Research article

Non-emergence of mono-cluster flocking and multi-cluster flocking of the thermodynamic Cucker–Smale model with a unit-speed constraint

  • Received: 19 April 2023 Revised: 12 June 2023 Accepted: 16 June 2023 Published: 12 July 2023
  • This paper demonstrates several sufficient frameworks for the mono-cluster flocking, the non-emergence of mono-cluster flocking and the multi-cluster flocking of the thermodynamic Cucker–Smale model with a unit-speed constraint (say TCSUS). First, in a different way than [2], we present the admissible data for the mono-cluster flocking of TCSUS to occur. Second, we prove that when the coupling strength is less than some positive value, mono-cluster flocking does not occur in the TCSUS system with an integrable communication weight. Third, motivated from the study on coupling strengths where the mono-cluster flocking does not occur, we investigate appropriate sufficient frameworks to derive the multi-cluster flocking of the TCSUS system.

    Citation: Hyunjin Ahn. Non-emergence of mono-cluster flocking and multi-cluster flocking of the thermodynamic Cucker–Smale model with a unit-speed constraint[J]. Networks and Heterogeneous Media, 2023, 18(4): 1493-1527. doi: 10.3934/nhm.2023066

    Related Papers:

  • This paper demonstrates several sufficient frameworks for the mono-cluster flocking, the non-emergence of mono-cluster flocking and the multi-cluster flocking of the thermodynamic Cucker–Smale model with a unit-speed constraint (say TCSUS). First, in a different way than [2], we present the admissible data for the mono-cluster flocking of TCSUS to occur. Second, we prove that when the coupling strength is less than some positive value, mono-cluster flocking does not occur in the TCSUS system with an integrable communication weight. Third, motivated from the study on coupling strengths where the mono-cluster flocking does not occur, we investigate appropriate sufficient frameworks to derive the multi-cluster flocking of the TCSUS system.



