cross-diffusion. We establish some high-order finite difference schemes for solving one- and two-dimensional problems. The truncation error remainder correction method and fourth-order Padé compact schemes are employed to approximate the spatial and temporal derivatives, respectively. It is shown that the numerical schemes yield second-order accuracy in time and fourth-order accuracy in space. Some numerical experiments are demonstrated to verify the accuracy and reliability of the proposed schemes. Furthermore, the blow-up phenomenon and bacterial pattern formation are numerically simulated.
[1] | M. Akhmouch, M. B. Amine, A time semi-exponentially fitted scheme for chemotaxis-growth models, Calcolo, 54 (2017), 609–641. https://doi.org/10.1007/s10092-016-0201-4 doi: 10.1007/s10092-016-0201-4 |
[2] | J. T. Bonner, M. E. Hoffman, Evidence for a substance responsible for the spacing pattern of aggregation and fruiting in the cellular slime molds, J. Embryol. Exp. Morph, 11 (1963), 571–589. https://doi.org/10.1242/dev.11.3.571 doi: 10.1242/dev.11.3.571 |
[3] | C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys, 15 (1953), 311–338. https://doi.org/10.1007/BF02476407 doi: 10.1007/BF02476407 |
[4] | E. F. Keller, L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol, 26 (1970), 399–415. https://doi.org/10.1016/0022-5193(70)90092-5 doi: 10.1016/0022-5193(70)90092-5 |
[5] | E. F. Keller, L. A. Segel, Traveling bands of chemotactic bacteria: A Theoretical Analysis, J. Theor. Biol, 30 (1971), 235–248. https://doi.org/10.1016/0022-5193(71)90051-8 doi: 10.1016/0022-5193(71)90051-8 |
[6] | E. F. Keller, L. A. Segel, Model for chemotaxis, J. Theor. Biol, 30 (1971), 225–234. https://doi.org/10.1016/0022-5193(71)90050-6 |
[7] | J. Adler, Chemotaxis in bacteria, Annu. Rev. Biochem, 44 (1975), 341–356. https://doi.org/10.1146/annurev.bi.44.070175.002013 |
[8] | J. T. Bonner, The cellular slime molds, Princeton: Princeton University Press, 1959. https://doi.org/10.1515/9781400876884 |
[9] | E. O. Budrene, H. C, Berg, Complex patterns formed by motile cells of Escherichia coli, Nature, 349 (1991), 630–633. https://doi.org/10.1038/349630a0 doi: 10.1038/349630a0 |
[10] | S. Childress, J. K. Percus, Nonlinear aspects of chemotaxis, Math. Biosci, 56 (1981), 217–237. https://doi.org/10.1016/0025-5564(81)90055-9 doi: 10.1016/0025-5564(81)90055-9 |
[11] | M. H. Cohen, A. Robertson, Wave propagation in the early stages of aggregation of cellular slime molds, J. Theor. Biol, 31 (1971), 101–118. https://doi.org/10.1016/0022-5193(71)90124-X doi: 10.1016/0022-5193(71)90124-X |
[12] | B. Perthame, Transport equations in biology, Berlin: Springer Science & Business Media, 2007. https://doi.org/10.1007/978-3-7643-7842-4 |
[13] | M. A. Herrero, E. Medina, J. J. L. Velázquez, Finite-time aggregation into a single point in a reaction-diffusion system, Nonlinearity, 10 (1977), 1739–1754. https://doi.org/10.1088/0951-7715/10/6/016 doi: 10.1088/0951-7715/10/6/016 |
[14] | M. A. Herrero, J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Scuola. Norm-Sci, 24 (1997), 633–683. |
[15] | N. Saito, Conservative upwind finite-element method for a simplified Keller-Segel system modelling chemotaxis, IMA J. Numer. Anal, 27 (2007), 332–365. https://doi.org/10.1093/imanum/drl018 doi: 10.1093/imanum/drl018 |
[16] | A. Chertock, A. Kurganov, A second-order positivity preserving central-upwind scheme for chemotaxisand haptotaxis models, Numer. Math, 111 (2008), 457–488. https://doi.org/10.1007/s00211-008-0188-0 doi: 10.1007/s00211-008-0188-0 |
[17] | J. A. Carrillo, S. Hittmeir, A. Jüngel, Cross diffusion and nonlinear diffusion preventing blow up in the Keller-Segel model, Math. Models Methods Appl. Sci, 22 (2011), 1–35. https://doi.org/10.1142/S0218202512500418 doi: 10.1142/S0218202512500418 |
[18] | M. Sulman, T. Nguyen, A Positivity preserving moving mesh finite element method for the Keller-Segel Chemotaxis Model, J. Sci. Comput, 80 (2019), 1–18. https://doi.org/10.1007/s10915-019-00951-0 doi: 10.1007/s10915-019-00951-0 |
[19] | C. Qiu, Q. Liu, J. Yan, Third order positivity-preserving direct discontinuous Galerkin method with interface correction for chemotaxis Keller-Segel equations, J. Comput. Phys, 433 (2021), 110–191. https://doi.org/10.1016/j.jcp.2021.110191 doi: 10.1016/j.jcp.2021.110191 |
[20] | S. Borsche, S. Göttlich, A. Klar, P. Schillen, The scalar Keller-Segel model on networks, Math Mod Meth Appls, 24 (2014), 221–247. https://doi.org/10.1142/S0218202513400071 doi: 10.1142/S0218202513400071 |
[21] | J. Shen, J. Xu, Unconditionally bound preserving and energy dissipative schemes for a class of Keller-Segel equations, SIAM J. Numer. Anal, 58 (2020), 1674–1695. https://doi.org/10.1137/19M1246705 doi: 10.1137/19M1246705 |
[22] | E. C. Braun, G. Bretti, R. Natalini, Mass-preserving approximation of a chemotaxis multi- domain transmission model for microfluidic chips, Mathematics, 9 (2021), 688. https://doi.org/10.3390/math9060688 doi: 10.3390/math9060688 |
[23] | X. Xiao, X. Feng, Y. He, Numerical simulations for the chemotaxis models on surfaces via a novel characteristic finite element method, Comput. Math. Appl, 78 (2019), 20–34. https://doi.org/10.1016/j.camwa.2019.02.004 doi: 10.1016/j.camwa.2019.02.004 |
[24] | L. Zhang, Y. Ge, Z. Wang, Positivity-preserving high-order compact difference method for the Keller-Segel chemotaxis model, Math. Biosci. Eng, 19 (2020), 6764–6794. https://doi.org/10.3934/mbe.2022319 doi: 10.3934/mbe.2022319 |
[25] | S. M. Hassan, A. J. Harfash, Finite element approximation of a Keller-Segel model with additional self- and cross-diffusion terms and a logistic source, Commun. Nonlinear Sci. Numer. Simul, 104 (2022), 106063. https://doi.org/10.1016/j.cnsns.2021.106063 doi: 10.1016/j.cnsns.2021.106063 |
[26] | S. K. Lele, Compact finite difference schemes with spectral-like resolution, J. Comput. Phys, 103 (1992), 16–42. https://doi.org/10.1016/0021-9991(92)90324-R doi: 10.1016/0021-9991(92)90324-R |
[27] | T. Wang, T. Liu, A consistent fourth-order compact scheme for solving convection-diffusion equation, Math. Numer. Sin, 38 (2016), 391–403. https://doi.org/10.12286/jssx.2016.4.391 doi: 10.12286/jssx.2016.4.391 |
[28] | S. Hittmeir, A. Jüngel, Cross-diffusion preventing blow up in the two-dimensional Keller-Segel model, SIAM J. Math. Anal, 43 (2011), 997–1022. https://doi.org/10.1137/100813191 doi: 10.1137/100813191 |
[29] | S. Zhao, X. Xiao, J. Zhao, X. Feng, A Petrov-Galerkin finite element method for simulating chemotaxis models on stationary surfaces, Comput. Math. Appl, 79 (2020), 3189–3205. https://doi.org/10.1016/j.camwa.2020.01.019 doi: 10.1016/j.camwa.2020.01.019 |
[30] | X. Huang, X. Xiao, J Zhao, X. Feng, An efficient operator-splitting FEM-FCT algorithm for 3D chemotaxis models, Comput. Math. Appl, 36 (2020), 1393–1404. https://doi.org/10.1007/s00366-019-00771-8 doi: 10.1007/s00366-019-00771-8 |
[31] | M. Aida, T. Tsujikawa, M, Efendiev, A. Yagi, M. Mimura, Lower Estimate of the Attractor Dimension for a Chemotaxis Growth System, J. Lond. Math. Soc, 74 (2006), 453–474. https://doi.org/10.1112/S0024610706023015 doi: 10.1112/S0024610706023015 |