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Abstract: This paper demonstrates several sufficient frameworks for the mono-cluster flocking,
the non-emergence of mono-cluster flocking and the multi-cluster flocking of the thermodynamic
Cucker—Smale model with a unit-speed constraint (say TCSUS). First, in a different way than [2],
we present the admissible data for the mono-cluster flocking of TCSUS to occur. Second, we prove
that when the coupling strength is less than some positive value, mono-cluster flocking does not occur
in the TCSUS system with an integrable communication weight. Third, motivated from the study
on coupling strengths where the mono-cluster flocking does not occur, we investigate appropriate
sufficient frameworks to derive the multi-cluster flocking of the TCSUS system.

Keywords: Cucker—Smale; mono-cluster flocking; multi-agent system; multi-cluster flocking;
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1. Introduction

Emergent dynamics in interacting multi-agent systems are frequently observed in nature.
Examples include the aggregation of bacteria [39], flocking of birds and vehicular
flocking [7, 14, 19, 34], schooling of fish [20, 38] and the synchronization of fireflies and pacemaker
cells [1,8,21,37,43]. To more introduce related literature, we refer to [22,35,41,42]. Herein, we are
primarily concerned with “flocking” in which agents exhibit ordered movements and form appropriate
groups. After the work of Vicsek et al. in [40], many studies on models representing flocking have
been actively conducted for decades. Among them, the Cucker—Smale model [19] has received
significant attention in math and physics communities due to its dissipative and simple velocity
structure. Essentially, the Cucker—Smale model is a flocking dynamic system for position and velocity
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based on the Newtonian sense, which is governed by

dx;

d_);:vi, t>09 ie{l,"',N},

B iwuxi =l (v = ) (1.1)
dt N ‘=

(x:(0), vi(0)) = (1)) e RY x RY,

where N denotes the number of particles, « is a nonnegative coupling strength and ¢ is a
communication weight. To date, there have been many works examining this system and its variants
due to its dissipative structure for velocity, such as the mean-field limit [5, 6, 25, 28, 30], kinetic
models [9, 32], hydrodynamic descriptions [23, 24, 33], particle analysis [9, 10, 13—18], temperature
field [26,31] and relativistic setting [4—6,27].

Since Eq (1.1), the authors of [12] noted that several Vicsek-type models with unit-speed
constraints have been actively studied concerning heading angles in math community. To give a
unit-speed constraint to Eq (1.1), the authors modified the velocity coupling term Eq (1.1), so that the
velocity of each agent has a unit-speed constraint as follows:

(Vj, Vi>vi)

[Ivill*

U(llx; — Xj||) (Vj - Vi) — Y(|lx; - Xj||) (Vj -

where the modified term is perpendicular to v;. Thus, they proposed the following Cucker—Smale type
model with constant speed and studied its flocking dynamics:

%:Vi, t>0’ ie{l,"‘,N},

dv; K N <Vj, V,'>Vl'

— =% = i vy - (1.2)
= =N ]Zl s = /) (v, )

(x:(0), vi(0)) = (x),1)) e R x R

Equation (1.2) has also been studied from several perspectives; for example, particle analysis [12],
the emergence of the bi-cluster flocking in [17], multi-cluster flocking and critical coupling strength
in [29], time-delay effect [11] and general digraph setting [36].

However, because the above literature [11, 12, 17,29, 36] were only motivated by the original
Cucker—Smale model (1.1) without considering internal energy, the author of [2] noted the extension
of the above model to a temperature field to describe more realistic flocking dynamics. For this, as a
backbone model, the author first adopted a thermodynamic Cucker—Smale model proposed by [26,31]
based on the theory of multi-temperature mixture of fluids under the space of homogeneity, which is
given by the following second-order ODEs for position-velocity-temperature (x;, v;, T;):

—‘Z" =v, t>0, i€[N]:={l,---,N}, (1.3a)
dV,‘ K1 N Vi Vi
L= § — x| -2 1.
7N Z O(|lx; lel)(Tj Tl-)’ (1.3b)
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d 1
= (T,- - Env,-nz) Zanx, xJn)(— - —) (1.3¢)

(x,(0), vi(0), Ti(0)) = (x?,v?, TO) eRY xR xR, — {0}, (1.3d)

where YV, T? =: NT*, N denotes the number of particles, i,k are nonnegative coupling strengths
and ¥, are communication weights. Then, motivated from the derivation idea of Eq (1.2), by
modifying the velocity coupling term Eq (1.3a) as

Vi v Vi v vvi
d(llx; = x;) (FJ - Tz) — #llxi = xjll) (TJ - W)

the author suggested the following TCSUS model in terms of position-velocity-temperature (x;, v;, T;):

%:vi, t>0, ie{l,---,N},
d, j» Vi)Vi
2 = Z¢<nx, x]||>(vf_—<;’_”:|>|§),
T S (1.4)
d 2 _ ke _onfLr_
d—t(Ti+§||vi|| )— N;anx, xf”)(n T,.)’
(x:(0), vi(0), Ti(0)) = (22,0, T?) € R x S x (R, — {0}),

where Zl 1 TO : NT>. Afterward, the author immediately verified that each agent in the system (1.4)
has a unit- speed Then, from the relations,

Wi vi)vi (v, vi)vi d 1.\ dT;
= d —|(Ti+5Ivill”) = —,
T viP T, g\ =

the author simply represented the system (1.4) as follows:

vill = 1,

dxi

E:vi, t>0, ief{l,---,N}, (1.5a)
dvl —(vj, vi)vi
= Z«zs(uxl x,n)( ’ ) (1.5b)
dT:  «

— == = XD = - =1, 1.5
— = ;é(nx x,u)(Ti Tj) (1.5¢)
(6:(0), vi(0), Ti(0) = (x, v}, T7) € R x ST x (R, — {0, (1.5d)
where YN, T? =: NT*. Here, we set R, := [0, ) throughout the paper and we assume that two

communication weights ¢, { : R, — R, are nonnegative, locally Lipschitz continuous and
monotonically decreasing and that S?! is the unit (d — 1)-sphere isometrically embedded in RY;
hence,

0< @) <p0) =1, ($(r)) = ¢(r))r1 =) <0, Vr,ri,r 20, ¢() € Cri(R Ry,
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0<L(r<20)=1, ) =L))r =) <0, Vrr,rn 20, () eCrl(RiR,),

d
S+t = {X = (x, -, x9) Z x| = 1,} where x' is the i-th component of x € RY.
i=1

The system (1.5) was studied in terms of mono-cluster flocking and bi-cluster flocking in [2] and
collision avoidance [3], but the multi-cluster flocking of system (1.5) has not been studied yet. Indeed,
the multi-cluster flocking phenomenon is ubiquitous in daily life. Examples include opinion
disagreement, schools of fish invaded by predators and flight multi-formation. In addition, a
phenomenon in which individuals with the same characteristics gather together can be an example of
the multi-cluster flocking.

Therefore, this paper is mainly interested in the non-emergence of mono-cluster flocking in the
system (1.5) under a sufficiently small coupling strength and extending the bi-cluster flocking of [2] to
general multi-cluster flocking. For this, we first introduce several basic notions concerning mono- and
multi-cluster flocking as follows:

Definition 1.1. Let Z = {(x;, v;, Ti)}ﬁil be a solution to the system (1.5).

(1) The configuration Z exhibits mono-cluster flocking if the following statements hold:
(i) (Group formation) sup max ||xl(t) x|l < oo,
teRy

(ii) (Velocity alignment) <= lim max ||v](t) —v;(0| =

t—oo 1<

(iii) (Temperature equilibrium) hm maX |T H-T;0) =0

t—oo 1<i,

(2) The conﬁguration Z exhibits multi-cluster flocking if there exist n cluster groups
Zo = {(Xpi» Vais m)} ', such that the following assertions hold for 1 <n < N:

(i) 1Ze] = Ny 2 1, Z 2] = izva =N,

(if) sup max X (®) = Xau(DI] < 00, lim max [[ver(t) = vau(DIl = 0
<kI<N, 1=00 12k,

t€R, < —00 1<k, [<No
lim max |Tu() —Tu() =0, n>3, 1<as<n,
t—00 1<k,I<N,

(iii) i%f n]}ilnllxak —Xgll =00, 1<k<N, I <I<Ng 1<Za#f<n.
IERy Kk,

Then, we are primarily concerned with the following issue:

e (Main issue): How can we find sufficient conditions for the non-emergence of mono-cluster
flocking in the system (1.5)? Additionally, under what sufficient conditions with respect to the
initial data and system parameters can mono-cluster flocking emerge in system (1.5)?

The paper is organized as follows. Section 2 introduces several basic estimates for temperatures in
system (1.5) and previous results studied in [2].  Section 3 gives a mono-cluster flocking estimate
different from the previous paper [3] and proves the non-emergence of mono-cluster flocking under
suitable sufficient conditions when ¢ is integrable in system (1.5). Next, we describe several sufficient
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frameworks for the mono-cluster flocking of system (1.5) when the communication weight ¢ is
non-integrable. Section 4 reorganizes system (1.5) to the multi-cluster setting and derives some
dissipative structures on each cluster group to demonstrate the multi-cluster flocking of system (1.5)
under admissible data. Finally, Section 5 briefly summarizes the main results and discusses the
remaining issues left for future work.

Notation. Throughout the paper, we denote the following notation for brevity:

|| - || = standard /,-norm, (-,-) = standard inner product, yi = i-th component of y € RY,
X = (.X1,"' 9-XN)5 V= (vl"" avN)’ T := (Tla"' 7TN)’ IR+ = [0,00),
Dz(1) := max |lzi(1) — z;(0)l| for Z=(z1,---,zy) €{X,V,T}.

1<i,j<N

2. Preliminaries

This section reviews several basic results for the subsystem (1.5¢) to guarantee its global well-
posedness; these estimates will be crucial throughout this paper. Afterward, we introduce the previous
bi-cluster flocking results of system (1.5) studied in [2].

2.1. Basic estimates

This subsection deals with the entropy principle, the propagation of conserved quantity, and the
uniform boundedness of temperature to the subsystem (1.5¢). For this, we begin with defining the
entropy of system (1.5).

Definition 2.1. [26,31] Let {(x;, v;, Tl-)}fi , be a solution to the system (1.5). Then, the entropy is defined

as
N N
S(1) = Z In(Ti()) = ln(l_[ T,-(t)).
i=1 i=1

Then, we present the entropy principle and conserved temperature sum as below:

Proposition 2.1. [26,31] Assume that {(x;, v;, T,-)}f\; | is a solution to the system (1.5). Then, one has
the following two assertions:

1. (Conserved temperature sum) The total sum Y,X | T; is conserved for t > 0.

N N
D Tity= ) TP = NT™.
i=1 i=1

2. (Entropy principle) Entropy S monotonically increases for t > 0:

dS :

N
K> 1 1
@ _ —xl) |7 — | =0,
dr 2N;{(HXJ x”)|Ti T,

Subsequently, we offer the following uniform boundedness consisting of strictly positive lower and
upper bounds for temperatures to the system (1.5):
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Proposition 2.2. [26] (Uniform boundedness for temperatures) Let Z = {(x;, v;, T,-)}fi , be a solution to
system (1.5). Then, min,<;<y T;(t) monotonically increases and max <<y T;(t) monotonically decreases
in time. In other words, fort > 0,

O<min T’ =T® <T(t)<maxT° =Ty, i=1,---,N.

1<i<N 1<i<N

Since Proposition 2.2 holds, ¢, { are uniformly bounded, and the speed of each agent is unit. We
directly obtain the well-posedness of system (1.5) from the standard Cauchy—Lipschitz theory.

2.2. Previous results

This subsection introduces the previous mono-cluster flocking and bi-cluster flocking estimated
in [2]. First, we revisit the following mono-cluster flocking of the system (1.5) verified in [3]:
Proposition 2.3. [2] (Mono-cluster flocking) Suppose that {(x;, v;, Ti)}f\i | is a global-in-time solution
to the system (1.5) with the initial data {(x?,V), T")}Y | and assume that there exists a positive constant
DY > 0 that satisfies

TEH(DS 2T2Dy(0
Lj) and DX(0)+M—VOE)<D;°. (2.1)
2TM K1¢(Dx)

D3(0) <
Then, we get that fort € R,,
Di(t) <2D3(0) and Dx(f) < DY,

which yields the following mono-cluster flocking estimate of system (1.5) fort € R,

K24 (DY) t)
(T?* )

k1¢(DY)
275

Dv(t) < Dv(O) exXp (— ) s DT(I) < DT(O) exXp (_

However, in Theorem 3.1, we can attain another mono-cluster flocking dynamics of system (1.5) by
reducing the higher-order dissipative differential inequality in terms of velocity in Proposition 3.1 to a
suitable lower-order inequality.

Subsequently, to describe the results of extending the mono-cluster flocking of Proposition 2.3

to bi-cluster flocking, we describe the admissible set () proposed in [2]; for two cluster groups

Zy = {(x1;, viis Tu)}?i | and Z; = {(x2j,v2, T j)}]}/jl, we set the following three configuration vectors:

Ay = (a1, " aen,) a=1,2, where A€ {X,V,T}, ac{x,v,T} and A := (A}, A>).

Next, for @ € {1,2}, we denote L™ diameters regarding position-velocity-temperature for each cluster
group

Dy, := max [[xoi — Xojll, Dy, := max [[vei —vyjll, Dr, := max [Ty — Ty
1<i,j<N, 1<i,j<Ngy 1<i,j<N,

and we let
DX::DXl + DX29 Z)V::DV1 + DVZ’ DT::DTI + DTZ'
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Then, the admissible set (H) in terms of a system parameter and initial data is given by
(H) =: {(X(0), V(0), T(0)) € R*N x (R, = {0OD" | (Ho), (H1), (H>) and (H3) hold.)
e (Hy) (Basic notation): For simplicity, we set

_ 2NTPDV(O) 16N (T3¢ (%)
" k) min(Ny, N2)p(DY) ’ k1 (min(Ny, N2) SO Ty
8NTy [~ (s +2)ds
min(Ny, N)@(D) Ty

in(Ny, N2)p(DY
ro=__ min _((0) - ,(0)), “:mmﬂhgﬂx)

1<i<Ny,1<j<Ny ’

N Ny [
Ap=SLp 4 M Zf 8(s+5)ds.
NTE M T NT g 2

N N «
Ayi=al2p 4 O lf ¢(s+r—0)ds,
NT="' T NTS 2
min(Ny, N; DY 1 1
_ min(Ny, M)kl ( X)’ A5::2K2( )

TNy T

m

e (H,) (Well prepared conditions): There exists a strictly positive number Dy > 0 such that
DY > Dx(0)+ Ay and ¢ is integrable ( = f d(s)ds < oo).
0

e (H,) (Separated initial data): For k € [d] fixed in H,, the initial data and system parameters are
chosen to be properly partitioned as follows:

1 1
ro>0, V.(0)— Ay > > V50) + A3 < -5

e (H3) (Small fluctuations and coupling strength): The perturbation of local velocity in each cluster
group and the coupling strength are sufficiently small:

21 Ty min(Ny, N2)¢(D5)
t ds <Dy(0) < .
T,j;’fr;) Plsds <Dv0) < \/ 2max(r, No)T

When the admissible set () is assumed, the author of [2] verified the following bi-cluster flocking
of system (1.5):

Proposition 2.4. [2] (Bi-cluster flocking) Suppose that Z; = {(x1, Vi Tli)}fi | and
Z, = {(x2j,v2j, T j)}yjl are a global-in-time solution to the bi-cluster dynamical system (1.5). Further,
assume that the admissible set (H) is valid. Then, we can get the following bi-cluster flocking result
in time.

. Iy
I min |lxy—x,ll 2+ =, Dx(t) <D
I<i<Ni 1SN, 2
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21 A "o 2k t+ry
2 Dr) = Dr@exp (=R = g exp (_7)‘15(5) * T,;'fA1¢( 2 )
3. Dy(t) < Dy(0) exp(—Agt) + As exp(_%t)g(@) N Asg(t T ro )

2

In Section 4, we extend the sufficient frameworks for the bi-cluster flocking of Proposition 2.4 to
the multi-cluster flocking result.

3. Mono-cluster flocking

This section provides suitable sufficient frameworks for the mono-cluster flocking and gives
sufficient conditions to guarantee the non-emergence of mono-cluster flocking to system (1.5) when ¢
is integrable. Finally, in the case of system (1.5) under non-integrable ¢, we present a sufficient
condition independent of coupling strength for mono-cluster flocking to arise.

3.1. Mono-cluster flocking

This subsection recalls a dissipative structure for position-velocity-temperature L*-diameters
derived in [2] and gives a mono-cluster flocking result different from Proposition 2.3 which is the
mono-cluster flocking of system (1.5) proven in [2]. For this, we begin with the following dissipative
inequalities for system (1.5):

Proposition 3.1. [2] Suppose that {(x;, v;, T,-)}f\i | Is a solution to the system (1.5). Then, we have that
fora.e. teR, —{0},

dDyx

dDy <
dt

D2
<p,, Pv__,. ¢(Dmx)__x; Dy, dDTS_Kzf(O?)Z()
d TS T d T

T

Now, we are ready to study the new mono-cluster flocking result of system (1.5).

Theorem 3.1. (Mono-cluster flocking) Assume that {(x;, v;, Ti)}fi | Is a solution to the system (1.5).
Suppose that there exists a nonnegative number DY € R, such that the following conditions hold:

2¢(DY)T,;
TS

N log[ 2H(DTS — TD2(0) ] <
> Uy
) \(V2eDIT + \/T;Dv(o))z

Then, we attain the following assertions fort € R,:

D;(0) <
(3.1)

1. Dx(t) < DS,

TS 1 TS 2k (D)2
2 005 (et * (o~ ors) 1)
3. Dr(t) < Dr(0)exp (—Kzg(f’; ) z) .
(Ty
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Proof. (i) (The case of Dy () > 0 for t € R, ) First, we set g(t) as

It follows from the second assertion of Proposition 3.1 that

dg(1) S 2Ky

K
- T_ﬁ¢(DX(t))g(t) ~ 7o ae.t€R, —{0}. (3.2)

m

Due to inequality (3.1) and the continuity of Dy, the following set:
S :={s> 0] (1) holds for € (0, )}
is nonempty and we denote ¢* := sup S > 0. Next, we claim that
t* = +o0.

For the proof by contradiction, suppose that #* < co. Then, we can obtain from inequality (3.2) and the
definition of S that
dg(t) _ 2x

0 K *
=z T—;;gb(DX)g(r) _ T—; ae.te(0,1).

m

Moreover, using Gronwall’s lemma with the above inequality yields that

TS ) (2K1¢(D§;)r

M
(g(o) “ oty )\ T T

[ee)

M *
g(t)ZW‘F ), t€[0,r].

This induces that for ¢ € [0, £*],

TS 1 TS 2k (D)2
DV(’)S(2¢<D;>T;°+(DZV<0>_2¢<D;°>T,;°)CXP( Ty )) | G

Accordingly, we combine inequality (3.3) with the first assertion of Proposition 3.1 to estimate that for
t e [O, l*]’

Dx (1)

< Dx(0) + f Dy(s)ds
0
T 1 Ty 20D

= PO +fo (2¢(D;°)T;7 ' (DZV(O) ) 2¢(D§°)TJ?)CXP(T—3)) ;

00 T; 1 ~ Tﬁ 2K1¢(D§(O)S -
< Dx(0) + fo (2¢(D§§)T;f+(D%,(O) 2¢(D§°)T&°)CXP( T;; )) “
NS 20(D)Tyy — Ty D3,(0)
— log 2
«y2000) T\ ({260 Ty + TDy(0))

D=

=

= Dx(0) - < Dy,
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which contradicts to t* < co. Therefore, ¥ = oo and for ¢ € R,,
Dx(t) < DY. (3.4)

Hence, one has for ¢t € R,,

Tz 1 Tﬁ 2'Kl ¢(D§?)t -
Dy(t) < (2(1)(1);?)71?10 + (D%,(O) - 2¢(D§)T$)6Xp( TS )) .

=

In addition, because the third assertion of Proposition 3.1 and inequality (3.4) hold, we derive that for

ae. teR, —{0},
dDr _ _k4(Dy) Do < _kad(DY)

Dr,
R e
which implies that for r € R,
k24 (DY)
Dr(t) < D(0) exp(— >
(Ty

(if) (The case of Dy(¢) = 0 for some ¢t € R,) We define s, by
s, :=1inf{t € R, | Dy(¢) = 0}.
Then, s. € R, and applying the Cauchy—Lipschitz theory implies that
Dy(t) =0, t2=s..

Finally, if we follow the arguments employed in the first case, we immediately reach the desired mono-
cluster flocking estimate.

Before we end this subsection, we provide the following remark:

Remark 3.1. Although T’;Q;;(f? ) of Eq (2.1) and w of Eq (3.1) satisfy the following inequality for
M M
DY > 0:

Ty¢DY) _ 26Ty
20 T T

b

but the following term diverges to —oo when 2¢(DY)T,; and T;D%,(O) are close to each other in
Eq (3.1):
26(DY)T, — Ty Dy(0)

(V26T + \TDv(0))' )

Thus, it is unknown which of Proposition 2.3 and Theorem 3.1 yields better mono-cluster flocking
result.

log

3.2. Non-emergence of mono-cluster flocking

This subsection guarantees the non-emergence of mono-cluster flocking of the system (1.5) with
integrable ¢ and sufficient small «;. For this, we employ the main strategies implemented in [29] for
the targeted system (1.5).

Networks and Heterogeneous Media Volume 18, Issue 4, 1493-1527.
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3.2.1. Basic frameworks

This subsubsection offers basic notations and preliminary estimates to show the non-emergence
of the mono-cluster flocking of system (1.5) when ¢ is integrable. First, we consider the following
subdivided n > 2 configurations {Z0}"_ of Z° = {(x),V), T?)}¥, satisfying

0 .0

i’ Vai?

0 0 0 0
TO), (xaj, QJ,T )EZy = Vo = Vs
where

0 _. 0 _ ' 0
1Z) =N, =21, Z"=U,_,Z,.

In other words, we primarily deal with the initial configuration Z° that is not in a mono-cluster flocking
state. Subsequently, we reorganize the system (1.5) to distinguish the n-dynamics initiated from n-
subdivided initial configurations Z° as follows:

ddx;i:v(li’ t>07 i:17”. N(lv azl"'.an’ n229
dvm- <Vozj’ vai>vai
dr — a7 ZQS(HXW xozj”)( TQ] )
VBj» VailVai
ZZ¢(||xm —xﬁ,n)( S <7€( ) )
ﬁ#(l Jj=1 Bi (35)

dT,;
- (1xai = Xa II)( )
dt Zg Hai 7 / a/J

ZZ((uxm xﬁ,n)( - Tlﬁ])

ﬂiozjl

(%ai(0), vai(0), Tai(0)) = (0,5 V5, To) € RO X S5 (R, = {0)).

In the following, we denote local averages and local deviations fora = 1,--- ,n
No No
cen _ 1 Len _ 1 A . cen N o cen
Xa F Xais Vy Vais Xai = Xai — Xy s Vai = Vai = Vo »
@ =1 a i=1

and we set the following notation to estimate the degree of separation between n-subdivided initial
configuration sets {Z0}" _,

D(x") := max [|xg; = xg;ll. 6o := minarccos(v;"(0), v5"(0)),
a#p.i,j a#p
Ao 1= min (cos((8 + €)f) — cos((1 — 45 - )

cos(8) — cos((1 = 6)p) = (D(x") +2T) - M)

NTS

where two auxiliary parameters €, 6 € (0, 1) will be specified later such that 1o > 0 in Section 3.2.2 and

we define T as
(a0, = X0, vEen(0))
To := max <0, —

a#B,i,j Ao
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We observe that D(x"), 6, and A, are dependent on given initial data non-mono-cluster flocking
state.  As we will see later, Ty is indeed the time when two agents belonging to different cluster
groups begin to move away from each other linearly and A is needed to estimate 7. For the detailed
descriptions, see Section 3.2.2.

Next, we set the coupling strength &, dependent on given initial data Z° = {(x?,v))}¥, of the
system (1.5) as follows:

(i) (The case of ming.g; {(x°

ai

-~ xgj , 15y < 0): We define & as

_ . (NT,;(1—=cos(66p)) NT, (cos(66y) — cos((1 —6)bp) — Ao)
o= mm( XN-DT, (N — (D) + 2Ty) ’
Ap(cos(d6y) — cos((0 + 6)00))) min, N,
, Wwhere vyy:= N

(A=) [, ¢(s)ds
(ii) (The case of ming.g; {(x°. — xg Dsve™) 2 0): We define & as

Ao(1 = cos(66y))

Ko = _ ,  where Ay := cos(66y) — cos((1 — 6)8y).
(1 —yw) [, #(s)ds

Herein, an auxiliary parameter 6 € (0, 1) will be determined such that A, > 0 later in Section 3.2.2.

Finally, we present the definitions of A,;4;(f) and v, which will be crucially used to verify the

non-emergence of mono-cluster flocking in the system (1.5). We let

Daipi() := (Xai(1) = Xg;(0), Vi (1)), V" = min vei(), eo(To)) ,
where ¢, (1) := % Note that A,;g;(f) shows how well Z,(¢) and Zs() are separated from each other

at time ¢. Therefore, rigorous estimates concerning A,;;(f) are important to obtain the non-emergence
of mono-cluster flocking in the system (1.5).

3.2.2. Non-emergence of mono-cluster flocking

In what follows, we demonstrate the non-emergence of the mono-cluster flocking of the TCSUS
system (1.5). For this, we assume that 7y > 0 throughout the subsubsection. If otherwise, it is a trivial
case when Ty = 0 (see Theorem 3.2). Now, we begin with the following preparatory lemmas:

Lemma 3.1. Suppose that Z, is a solution to the system (3.5) with given initial data Z° that is a
non-mono-cluster flocking state for each a € {1,--- ,n}. Assume that there exists a positive number
XS (0, %) such that
NT . (1 — cos(66y))

2(N - DT,

0<K1<

Then, one has fort € [0, Ty] and a # B3,
1. (vai, vy > €08(66p),  (vgj, ve") < cos((1 — 6)6y),
2. (Vair vgj) < cos((1 —0)bp), (ea,ep) < cos((1 —36)by).
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Proof. To estimate the first assertion of (1), we first see that

d ai s Vai/Vai
o qu(nxm x,n)( ! >")

dt
=4S - o <v”v“’>"‘”).

j#m

Then, the triangle inequality and ¢ < 1 yield that

dvy; < (N - Dk

de || = NT® °

where we used Proposition 2.2 and [|[v; — (v, Vai)Veill < 1. Thus, it follows that
d cen 2(N = 1)k,
—{v,; < —
‘dz Vais Vg )| < NTo

m

which implies by the condition for «; and construction of Zg that for ¢ € [0, Ty],

, , "d .
Wai(0), vy () = (vai(0), v, (0)) + fo 75 Vai(9): V5" (s))ds

2(N = Dk, T
> (V4i(0), vE"(0)) — TIO
2(N — Dk T,
- w > cos(06)).
NT®

To prove the second assertion of (1), we employ the same method as in the proof of the first assertion
of (1) as follows:

dvgi|| _ (N = Dk d cemy| o 2N = Dy
‘ dt] < NTS and then, ‘d (vgjs Ve N—T,‘;;’
From the definitions of Zg and 6,, we get that for ¢ € [0, Ty],
cen cen 2(N — 1)K1 TO cen cen 2(N - 1)K1 TO
s vy ) < (vg(0), v, "(0)) + N—T,‘:f = (v"(0),v,"(0)) + N—T,‘;,"
2(N — DT,
< cos(6) + (TO)OKIO < cos(fp) + 1 = cos(66y) < cos((1 — 6)6p),

m

where we used the assumption for ;. Next, following the proof of (1), we can also attain the first
assertion of (2) for r € [0, Ty]:
(Vair vgj) < cos((1 — 6)6y).

Finally, to verify the second assertion of (2), we combine (1) and the first assertion of (2) to attain that
fort € [0, Ty],

arccos({eq, €g)) > — arccos({eq, Voi)) + arccos({vai, vg;)) — arccos({vs;, ez))
> (1 —06)0y — 266y = (1 — 30)6,.

Therefore, (e, eg) < cos((1 —36)8) for t € [0, Ty] and we conclude this lemma.
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The following lemma plays a key role in deriving the desired result:

Lemma 3.2. Let Z, be a solution to the system (3.5) with given initial data Zg that is a non-mono-
cluster flocking state for each a = 1,--- , n. Suppose that there exists a positive number 6 € (0, %) such
that

NT, (1 —cos(66y)) NT,’ (cos(66p) — cos((1 —8)by) — Ap)
2IN-DT, (N — D)(D(x%) + 2T,)

0 < k1 < min ) Ao > 0.

Then, we obtain that

min Aai,ﬁj(TO) > 0.
a#p,i,j

Proof. First, we note that

I1xi(2) — x;(DI| = < D(x") + 27,

X0i(0) — x5;(0) + f(; (Vai(s) = vgj(s))ds

Hence, we have from the arguments studied in Lemma 3.1 and the definition of A, that

d .
EAai,,Bj = (Vair Vg ) = (Vgjs Vo ) + (Xai — Xgj, Vo)

> ¢c0s(66,) — cos((1 — 6)8y) — (D(xX°) + 2T0)(NN_% > >0,

(o)
m

which leads to the following result using the definition of T:
A[n‘ﬁj(t) > Aai,ﬂj(o) + Aot and thus, Aai,ﬁj(TO) > Aai,ﬁj(o) + g7y > 0.
From the above relation, we take min,.g; ; to derive that

mln Aai,/a’j(TO) > 0.
a#P,i,j

We reach the desired lemma.

Subsequently, to prove the main result using the bootstrapping argument, we denote 7T

T, := sup {t € (Ty, o) ' min(vei(s), ea(To)) > cos((6 + €)6), s € [To, z)},

where an auxiliary parameter € € (0, 1) will be determined in Lemma 3.3. Here, we observe from
Lemma 3.2 that e,(T) is well-defined. In addition, T, is well-defined due to Lemma 3.1. Indeed,

Wai(T), ea(Tp)) > cos(66y) > cos((d + €)b)).

From now on, we claim that
T() = 00,
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Lemma 3.3. Assume that Z, is a solution to the system (3.5) given initial data Zg that is a non-mono-

cluster flocking state for each a = 1,--- ,n. Suppose that there exist positive numbers € and  that
satisfy
1-2¢ 1 NT (1 — cos(66p))
0<o< , €(0,=], O<k < , Ao>0.
€ ( 2) . 2(N - DT, 0

Then, for t € [Ty, To),

mEIX(Vﬁj, ea(To)) < cos((1 — 46 — €)y), Iilﬁin_<vai = vgj» €a(T0)) > Ao.
a,B,j aFp,L,J

Proof. To get the first assertion, from the definition of 7y and Lemma 3.1, we estimate that

arccos({vgj, e,(Ty))) = arccos({es(Ty), eo(T))) — arccos({vg;, eg(To)))
> (1-38)0)— (0 +¢€)fy = (1 —46 — €),.

This leads us to deduce that

mgx(vﬁj, e,(Ty)) < cos((1 —46 — €)by).
a’ ’]

Additionally, the definition of T, and the first assertion yield that

f;{gn(("m —vg;j), ea(To)) > cos((0 + €)by) — cos((1 — 46 — €)6y) > Ao.
a#Pl,j

We need the following lemma to verify that Ty = oco:

Lemma 3.4. Let Z, be a solution to the system (3.5) given initial data Z that is a non-mono-cluster
flocking state for each « = 1,--- ,n. Assume that there exist positive numbers € and 6 that satisfy

0<éd< 1_526, €€ (O, %), and

NT, (1 —cos(66y)) NT,’ (cos(66p) — cos((1 —8)by) — Ap)
2IN-DT, (N = 1)(D(x%) + 2T,) ’

O<K1<min( Ao > 0.

Then, we reach that
Pm(t) = ggl?fjﬂllxﬁj ~ Xaill) < ¢(Ao(t = To)), 1 € [Ty, T).
Proof. By applying Lemma 3.2 and Lemma 3.3, we induce that for ¢ € [Ty, Ty),
1xi — xgjll = {(X0i — Xg;), €a(T0))

= ((x4i(To) = x3j(T0)), ea(T0)) + | {(Vai(s) = vgi(5)), ea(To))ds
Ty

> | {(ai(s) = vgj(5)), eo(To))ds > Ao(t — Tp).
To

Then, this leads to the following result for ¢ € [Ty, Ty) due to the monotonicity of ¢:
du(t) = (glgll?(j d(lxg; — Xaill) < d(Ao(2 — T))).

Hence, we conclude the desired lemma.
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Subsequently, we estimate the time derivative of v to demonstrate the main result.

Lemma 3.5. Let Z, be a solution to the system (3.5) given initial data Z0 that is a non-mono-cluster

flocking state for each « = 1,--- ,n. Then, for « = 1,--- ,n, it follows that for t € [Ty, Ty),
i > _K1(1 - ')’N)¢M'
Proof. First, we fix @ € {1,--- ,n}; then, we select index i, := i,(¢) € {1,---, N,} at time 7 such that

V" = (Vaiy,» €a(T)))-

Then, if we use system (3.5), Proposition 2.2, and the definitions of i, and T, we obtain that
VZM = <vai¢,’ ea(TO»

No
K1 < Vaj — (Vaja Vaz},)‘}aia
= = ¢(|lxaiq - xaj”) ( ) ) ea(TO)>
p3 "

S Vgj — <V i» Vai >Vai
+ % Z Z <¢(||xma - xﬁj”)( o /;ﬁj . “),ea(To)>

B+a j=1

Ng
vgj = {Vgjs Vai, Waiy
o <¢<||xm-(, - xﬁ,-n)( " ),ea<To>>

Bra j=1 B
_kigy (N = No) S kil =yn)Pu
T~ N ° s

b

where we employed
1vg) = (Vg Vain Wai, | < 1.

Thus, we get the desired lemma.

Finally, we are ready to study the non-emergence of the mono-cluster flocking of system (3.5) under
the integrable communication weight ¢, i.e.,

6l = fo o(s)ds < co.

Theorem 3.2. (Non-emergence of mono-cluster flocking) Assume that Z, is a solution to the
system (3.5) with given initial data Z0 that is a non-mono-cluster flocking state for eacha = 1,--- ,n.
Suppose that Ty > 0 and there exist positive numbers € and 6 that satisfy 0 < § < 1_526 and € € (O, %)
such that

0<k <Ky, Ag>0.

Then, we attain that

min sup ||x,; — xgi|| = o0 min liminf||v,; — vgil| > 0.
a#Bii.j teRIi)” ai = Xl T a#Bij oo Vai = vl

Meanwhile, when Ty = 0, we let 1 > 0 and 6 € (O, %) Then, we can reach the same results as above.
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Proof. To demonstrate the desired results, we divide them by the following dichotomy:
TO >0 or T() =0.

(i) (The case of Ty > 0) For the proof by contradiction, suppose that T, < oo. Then, there exist
ae{l,---,n}and i, € {1,---,N,} such that

(Vai,(To), €a(T0)) = cos((6 + €)bp).

Then, we use Lemmas 3.1, 3.4 and 3.5 to obtain that for ¢ € [T, To],

N-N, !
Vair eaTo)y 2 v 3 yminery)y — IV = Na) 5y
NT Ty
Ki(N = Ng) k(1 =yn)
> COS(590) — W”¢”LI > COS(éHQ) — W”¢”L1

> cos((0 + €)6y),

which gives a contradiction; therefore, Ty = co. Then, the second assertion of Lemmas 3.3 and 3.4
with Ty = oo yield the desired result.

(if) (The case of Ty = 0) This case is trivial, but we provide the proof rigorously to compare with the
proof regarding the first assertion. Let

~ ~ 1
T, :=sup {t e R, — {0} ‘ min(vy;, e,(0)) > cos(d6yp), t € [0, t)} , where 0 € (O, 5)

It follows from the definition of Z, that 7;; > 0 exists. For the proof by contradiction, suppose that
T, < oo. Next, we employ the same method as utilized in proof of the first assertion of Lemma 3.1 to

estimate that
(pj(D), e(0)) < cos(1 — 6)bp, 1€ [0,Ty).

Hence, we have

min (voi(£) — vg;(1), €(0)) > cos(08p) — cos((1 — 8)p) =: Ao > 0.

a#P,i,J

Then, similarly to the proof of Lemma 3.4, one can show that

Pu(0) < ¢(Aot), 1 €[0,T;]

and thus, for r € [0, 7)), we can get the following estimates using the same methodologies as in the
proof of Lemma 3.5:

NT

N-N N-N, ]
—1- Kl(NTw 2) f ou(s)ds = 1 -2 o AO)||¢||Ll>cos<5eo>,

m

(Vaiy» €a(0)) 2 V3™ 2 V3™(0) — v o) f Pu(s)ds

which leads to a contradiction. Therefore, T; = oco. Finally, if the arguments of Lemmas 3.3 and 3.4
are applied to the case of Ty = 0, we conclude the desired result.
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3.3. Mono-cluster flocking under non-integrable ¢

This subsection demonstrates a different sufficient framework than Section 3.1 for mono-cluster
flocking to emerge in the system (1.5) when ¢ is non-integrable by using the previous results of [3].

Proposition 3.2. [3] Let {(x;, v;, T,-)}fi , be a solution to the system (1.5) such that

AW)0) := IE}ENWQ Wy >0, DV(O)<M ) P(s)ds.

i*Vj 0
Ty Jbxo
Then, there exists a nonnegative number DY € R, satisfying fort € R,,

1. (Group formation) Dx(t) < DY,

Ty
74 (D;’)t
(T? )

2. (Velocity alignment) Dy(t) < Dy(0) exp (_Klﬂ(v)(O)QS(D?)I)’

3. (Temperature equilibrium) Dr(t) < Dr(0) exp (—

Proof. We employ the same methodologies as the proofs of Lemma 3.1 and Theorem 3.2 in [3] to
obtain the desired result. Although the previous paper [3] dealt with the singular communication weight
¢ to system (1.5), the proofs of Lemma 3.1 and Theorem 3.2 in [3] can be applied, even assuming the
regular communication weight case covered in this paper.

Due to Proposition 3.2, we note the following remark.

Remark 3.2. It is easy to check that we can remove the condition,

Dy(0) < LAWO (T s,

Ty Dx(0)

when ¢ is non-integrable. In other words, when ¢ is non-integrable, the mono-cluster flocking of the
system (1.5) emerges under the only assumption A(v)(0) > 0.

Finally, we present the following mono-cluster flocking of system (1.5) under non-integrable ¢:

Theorem 3.3. (Mono-cluster flocking under non-integrable ¢) Assume that {(x;, v;, Ti)}f‘i | Is a solution
to the system (1.5) under non-integrable ¢ and suppose that

N 0.0
AW)O) := lggQN(vi, vi) > 0.

Then, there exists a nonnegative number DY € R, such that for t € R,

1. (Group formation) Dx(t) < DY,

Ty
K24 (DS}")t
(Ty?* )

2. (Velocity alignment) Dy(t) < Dy(0)exp (_K1ﬂ(v)(0)¢(D}°)t),

3. (Temperature equilibrium) Dr(t) < Dr(0) exp (—

Networks and Heterogeneous Media Volume 18, Issue 4, 1493-1527.



1511

4. Multi-cluster flocking

This section provides several sufficient frameworks for the multi-cluster flocking of the
system (1.5). In Section 3, we studied that mono-cluster flocking does not occur when the coupling
strength «; is less than a certain positive value in system (1.5) with integrable ¢. In Section 3.2.1, we
employed suitable subdivided configurations, {Z°}" n_y» so that all initial velocities are equal to each
other in each group and deduced some sufficient conditions guaranteeing the non-emergence of the
mono-cluster flocking of the system. Accordingly, we may wonder what the sufficient conditions are
for multi-cluster flocking to occur, so it is necessary to check how little coupling strength is required
for multi-cluster flocking to occur in system (1.5). To achieve this, we reorganize the system (1.5)
under integrable ¢ to a multi-cluster setting and then derive suitable dissipative differential
inequalities with respect position—velocity—temperature. Finally, using bootstrapping arguments for
these inequalities, we deduce appropriate sufficient conditions in terms of the initial data and system
parameters to guarantee the mono-cluster flocking of system (1.5). As a direct consequence, we also
prove that the velocity and temperature of all agents in each cluster group converge to the same
values.

4.1. Reorganization of system (1.5) and basic materials

This subsection converts the TCSUS model (1.5) into some multi-cluster setting. Afterward, we
present basic estimates for the averages of position-velocity-temperature. For this, we begin by
reorganizing the system (1.5) to the following multi-cluster setting:

d;:i:va,-, t>0, iefl,--,N,)}, aec{l,---.,n}, n>3, (4.1a)
N,
KO (Vaj = (Vais Vaj)Vai)
boi = Z A(I1%i — %) T (4.1b)
(V= (Vais V3j)Vai)
D Z $(llxai — 3551 T (4.1¢)
ﬁia j= Bj
. 1 1
Toi = Z £(lai - xa,n)( - T—) N2 Zg“(nxm x,;,u)( -7 ) (4.1d)
m aj /#a = a/z Bj
(%ai(0), V4i(0), T0i(0)) € Z0 X T2,. C RYx 841 x (R, — {O)). (4.1e)

For each cluster group Z, = {(X4i, Vais Tm-)}?i"1 , we denote the following three configuration vectors:
Ay = (A1, aan,), 1 Sa <n, where A € (X, V,T}, ae{x,v,T}, A:=(A, - ,Aq).

Next, we define position-velocity-temperature L*-diameters to each cluster group as follows:

(i) (The position-velocity-temperature diameters to the a-th cluster group)

DXa = max Il _xozj”’ DVH = max |[vg — V(zj”’ DT(, = max T — Ta/j|~
1<i,j<Ngy 1<i,j<Ngy 1<i,j<
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(if) (The local averages of velocity and temperature in each cluster group)

Before we end this subsection, we offer the following lemma regarding the local averages of velocity
and temperature for each cluster group. This lemma will be crucially used to prove that the velocity
and temperature of all agents in each cluster group converges to some unified values.

Lemma 4.1. Assume that Z, = {(X4i, Vai at)}z =, is a solution to the system (4.1). Then, each local

average (x5, ve", TS satisfies the following relations:

dxcen
T, 120, ae(len) n23,
NLY N[Y
. cen K1 V(llllva’] Vm‘”2
Navg" = Z Dbt = xas ===
i=1 j=1 J
N(Y N
Ki L Vaillvgj = vail*\ 1
2 D0 D D s = D) vy = v + = |
Bra i=1 j=1 BJ
No Ng
. K> 1 1
No T =230 0 >l - xﬁ,n)(T T—).
Bra i=1 j=1 ai Bj

Proof. The first assertion is trivial. For the second assertion, we take Z “ to v, and use the standard
trick of interchanging i and j and dividing 2 and

”Vm' - V(xj”2

I = (v, vaj> = >

For the third assertion, we take Z « to T,; and again use the standard trick as above.

4.2. Dissipative inequalities

In the following, we derive several dissipative differential inequalities with respect to position—
velocity—temperature to obtain suitable sufficient frameworks in terms of system parameters and initial
data for the multi-cluster flocking of system (4.1). For this, we define

Dy ::Z;DXG, Dy ::Z;Dva, DT::ZDTG.

Note that the above diameter functionals Dy, Dy and Dy measure the total deviations of position,
velocity and temperature to each cluster group Z,, respectively.

To reduce the TCSUS system (4.1) to its appropriate dissipative structure, we employ the following
functionals: Fora =1, --- ,n,

Ny
¢(”x(1i - -x(yj”) 1= Zj:l ¢(”xm' - xaj”) 3
N, N, o

Di(1) =
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where ¢;; denotes the Kronecker delta. Next, for simplicity, we set

Gaij = d(|xqi — xaj”)-

Then, we can easily check that ®,;; satisfies the following properties:

1. (DQ ¢m] Z q)mj = 1 (n] = (l)aji’

(Va] <V(Y]’ Vaz>vat) i ¢_ Vaj — <Va]a Vm>v(u)
N,

(I)(ll] T T
aj [¢4 aj

[\)
M=

J=1

Similarly, we can observe that the functional ¥,;; defined by

£t = Xail) ( | T Ll -

Woi(2) =

Xajll)
Na NQ 6ij9 (m; §(||xm xaj”)

satisfies the following relations:

1. \Pm‘j = 411] Z‘Pm] - 1 m] = \Paji’

1 “ Laij 1
2. Z‘Pau( ‘_)‘Z N, (T_M_T_aj)'

a/

We note that the above functionals of this type have already been used several times in previous
literature [2, 6,25,27,28]. Unlike the aforementioned previous papers, the above functionals can be
applied to a multi-cluster setting.

In what follows, we induce dissipative differential inequalities in terms of Dy, Dy and Dr,
respectively, to deduce several sufficient frameworks for the multi-cluster flocking estimate of
system (4.1).

Lemma 4.2. (Dissipative structure) Suppose that Z, = {(Xui,Vais m)} =, is a solution to the
system (4.1). If we set ¢y and {yy as

éu(t) := max ¢(|lxg; — xaill), L (?) := max (||xg; — xailD)-
a#f,i,] a#f,i,]

Then, we have the following three differential inequalities for a.e. t € R, —{0}:

dDy
1. < Dy,
’ dr |~
5, 4Dy _ _ximini, - N¢Dx) i max(Vi,- -, No)Dy | 2611~ D,
dt NT; 2NTS T
dDT K> min(Nl, e N ){(Dx) 1 1
3. < - Dy +2i(n— 1 — - —.
d o N(T )2 T Ka(n Xm Te TS

Proof. Cauchy—Schwarz’s inequality immediately yields the first assertion. Next, to prove the third
assertion, we choose two indices, M; and m;,, depending on ¢, such that

DTa(t) = TaM,(t) - Tam,(t)a 1 < niy, Mt < Na/-
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Now, we recall the subsystem (4.1c) as follows:

N,
. K2 - 1 K2
Toi = N;auxm—an)(fm ) Zzg(”xm xﬁf”)( T Tm)

,B#:(z j=1
Then, for a.e. t € R, — {0}, one can show that by using the definitions of M, and m,

dDT” K2 1
—= Z{(nxm, xa,n)( T —a)

1
Z £, - xa]n)( T)
aj

am,

=) Z {1, - xﬁ]u)( - Tiﬁ])

ﬂ¢0j1

=) Z £ am, ~ xﬁ,n)(

p+a j=1

:ZI1+.Z-2+.Z-3+.Z-4.

amt Tﬁ/ )

(i) (Estimate of 7|+ ,) Similar to the proof of Lemma 3.2 in [2], for a.e. r € R, — {0},

K2No{(Dx,)
N(TSR T

(if) (Estimate of 73+74) From Proposition 2.2 and the definitions of ¢,, and ¢,,, for a.e. t € R, — {0},

I1+I23—

K> 1
I+ Iis ;Zlanxm, xﬁ,n)( — E)
o j=
1
((”xam, xﬁj”)( _)
N é; Tom,  Tp;
L2 -NJGy (L 1
- N Ty Ty)

Thus, combining 7 +7, and 73+7, yields that for a.e. t € R, — {0},

dDr, _ kaN.{(Dyx,) 2k(N = No)dw (1 1
<- Dy, + S ——
dr NI N Te TS

Therefore, we take the summation from =1 to n to the above inequality to get that for a.e. r € R, —{0},

dDr ke min(Ny, - -+, No){(Dx)
dt ~ N(T})?

1 1
Dy +2 -1 — - —.
T+ 2Kk2(n ){M(Too T°°)

To verify the second assertion, we select two indices M, and m, depending on ¢ satisfying

DVa(t) = ”Va/M,(t) - vmn,(t)”’ 1 < my, Mt < N(x-
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We recall the following velocity coupling Eq (4.1b):

Ny
K1 (Vaj <Val’ Vaj>vat)
V(n :N Z |x(ll -xaj”) Ta]

Ng
K = Vais Vﬁj>vai)
+ N E §1 ¢(”xm xﬁ]”) T,Bj .

pra =

Hence, we attain that for a.e. r € R, — {0},

1dD}

[e3 . .
" = <va/M, — Vam,> VaM, — vam,)

2 dt
N,
K1 < Vaj — <vaM,’ Vaj>VaM,
= \VaMm, — Vam,» N ¢£¥sz T
=1 aj
N,

K1 Za ¢ (Va/j - <Va/m,» Va/j>v(lm, ) >

Y am j
N 4 To;

K1 Bj — (Vam,» Vﬂj>VaM
" <VQM, Vams 5 D Z $(1xant, = x) ( - ’
»

ﬁ;ﬁajl J

<V(tm,, Vﬁ]>v(1m,
=) Z (X, — xﬁ,n)( A ) >

B;ﬁa]l

=T+

(iii) (Estimate of 77) In the same way as the proof of Lemma 3.2 of [2], for a.e. t € R, — {0},

jl S _KIN(I (¢(DX(I) _ D%/U )Dz

N\ TS 2Ty
(iiii) (Estimate of /,) We employ the following identities:

”Vﬁj - <V(yM,, vﬁj>v<1M,|| < 13 ”vﬁj - <V(tm,a vﬁj>v(1m,|| < 1

with Cauchy—Schwarz’s inequality and Proposition 2.2 to estimate that for a.e. r € R, — {0},

K1 D <V(1M,’ V,Bj>vaMt
T < = ZZ¢<||xaM, xﬁjn)( T
pa j=1
<Vam,,v '>Vam,
ZZMM xﬁju)( o
Bra j=1 Bi
< 2k1(N — No)puDy,
< NT :
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Then, we combine J; and > to derive that for a.e. r € R, — {0},

dDy, _ KN, (¢(Dxn) Dy,

d = N | Ty 2T®

2k1(N = No)ou
v, + .
" NT=

We take the summation from a=1 to n to the above inequality to obtain that

dDy <k min(Ny, - - - ,Na)¢(DX)D Ll max(Ny, -+, No)Dy, N 2k1(n — Doy
dr = NTS Y ONT Ty

m

because the monotonicity of ¢ implies that

D%/ > Z D3a’ min(¢(DX1), T ¢(Dxa)) 2 (p(DX)

Finally, we demonstrate the second assertion.

Remark 4.1. In Lemma 4.2, the two terms below

ko min(Ve, - N)$(Dy) ) ki max(Vy, - . N)D,

NTS Y 2NTS ’
_ kpmin(Ny, - - - »Na)g(DX)D
N(TS)?

T

are related to the velocity alignment and temperature equilibrium for each cluster group of system (4.1),
respectively. Meanwhile, the following terms in Lemma 4.2

2(n — Doyk

| 1
T 2(n = Diu (— - —) K2

Iy Ty

show the tendency of the velocities and temperatures of system (4.1) to separated into n multi-cluster
groups in system (4.1).

4.3. Multi-cluster flocking

This subsection describes suitable sufficient frameworks () for the multi-cluster flocking estimate
and then, under (H), we demonstrate the multi-cluster flocking of the proposed system (4.1). For this,
we first display the admissible data (#) as follows:

(H) := {(X(0), V(0), T(0)) € R*N x (R, = {0D" | (Ho), (H1), (H>) and (H3) hold.)

(i) (Hy) (Notation): For brevity, we denote the following notation:

Dy(0) 4(n-1 4n-1 0
A= v(0) 4 (n = Dk (@) b (n— Dy f $(s)ds,
Ao TRAG T\2) 0 (miniosumt Ao L) Ty Ao Jp
- min(Ny, - -+ , N ){(DY
5.1, Agi= K> min(N; ) (DY)

N(TS)? :
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Sk minN, -+, NJ)@DY)

A() =
NTS
K1 Ng Ki(N = No) f‘x’
A, = Ao + - ds,
NT;;;O 0 NT;%O (mlnlﬁwﬁn—l d(Im I(z+1)) %0 ¢(S) ’

ro 1= mﬂin(%(‘)) — x*(0)) for some fixed 1 < k < d.
a<p,i,j

(if) (H;) (Well prepared conditions): There exists a strictly positive number DY > 0 such that
DY > Dx(0)+ A, and ¢ isintegrable i.e., ||§|l, < co.

(iif) (H>) (Separated initial data): For fixed 1 < k < d in (H,), there exist real sequences (a;)"_, and
(b)), such that the initial data and system parameters are selected to be split suitably as follows:

ro>0, a<b <ay<by---<a,<b,, I,:=asb,]C[-1,1], I,Nlz=0(+* a),
[VI;Z(O) _Aa,VZi(O) +Aw] - Ia = [aw’ba] - [_1’ 1]’ aaﬁ = 1" o ’n’ i: 17"' ’Na-

(iii) (H3) (Small fluctuations and coupling strength): The local velocity perturbation for each cluster
group and coupling strength are sufficiently small as follows:

20(VT+6+ D= 1) [y ¢(s)ds oo < [PA= 9D minNy. - N)T;
5 (i dUp Loy Ty~ VO (1+8)max(Ny, -+ ,NJ)Ty

Next, we give a brief comment regarding (). The assumption () is that the sufficient condition
guarantees a group formation to each cluster group. Note that () implies that position initial data
for each cluster group should be sufficiently separate from each other to verify the multi-cluster
flocking result. Indeed, if vf‘n.(O) is covered by 1, := [a,, b, ], then we take sufficiently small «; so that
[v';l.(O) - Aa,v’fyi(O) + A,] C I, because A, is linearly proportional to ;. () describes that the
velocity perturbation between each pair of cluster groups is sufficiently small to deduce the velocity
alignment for each cluster group. Here, we can find the admissible data satisfying the
assumption (H3) when «; is sufficiently small. Moreover, under sufficiently large r, and suitable
temperature initial data and small coupling strength regime, we can check that the sufficient
framework () is admissible data.
To prove the multi-cluster flocking result, we define the following set:

S::{s>0

. . 1o
. — . > —
ar;{lﬁl’gjllxm(t) xgi(DIl = (lsr(l;lslrl;l_ld(lmla+l))t +5. 1€ [0, S)},

where d(1,, 1,+1) 1s a distance between adjacent intervals /, and I,,;. Herein, we observe that S is
nonempty due to the assumption () and the continuity of [|x,i(f) — x,;(¢)|l, and we set

supS =:T".

Lemma 4.3. Assume that Z, = {(Xyi, Vais Tm-)}ﬁi"1 is a solution to the system (4.1). Suppose that (H),

(H)), and (H3) hold. Then, it follows that

Dy(t) < (1 +6)Dy(0), Dx(t) <Dy, te[0,T]. 4.2)
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Proof. First, we consider
S’ = {s >0 | the desired estimates Eq (4.2) hold, 7€ [0,s], s< T*} .

Let supS’ =: T* and suppose that T** < T~ for the proof by contradiction. Then, one has for
€0, 7],
2(1 - DY) min(Ny, -+, NT,
max(Ny, - ,Nam

Dy(t) < (1 +6)D;i(0) <

and

K1 min(Nl, s Q)(b(Dx) Kl min(Nl’ T N(y)¢(D§(o)
NT°° NTS '

Then, for a.e. ¢t € (0,T*"), the second assertion of Lemma 4.2 and the above estimates lead to the
following inequalities:

dDy < ki min(Ny, - - - ,Na)¢(Dx)D + ky max(Ny, - - - ’Na)D%/ + 2k1(n = Doy

d ~ NTS v ONTS T=
0k; min(Ny, - -+, N, )¢(D°°) 2K1(n - Dou
- NTy; T
2 1
= —A()DV + —Kl(nToo )¢M

m

This gives from Gronwall’s lemma that for ¢ € [0, T**],

20— 1 A
D) <Dy(0) exp (—Agt) + % exp (——Ot) é (@)

+ 2K1(n - 1)¢ (min1§(t§n—l d(la, Ia+1)) I+ro
T A 2 ’

4.3)

where we used the definition of S and the fact that

bt < ¢(( min d(IQ,I(,H))t ; %)

1<a<n-1

Moreover, we again employ Gronwall’s lemma to reach that for 7 € [0, T*],

2K1(l’l - 1)
D) D e o G s o) T f P 44

Next, using the definition of 7" yields that
D(T™) = (1+6)Dy(0) or Dx(T*™)=D

In the former case, it is contradictory to (#3) because inequality (4.4) implies that

w6\ A f 2K1(I’l— 1)
DyI™y = ¥1+6Dv(0) < Dy + o —— ld(la,lm))wa Hsds.
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In the latter case, we estimate from inequality (4.3) that for ¢ € [0, 7],
!
Dx(t) < Dx(0) + f Dy (s)ds
0

' 2k, (n — 1 A
< Dx(0) + fo [DV(O) exp (—Aps) + % exp (_TOS) ¢ (”2_0)

2ki(n—=1) ((mini<oep1 d(ly, Ios1)) s + 1o ]
+ T~Ao ¢( > ) ds

4.5)

< Dx(0) + A < DS.

Accordingly, Dx(T*) < DY, which is contradictory. Finally, supS’ = T** = T*. We have reached the
desired lemma.

Subsequently, we claim that 7" = oo, which is crucial to derive the multi-cluster flocking estimate
of the system (4.1).

Theorem 4.1. Following Lemma 4.3, we further assume that (H,) holds. Then, we get that
T = co.

This is equivalent to

. . 1o
min |[xq(£) — x3;(D|| = ( min d(Ia,Lm))t +, rER,.
a#f,i,j I1<a<n-1 2

Proof. For the proof by contradiction, suppose that T* < co. From the definition of S, we select four
indices that satisfy

l<a"<B'<n, i"e€{l,---,Np} and j e{l,--- Ng}

such that
’

* * . * 0
Vo () = 5 (T = ( mim U L)) T+ 2.

Then, we show that for the k € {1,--- ,d} chosen in (H),
1Xqei+(T*) = Xgejo (T = x5 o (T*) = X (T)

-
:%NWW%@+I(%N*%MMW
. U

-
zm+f (Vh () = V(1)) dit
0

Next, we integrate system (4.1b) and employ the following relation:

”Vaj - <ch" va.j>vaill2 =1- <vai’ vozj>2 = (1 - <vozia Vaj>)(1 + <v(lia Vozj>) < D%/a

to attain that for ¢ € [0, T7],
!
V(1) = Vi (O)] < [IVail®) = vei(O)I| < f Vaillds
0
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N, N —-N,
]KV‘TW f Dy, ()ds + ‘(NTOO 2) f du(s)ds

KlNa, Kl(N . ro
st,ODmmm+ Nm°‘f 1$£JWJM”+EVS
KlNa oz)
staoDwm zww f (,min  d Toun)s + ) ds
N, N —-N,
< al A+ K ) ¢( min d(l,,1,.1)s + )ds
NT? NT? 0 1<e<n—1 2

Na, N - Na/
Sy fal ) f d(s)ds =
NT:;? ]VTOo (m1n1<a<n 1 d(la’ Ia+l))

where we used ¢ < 1, [[vg; — (Vais Vgj)Vaill £ 1, and A was estimated in inequality (4.5). Therefore, it
follows by (H,) thatfora =1,--- ,n,

VeA0) + Ay 2 Vi (0) + Vh,(8) = Vi) 2 V5 (1) = VE(0) + v, (1) — vi,(0)
> v (0) = PE(8) = VE(0)] = VA (0) = Ag = V(1) € 1,

Then, we derive that using the assumption (),

T*
Mwaﬂ—wﬂﬁmzm+f (Vh () = Voo (t)) it

> 3 + min d(l,, l,41)T.,

1<a<n—-1
which gives a contradiction to 7* < co. Consequently, we conclude that 7" = co.

Now, we are ready to prove the multi-cluster flocking dynamics under sufficient framework () by
applying Lemma 4.3 and Theorem 4.1. In addition, we verify that there exist common velocity and
temperature convergence values depending on the decay rates of the integrable communication weights
¢ and ¢, respectively, in each cluster group.

Theorem 4.2. Let Z, = {(X4i, Vais Toﬂ-)}?f’1 be a solution to the system (4.1) and suppose that the
frameworks (Hy), (H)), (H>), and (H;) hold. Then, we obtain the following assertions fort € R,

1. (Velocity alignment for each cluster group)

2k1(n — 1 A
Dy(t) < Dy(0) exp (—Aot) + % eXp (_Tot) ¢ (%)

+ 2Kl (l’l - 1)¢ (min1§<z§n—l d(I(y’ Ia+1)) I+r
T A 2 '

2. (Temperature equilibrium for each cluster group)

1 1 A
Dr(1) < Dr(0) exp(—=Aot) + 2k2(n — 1) (ﬁ _ F)eXp(— 20 t)g( 20)
1 <an— d Ia,, Ia/+
+2K2(n—1)(§_ﬁ)g((mln] 1 (2 1))l+r0)
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Proof. We apply the second assertion of Lemma 4.2, the definition of the set S, and Theorem 4.1 to
have that for a.e. r € R, — {0},

dDy 2k1(n—1)
BV < _ADy + 2D
o7 S oDy T dum
2ki(n—=1) (ro )
< Moy + (3 i dl L)

From inequality (4.3), we recall that for 7 € R,

2k (n — 1 A
Dy (1) < Dy(0) exp (=Agt) + % eXp (_TOI) ¢ (%)

N 2k (n — 1)¢ (min;<o<p—1 d(ly, Iy+1)) t + 19
T2 A 2 '

Hence, we reach the desired first assertion. To prove the second assertion, we employ the third assertion
of Lemma 4.2, Theorem 4.1, and the second assertion of Lemma 4.3 to get that for a.e. r € R, — {0},

dDr Ky min(Ny, - -+, No){(Dx) 1 1
<- Dr + 26001 = Dl [ = - —
S NTY T+ 262(n — 1)y T= T3
< “RoDy + 2001 — D)= — 1 (( in d(l,.I ))r+r°)
= oT Ko T’%o Tﬁ § 1;52’111_1 as La+1 2 .

We use Gronwall’s lemma to yield that for r € R,

- 1 1 [_\0 ro
Dr(t) < D7(0) (=Ao?) + 2k2(n — 1)(—Oo — —00) (——t) —
1 1 (min;<o<p—1 d(y, Iy1)) t + 19
e e e |

m

We conclude the desired second assertion.

As a direct consequence, we present the following result that the velocity and temperature of each
agent in each cluster group converge to some same nonnegative value, respectively:

Corollary 4.1. Assume that Z, = {(X4i, Vais T(,,-)}Z”1 is a solution to system (4.1). Then, under the

sufficient frameworks (Hy), (Hy), (H,), and (H3), there exist some convergence values v, and T, for
a = 1,--- ,n that satisfy that for t € R,

1. (Velocity convergence value for each cluster group)

”Vm‘(t) _ V;o” :O( exp (—%f) + ¢ ((mIHISQSn—l d(;a’ Ia+1)) s + 7'0)

N foo¢((minl<a<n—] dy, 1441)) s + ”o)ds).
t

2
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1522

2. (Temperature convergence value for each cluster group)

(minl<(x<n—1 d(la’ Ia/+1)) s+ I"())

IToi(t) = T,| = O( exp (—%t) + {( <a< .

i foo é,((minlngn—l d(laa Ia+l)) s+ rO)ds).

2

Proof. Remember from Lemma 4.1 that

Ny N,

K1 Vm”va// vm”
Vo N Z Z¢(|lxat xaj”)
J=1

i=

No Ng

2
I Vadllvg = vl 1
TN ¢(||-xwi - Xﬁj”) Vgj = Vai + Vaill"fk — Vaill .
N & £ 5 _Tﬁj
i=1 j=1

If we denote v;,’ as

vy = lim vge”(t)

= 15" (0) + Zme(p(nx —x .||)V‘"'||Vf'f—‘v‘"'||2
NN(, 0 oo 2T,

11]1

No

K1 « Vaillvg; — vaill*\ 1
+ NN, Z . f(; dlxai — x5l (V,Bj — Vai + — 5 E,

i=1 j=1

then we have that

Nl, N
V() — v < f 3(Ix0i — x ||)""'“J—V""”2
(l’l a
NN(, e, 7 2T,
4 Vaillvg; = vaill*\ 1
- X % |
NN ,6’]”)( Bj Vai 2 T/}j

i=1 j=1

because

cen _ cen(O) +

i=1

va/i”vﬁj Vm”
+ E f Pl xei — xp, ”)(V,B Voi + ————— L.
Na j=1 / , 2 Tg;

i=1

ii f ol ppVelles = vl ,
W, S Plles = XV s
K1

Then, the multi-flocking estimate studied in Theorem 4.1 and the monotonicity and non-negativity of
¢ imply that

”vgen(l_) _ VZOH — O(CXP (_Aot) + f ¢ ((mlnlsaﬁn—l d(2la" Ia/+1)) s+ r()) dS) '
t
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Subsequently, we recall from Theorem 4.1 that

Ilvai(t) _ Vflen(t)” :O( exp (—%t) + ¢ ((miHISQSn—l d(éa, Ia+l)) s + 1’0)).

We combine the above estimates to derive that fora =1,--- ,n,

”Vm'(l) _ V;O” :O( exp (_%t) + ¢ ((mlnl<a<n—1 d(zlaa Ioz+1)) s+ rO)

N fw(p((minlmg—l d(1y, 1y1)) s + ro)ds).

2
Similar to the above, there exists some positive value 7’ such that fora = 1,--- ,n,
/_\ ' a<n— d I(u Ia +
IToi(t) = T,| = O( exp (_701‘) + é((mlnlg <n-1 (2 +1)) S ro)

+ fm{((minlﬁySn—l d(ém Ia+1)) s + rO)dS)’
t

We conclude the desired results.
5. Conclusion

In this paper, we have demonstrated various sufficient frameworks regarding the mono-cluster
flocking, the non-emergence of mono-cluster flocking, and multi-cluster flocking of the TCSUS
system. First, we presented the admissible data for the mono-cluster flocking of TCSUS to occur.
From the result, we observed that the mono-cluster flocking occurs when the coupling strength is
large enough, and then we were interested in how small the coupling strength must be to avoid
mono-cluster flocking emerging. Second, we verified that if the coupling strength is smaller than
some appropriate value in the TCSUS model with an integrable communication weight ¢, then the
mixed configuration gradually becomes separated after some time, and then each sub-ensemble
simultaneously moves away linearly as the time increases. Hence, this showed the non-emergence of
the mono-cluster flocking to the system. However, when ¢ is non-integrable, we did not provide a
suitable sufficient framework for the non-emergence of the mono-cluster flocking and we only gave a
sufficient condition independent of the coupling strength for mono-cluster flocking to occur. Third,
employing the spatial separation r( and velocity separations /,’s, when the initial configuration is well
separated given similar to multi-cluster, we proved that the multi-cluster flocking holds in the system
with an integrable ¢. The novelty of this paper is that we have extended the multi-cluster flocking of
system (1.2) (see [29]) to a temperature field and generalize the bi-cluster flocking of system (1.5)
(see [2]) to the multi-cluster flocking. We were unable to demonstrate a sufficient framework where
the multi-cluster flocking emerges in a mixed initial configuration (not well separated) rather than
from the multi-cluster flocking under the conditions such that the initial configuration is well
separated could be an interesting research topic. This issue is left for future work.
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