    加载中


    [1] J. A. Acebron, L. L. Bonilla, C. J. P. Pérez Vicente, F. Ritort, R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005), 137–185. https://doi.org/10.1103/RevModPhys.77.137 doi: 10.1103/RevModPhys.77.137
    [2] H. Ahn, Emergent behaviors of thermodynamic Cucker–Smale ensemble with a unit-speed constraint, Discrete Contin. Dyn. Syst. B, 28 (2023), 4800–4825. https://doi.org/10.3934/dcdsb.2023042 doi: 10.3934/dcdsb.2023042
    [3] H. Ahn, J. Byeon, S. Y. Ha, Thermodynamic Cucker–Smale ensemble with unit-speed and its sufficient framework for collision avoidance, arXiv, 2023. https://arXiv.org/abs/2304.00872
    [4] H. Ahn, S. Y. Ha, M. Kang, W. Shim, Emergent behaviors of relativistic flocks on Riemannian manifolds, Physica D, 427 (2021), 133011. https://doi.org/10.1016/j.physd.2021.133011 doi: 10.1016/j.physd.2021.133011
    [5] H. Ahn, S. Y. Ha, D. Kim, F. Schlöder, W. Shim, The mean-field limit of the Cucker–Smale model on Riemannian manifolds, Q. Appl. Math., 80 (2022), 403–450. https://doi.org/10.1090/qam/1613 doi: 10.1090/qam/1613
    [6] H. Ahn, S. Y. Ha, J. Kim, Uniform stability of the relativistic Cucker–Smale model and its application to a mean-field limit, Commun. Pure Appl. Anal., 20 (2021), 4209–4237. https://doi.org/10.3934/cpaa.2021156 doi: 10.3934/cpaa.2021156
    [7] G. Albi, N. Bellomo, L. Fermo, S. Y. Ha, J. Kim, L. Pareschi, et al., Vehicular traffic, crowds, and swarms: From kinetic theory and multiscale methods to applications and research perspectives, Math. Models Methods Appl. Sci., 29 (2019), 1901–2005. https://doi.org/10.1142/S0218202519500374 doi: 10.1142/S0218202519500374
    [8] J. Buck, E. Buck, Biology of synchronous flashing of fireflies, Nature, 211 (1966), 562–564. https://www.nature.com/articles/211562a0
    [9] J. A. Carrillo, M. Fornasier, J. Rosado, G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker–Smale model, SIAM. J. Math. Anal., 42 (2010), 218–236. https://doi.org/10.1137/090757290 doi: 10.1137/090757290
    [10] P. Cattiaux, F. Delebecque, L. Pedeches, Stochastic Cucker–Smale models: old and new, Ann. Appl. Probab., 28 (2018), 3239–3286. https://doi.org/10.1214/18-AAP1400 doi: 10.1214/18-AAP1400
    [11] S. H. Choi, S. Y. Ha, Interplay of the unit-speed constraint and time-delay in Cucker–Smale flocking, J. Math. Phys., 59 (2018), 082701. https://doi.org/10.1063/1.4996788 doi: 10.1063/1.4996788
    [12] S. H. Choi, S. Y. Ha, Emergence of flocking for a multi-agent system moving with constant speed, Commun. Math. Sci. 14 (2016), 953–972. https://dx.doi.org/10.4310/CMS.2016.v14.n4.a4 doi: 10.4310/CMS.2016.v14.n4.a4
    [13] Y. P. Choi, J. Haskovec, Cucker–Smale model with normalized communication weights and time delay, Kinet. Relat. Models, 10 (2017), 1011–1033. https://doi.org/10.3934/krm.2017040 doi: 10.3934/krm.2017040
    [14] Y. P. Choi, S. Y. Ha, Z. Li, Emergent dynamics of the Cucker–Smale flocking model and its variants, in Modeling and Simulation in Science and Technology Birkhauser, Springer, 2017. https://doi.org/10.1007/978-3-319-49996-3-8
    [15] Y. P. Choi, D. Kalsie, J. Peszek, A. Peters, A collisionless singular Cucker–Smale model with decentralized formation control, SIAM J. Appl. Dyn. Syst., 18 (2019), 1954–1981. https://doi.org/10.1137/19M1241799 doi: 10.1137/19M1241799
    [16] Y. P. Choi, Z. Li, Emergent behavior of Cucker–Smale flocking particles with heterogeneous time delays, Appl. Math. Lett., 86 (2018), 49–56. https://doi.org/10.1016/j.aml.2018.06.018 doi: 10.1016/j.aml.2018.06.018
    [17] J. Cho, S. Y. Ha, F. Huang, C. Jin, D. Ko, Emergence of bi-cluster flocking for agent-based models with unit speed constraint, Anal. Appl., 14 (2016), 39–73. https://doi.org/10.1142/S0219530515400023 doi: 10.1142/S0219530515400023
    [18] J. Cho, S. Y. Ha, F. Huang, C. Jin, D. Ko, Emergence of bi-cluster flocking for the Cucker–Smale model, Math. Models Methods Appl. Sci., 26 (2016), 1191–1218. https://doi.org/10.1142/S0218202516500287 doi: 10.1142/S0218202516500287
    [19] F. Cucker, S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Contr., 52 (2007), 852–862. https://doi.org/10.1109/TAC.2007.895842 doi: 10.1109/TAC.2007.895842
    [20] P. Degond, S. Motsch, Large-scale dynamics of the persistent turning walker model of fish behavior, J. Stat. Phys., 131 (2008), 989–1021. https://doi.org/10.1007/s10955-008-9529-8 doi: 10.1007/s10955-008-9529-8
    [21] G. B. Ermentrout, An adaptive model for synchrony in the firefly Pteroptyx malaccae, J. Math. Biol., 29 (1991), 571–585. https://doi.org/10.1007/BF00164052 doi: 10.1007/BF00164052
    [22] E. Ferrante, A. E. Turgut, A. Stranieri, C. Pinciroli, M. Dorigo, Self-organized flocking with a mobile robot swarm: a novel motion control method, Adapt. Behav., 20 (2012), 460–477. https://doi.org/10.1177/1059712312462248 doi: 10.1177/1059712312462248
    [23] A. Figalli, M. Kang, A rigorous derivation from the kinetic Cucker–Smale model to the pressureless Euler system with nonlocal alignment, Anal. PDE., 12 (2019), 843–866. https://doi.org/10.2140/apde.2019.12.843 doi: 10.2140/apde.2019.12.843
    [24] S. Y. Ha, M. J. Kang, B. Kwon, A hydrodynamic model for the interaction of Cucker–Smale particles and incompressible fluid, Math. Models. Methods Appl. Sci., 11 (2014), 2311–2359. https://doi.org/10.1142/S0218202514500225 doi: 10.1142/S0218202514500225
    [25] S. Y. Ha, J. Kim, C. Min, T. Ruggeri, X. Zhang, Uniform stability and mean-field limit of a thermodynamic Cucker–Smale model, Quart. Appl. Math., 77 (2019), 131–176. https://doi.org/10.1090/qam/1517 doi: 10.1090/qam/1517
    [26] S. Y. Ha, J. Kim, T. Ruggeri, Emergent behaviors of thermodynamic Cucker–Smale particles, SIAM J. Math. Anal., 50 (2018), 3092–3121. https://doi.org/10.1137/17M111064X doi: 10.1137/17M111064X
    [27] S. Y. Ha, J. Kim, T. Ruggeri, From the relativistic mixture of gases to the relativistic Cucker–Smale flocking, Arch. Rational Mech. Anal., 235 (2020), 1661–1706. https://doi.org/10.1007/s00205-019-01452-y doi: 10.1007/s00205-019-01452-y
    [28] S. Y. Ha, J. Kim, X. Zhang, Uniform stability of the Cucker–Smale model and its application to the mean-field limit, Kinet. Relat. Models, 11 (2018), 1157–1181. https://doi.org/10.3934/krm.2018045 doi: 10.3934/krm.2018045
    [29] S. Y. Ha, D. Ko, Y. Zhang, Remarks on the coupling strength for the Cucker–Smale with unit speed, Discrete Contin. Dyn. Syst., 38 (2018), 2763–2793. https://doi.org/10.3934/dcds.2018116 doi: 10.3934/dcds.2018116
    [30] S. Y. Ha, J. G. Liu, A simple proof of Cucker–Smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7 (2009), 297–325. https://doi.org/10.4310/CMS.2009.v7.n2.a2 doi: 10.4310/CMS.2009.v7.n2.a2
    [31] S. Y. Ha, T. Ruggeri, Emergent dynamics of a thermodynamically consistent particle model, Arch. Ration. Mech. Anal., 223 (2017), 1397–1425. https://doi.org/10.1007/s00205-016-1062-3 doi: 10.1007/s00205-016-1062-3
    [32] S. Y. Ha, E. Tadmor, From particle to kinetic and hydrodynamic description of flocking, Kinet. Relat. Models, 1 (2008), 415–435. https://doi.org/10.3934/krm.2008.1.415 doi: 10.3934/krm.2008.1.415
    [33] T. K. Karper, A. Mellet, K. Trivisa, Hydrodynamic limit of the kinetic Cucker–Smale flocking model, Math. Models Methods Appl. Sci., 25 (2015), 131–163. https://doi.org/10.1142/S0218202515500050 doi: 10.1142/S0218202515500050
    [34] R. Olfati-Saber, Flocking for multi-agent dynamic systems: algorithms and theory, IEEE Trans. Automat. Contr., 51 (2006), 401–420. https://doi.org/10.1109/TAC.2005.864190 doi: 10.1109/TAC.2005.864190
    [35] A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge: Cambridge University Press, 2001.
    [36] L. Ru, X. Li, Y. Liu, X. Wang, Flocking of Cucker–Smale model with unit speed on general digraphs, Proc. Am. Math. Soc., 149 (2021), 4397–4409. https://doi.org/10.1090/proc/15594 doi: 10.1090/proc/15594
    [37] S. H. Strogatz, From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators, Phys. D, 143 (2000), 1–20. https://doi.org/10.1016/S0167-2789(00)00094-4 doi: 10.1016/S0167-2789(00)00094-4
    [38] J. Toner, Y. Tu, Flocks, herds, and schools: A quantitative theory of flocking, Phys. Rev. E, 58 (1998), 4828–4858. https://doi.org/10.1103/PhysRevE.58.4828 doi: 10.1103/PhysRevE.58.4828
    [39] C. M. Topaz, A. L. Bertozzi, Swarming patterns in a two-dimensional kinematic model for biological groups, SIAM J. Appl. Math., 65 (2004), 152–174. https://doi.org/10.1137/S0036139903437424 doi: 10.1137/S0036139903437424
    [40] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Schochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett. 75 (1995), 1226–1229. https://doi.org/10.1103/PhysRevLett.75.1226 doi: 10.1103/PhysRevLett.75.1226
    [41] T. Vicsek, A. Zefeiris, Collective motion, Phys. Rep., 517 (2012), 71–140. https://doi.org/10.1016/j.physrep.2012.03.004 doi: 10.1016/j.physrep.2012.03.004
    [42] A. T. Winfree, The geometry of biological time, New York: Springer, 1980. https://doi.org/10.1007/978-3-662-22492-2
    [43] A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16 (1967), 15–42. https://doi.org/10.1016/0022-5193(67)90051-3 doi: 10.1016/0022-5193(67)90051-3
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(996) PDF downloads(197) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog