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Abstract: This paper demonstrates several sufficient frameworks for the mono-cluster flocking,
the non-emergence of mono-cluster flocking and the multi-cluster flocking of the thermodynamic
Cucker–Smale model with a unit-speed constraint (say TCSUS). First, in a different way than [2],
we present the admissible data for the mono-cluster flocking of TCSUS to occur. Second, we prove
that when the coupling strength is less than some positive value, mono-cluster flocking does not occur
in the TCSUS system with an integrable communication weight. Third, motivated from the study
on coupling strengths where the mono-cluster flocking does not occur, we investigate appropriate
sufficient frameworks to derive the multi-cluster flocking of the TCSUS system.

Keywords: Cucker–Smale; mono-cluster flocking; multi-agent system; multi-cluster flocking;
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1. Introduction

Emergent dynamics in interacting multi-agent systems are frequently observed in nature.
Examples include the aggregation of bacteria [39], flocking of birds and vehicular
flocking [7, 14, 19, 34], schooling of fish [20, 38] and the synchronization of fireflies and pacemaker
cells [1, 8, 21, 37, 43]. To more introduce related literature, we refer to [22, 35, 41, 42]. Herein, we are
primarily concerned with “flocking” in which agents exhibit ordered movements and form appropriate
groups. After the work of Vicsek et al. in [40], many studies on models representing flocking have
been actively conducted for decades. Among them, the Cucker–Smale model [19] has received
significant attention in math and physics communities due to its dissipative and simple velocity
structure. Essentially, the Cucker–Smale model is a flocking dynamic system for position and velocity
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based on the Newtonian sense, which is governed by

dxi

dt
= vi, t > 0, i ∈ {1, · · · ,N},

dvi

dt
=
κ

N

N∑
j=1

ψ(∥xi − x j∥)
(
v j − vi

)
,

(xi(0), vi(0)) = (x0
i , v

0
i ) ∈ Rd × Rd,

(1.1)

where N denotes the number of particles, κ is a nonnegative coupling strength and ψ is a
communication weight. To date, there have been many works examining this system and its variants
due to its dissipative structure for velocity, such as the mean-field limit [5, 6, 25, 28, 30], kinetic
models [9, 32], hydrodynamic descriptions [23, 24, 33], particle analysis [9, 10, 13–18], temperature
field [26, 31] and relativistic setting [4–6, 27].

Since Eq (1.1), the authors of [12] noted that several Vicsek-type models with unit-speed
constraints have been actively studied concerning heading angles in math community. To give a
unit-speed constraint to Eq (1.1), the authors modified the velocity coupling term Eq (1.1)2 so that the
velocity of each agent has a unit-speed constraint as follows:

ψ(∥xi − x j∥)
(
v j − vi

)
−→ ψ(∥xi − x j∥)

(
v j −
⟨v j, vi⟩vi

∥vi∥
2

)
,

where the modified term is perpendicular to vi. Thus, they proposed the following Cucker–Smale type
model with constant speed and studied its flocking dynamics:

dxi

dt
= vi, t > 0, i ∈ {1, · · · ,N},

dvi

dt
=
κ

N

N∑
j=1

ψ(∥xi − x j∥)
(
v j −
⟨v j, vi⟩vi

∥vi∥
2

)
,

(xi(0), vi(0)) = (x0
i , v

0
i ) ∈ Rd × Rd.

(1.2)

Equation (1.2) has also been studied from several perspectives; for example, particle analysis [12],
the emergence of the bi-cluster flocking in [17], multi-cluster flocking and critical coupling strength
in [29], time-delay effect [11] and general digraph setting [36].

However, because the above literature [11, 12, 17, 29, 36] were only motivated by the original
Cucker–Smale model (1.1) without considering internal energy, the author of [2] noted the extension
of the above model to a temperature field to describe more realistic flocking dynamics. For this, as a
backbone model, the author first adopted a thermodynamic Cucker–Smale model proposed by [26,31]
based on the theory of multi-temperature mixture of fluids under the space of homogeneity, which is
given by the following second-order ODEs for position-velocity-temperature (xi, vi,Ti):

dxi

dt
= vi, t > 0, i ∈ [N] := {1, · · · ,N}, (1.3a)

dvi

dt
=
κ1

N

N∑
j=1

ϕ(∥xi − x j∥)
(

v j

T j
−

vi

Ti

)
, (1.3b)
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d
dt

(
Ti +

1
2
∥vi∥

2
)
=
κ2

N

N∑
j=1

ζ(∥xi − x j∥)
(

1
Ti
−

1
T j

)
, (1.3c)

(xi(0), vi(0),Ti(0)) = (x0
i , v

0
i ,T

0
i ) ∈ Rd × Rd × R+ − {0}, (1.3d)

where
∑N

i=1 T 0
i =: NT∞, N denotes the number of particles, κ1, κ2 are nonnegative coupling strengths

and ψ, ζ are communication weights. Then, motivated from the derivation idea of Eq (1.2), by
modifying the velocity coupling term Eq (1.3a) as

ϕ(∥xi − x j∥)
(

v j

T j
−

vi

Ti

)
−→ ϕ(∥xi − x j∥)

(
v j

T j
−
⟨v j, vi⟩vi

T j∥vi∥
2

)
,

the author suggested the following TCSUS model in terms of position-velocity-temperature (xi, vi,Ti):

dxi

dt
= vi, t > 0, i ∈ {1, · · · ,N},

dvi

dt
=
κ1

N

N∑
j=1

ϕ(∥xi − x j∥)
(

v j

T j
−
⟨v j, vi⟩vi

T j∥vi∥
2

)
,

d
dt

(
Ti +

1
2
∥vi∥

2
)
=
κ2

N

N∑
j=1

ζ(∥xi − x j∥)
(

1
Ti
−

1
T j

)
,

(xi(0), vi(0),Ti(0)) = (x0
i , v

0
i ,T

0
i ) ∈ Rd × Sd−1 × (R+ − {0}),

(1.4)

where
∑N

i=1 T 0
i =: NT∞. Afterward, the author immediately verified that each agent in the system (1.4)

has a unit-speed. Then, from the relations,

∥vi∥ = 1,
⟨v j, vi⟩vi

T j∥vi∥
2 =

⟨v j, vi⟩vi

T j
and

d
dt

(
Ti +

1
2
∥vi∥

2
)
=

dTi

dt
,

the author simply represented the system (1.4) as follows:

dxi

dt
= vi, t > 0, i ∈ {1, · · · ,N}, (1.5a)

dvi

dt
=
κ1

N

N∑
j=1

ϕ(∥xi − x j∥)
(
v j − ⟨v j, vi⟩vi

T j

)
, (1.5b)

dTi

dt
=
κ2

N

N∑
j=1

ζ(∥xi − x j∥)
(

1
Ti
−

1
T j

)
, (1.5c)

(xi(0), vi(0),Ti(0)) = (x0
i , v

0
i ,T

0
i ) ∈ Rd × Sd−1 × (R+ − {0}), (1.5d)

where
∑N

i=1 T 0
i =: NT∞. Here, we set R+ := [0,∞) throughout the paper and we assume that two

communication weights ϕ, ζ : R+ → R+ are nonnegative, locally Lipschitz continuous and
monotonically decreasing and that Sd−1 is the unit (d − 1)-sphere isometrically embedded in Rd;
hence,

0 ≤ ϕ(r) ≤ ϕ(0) = 1, (ϕ(r1) − ϕ(r2))(r1 − r2) ≤ 0, ∀r, r1, r2 ≥ 0, ϕ(·) ∈ C0,1
loc(R+;R+),

Networks and Heterogeneous Media Volume 18, Issue 4, 1493–1527.



1496

0 ≤ ζ(r) ≤ ζ(0) = 1, (ζ(r1) − ζ(r2))(r1 − r2) ≤ 0, ∀r, r1, r2 ≥ 0, ζ(·) ∈ C0,1
loc(R+;R+),

Sd−1 :=

x := (x1, · · · , xd)
∣∣∣∣∣ d∑

i=1

|xi|2 = 1,

 where xi is the i-th component of x ∈ Rd.

The system (1.5) was studied in terms of mono-cluster flocking and bi-cluster flocking in [2] and
collision avoidance [3], but the multi-cluster flocking of system (1.5) has not been studied yet. Indeed,
the multi-cluster flocking phenomenon is ubiquitous in daily life. Examples include opinion
disagreement, schools of fish invaded by predators and flight multi-formation. In addition, a
phenomenon in which individuals with the same characteristics gather together can be an example of
the multi-cluster flocking.

Therefore, this paper is mainly interested in the non-emergence of mono-cluster flocking in the
system (1.5) under a sufficiently small coupling strength and extending the bi-cluster flocking of [2] to
general multi-cluster flocking. For this, we first introduce several basic notions concerning mono- and
multi-cluster flocking as follows:

Definition 1.1. Let Z = {(xi, vi,Ti)}Ni=1 be a solution to the system (1.5).

(1) The configuration Z exhibits mono-cluster flocking if the following statements hold:

(i) (Group formation) ⇐⇒ sup
t∈R+

max
1≤i, j≤N

∥xi(t) − x j(t)∥ < ∞,

(ii) (Velocity alignment) ⇐⇒ lim
t→∞

max
1≤i, j≤N

∥v j(t) − vi(t)∥ = 0,

(iii) (Temperature equilibrium) ⇐⇒ lim
t→∞

max
1≤i, j≤N

|T j(t) − Ti(t)| = 0.

(2) The configuration Z exhibits multi-cluster flocking if there exist n cluster groups
Zα = {(xαi, vαi,Tαi)}

Nα

i=1 such that the following assertions hold for 1 ≤ n ≤ N:

(i) |Zα| = Nα ≥ 1,
n∑
α=1

|Zα| =
n∑
α=1

Nα = N,

(ii) sup
t∈R+

max
1≤k,l≤Nα

∥xαk(t) − xαl(t)∥ < ∞, lim
t→∞

max
1≤k,l≤Nα

∥vαk(t) − vαl(t)∥ = 0,

lim
t→∞

max
1≤k,l≤Nα

|Tαk(t) − Tαl(t)| = 0, n ≥ 3, 1 ≤ α ≤ n,

(iii) inf
t∈R+

min
k,l
∥xαk − xβl∥ = ∞, 1 ≤ k ≤ Nα, 1 ≤ l ≤ Nβ, 1 ≤ α,β ≤ n.

Then, we are primarily concerned with the following issue:

• (Main issue): How can we find sufficient conditions for the non-emergence of mono-cluster
flocking in the system (1.5)? Additionally, under what sufficient conditions with respect to the
initial data and system parameters can mono-cluster flocking emerge in system (1.5)?

The paper is organized as follows. Section 2 introduces several basic estimates for temperatures in
system (1.5) and previous results studied in [2]. Section 3 gives a mono-cluster flocking estimate
different from the previous paper [3] and proves the non-emergence of mono-cluster flocking under
suitable sufficient conditions when ϕ is integrable in system (1.5). Next, we describe several sufficient
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frameworks for the mono-cluster flocking of system (1.5) when the communication weight ϕ is
non-integrable. Section 4 reorganizes system (1.5) to the multi-cluster setting and derives some
dissipative structures on each cluster group to demonstrate the multi-cluster flocking of system (1.5)
under admissible data. Finally, Section 5 briefly summarizes the main results and discusses the
remaining issues left for future work.

Notation. Throughout the paper, we denote the following notation for brevity:

∥ · ∥ = standard l2-norm, ⟨·, ·⟩ = standard inner product, yi = i-th component of y ∈ Rd,

X := (x1, · · · , xN), V := (v1, · · · , vN), T := (T1, · · · ,TN), R+ := [0,∞),
DZ(t) := max

1≤i, j≤N
∥zi(t) − z j(t)∥ for Z = (z1, · · · , zN) ∈ {X,V,T }.

2. Preliminaries

This section reviews several basic results for the subsystem (1.5c) to guarantee its global well-
posedness; these estimates will be crucial throughout this paper. Afterward, we introduce the previous
bi-cluster flocking results of system (1.5) studied in [2].

2.1. Basic estimates

This subsection deals with the entropy principle, the propagation of conserved quantity, and the
uniform boundedness of temperature to the subsystem (1.5c). For this, we begin with defining the
entropy of system (1.5).

Definition 2.1. [26,31] Let {(xi, vi,Ti)}Ni=1 be a solution to the system (1.5). Then, the entropy is defined
as

S(t) :=
N∑

i=1

ln(Ti(t)) = ln

 N∏
i=1

Ti(t)

 .
Then, we present the entropy principle and conserved temperature sum as below:

Proposition 2.1. [26, 31] Assume that {(xi, vi,Ti)}Ni=1 is a solution to the system (1.5). Then, one has
the following two assertions:

1. (Conserved temperature sum) The total sum
∑N

i=1 Ti is conserved for t ≥ 0.

N∑
i=1

Ti(t) =
N∑

i=1

T 0
i = NT∞.

2. (Entropy principle) Entropy S monotonically increases for t ≥ 0:

dS
dt
=

κ2

2N

N∑
i, j=1

ζ(∥x j − xi∥)

∣∣∣∣∣∣ 1
Ti
−

1
T j

∣∣∣∣∣∣2 ≥ 0.

Subsequently, we offer the following uniform boundedness consisting of strictly positive lower and
upper bounds for temperatures to the system (1.5):
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Proposition 2.2. [26] (Uniform boundedness for temperatures) Let Z = {(xi, vi,Ti)}Ni=1 be a solution to
system (1.5). Then, min1≤i≤N Ti(t) monotonically increases and max1≤i≤N Ti(t) monotonically decreases
in time. In other words, for t ≥ 0,

0 < min
1≤i≤N

T 0
i =: T∞m ≤ Ti(t) ≤ max

1≤i≤N
T 0

i =: T∞M , i = 1, · · · ,N.

Since Proposition 2.2 holds, ϕ, ζ are uniformly bounded, and the speed of each agent is unit. We
directly obtain the well-posedness of system (1.5) from the standard Cauchy–Lipschitz theory.

2.2. Previous results

This subsection introduces the previous mono-cluster flocking and bi-cluster flocking estimated
in [2]. First, we revisit the following mono-cluster flocking of the system (1.5) verified in [3]:

Proposition 2.3. [2] (Mono-cluster flocking) Suppose that {(xi, vi,Ti)}Ni=1 is a global-in-time solution
to the system (1.5) with the initial data {(x0

i , v
0
i ,T

0
i )}Ni=1 and assume that there exists a positive constant

D∞X > 0 that satisfies

D2
V(0) <

T∞m ϕ(D∞X )
2T∞M

and DX(0) +
2T∞M DV(0)
κ1ϕ(D∞X )

< D∞X . (2.1)

Then, we get that for t ∈ R+,

D2
V(t) < 2D2

V(0) and DX(t) < D∞X ,

which yields the following mono-cluster flocking estimate of system (1.5) for t ∈ R+:

DV(t) ≤ DV(0) exp
(
−
κ1ϕ(D∞X )

2T∞M

)
, DT (t) ≤ DT (0) exp

(
−
κ2ζ(D∞X )
(T∞M)2 t

)
.

However, in Theorem 3.1, we can attain another mono-cluster flocking dynamics of system (1.5) by
reducing the higher-order dissipative differential inequality in terms of velocity in Proposition 3.1 to a
suitable lower-order inequality.

Subsequently, to describe the results of extending the mono-cluster flocking of Proposition 2.3
to bi-cluster flocking, we describe the admissible set (H) proposed in [2]; for two cluster groups
Z1 = {(x1i, v1i,T1i)}

N1
i=1 and Z2 = {(x2 j, v2 j,T2 j)}

N2
j=1, we set the following three configuration vectors:

Aα := (aα1, · · · aαNα
) α = 1, 2, where A ∈ {X,V,T }, a ∈ {x, v,T } and A := (A1, A2).

Next, for α ∈ {1, 2}, we denote L∞ diameters regarding position-velocity-temperature for each cluster
group

DXα := max
1≤i, j≤Nα

∥xαi − xα j∥, DVα := max
1≤i, j≤Nα

∥vαi − vα j∥, DTα := max
1≤i, j≤Nα

|Tαi − Tα j|

and we let
DX:=DX1 + DX2 , DV :=DV1 + DV2 , DT :=DT1 + DT2 .
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Then, the admissible set (H) in terms of a system parameter and initial data is given by

(H) =: {(X(0),V(0),T (0)) ∈ R2dN × (R+ − {0})N | (H0), (H1), (H2) and (H3) hold.}

• (H0) (Basic notation): For simplicity, we set

Λ0:=
2NT∞MDV(0)

κ1 min(N1,N2)ϕ(D∞X )
+

16N2(T∞M)2ϕ
(

r0
2

)
κ1(min(N1,N2))2(ϕ(D∞X ))2T∞m

+
8NT∞M

∫ ∞
0
ϕ
(
s + r0

2

)
ds

min(N1,N2)ϕ(D∞X )T∞m
,

r0:= min
1≤i≤N1,1≤ j≤N2

(xk
1i(0) − xk

2 j(0)), Λ1:=
κ1 min(N1,N2)ϕ(D∞X )

2NT∞M
,

Λ2:=
κ1N1

NT∞m
Λ1 +

κ1N2

NT∞m

∫ ∞

0
ϕ
(
s +

r0

2

)
ds,

Λ3:=
κ1N2

NT∞m
Λ1 +

κ1N1

NT∞m

∫ ∞

0
ϕ
(
s +

r0

2

)
ds,

Λ4:=
min(N1,N2)κ2ζ(D∞X )

N(T∞M)2 , Λ5:=2κ2

(
1

T∞m
−

1
T∞M

)
.

• (H1) (Well prepared conditions): There exists a strictly positive numberD∞X > 0 such that

D∞X > DX(0) + Λ0 and ϕ is integrable
(
⇐⇒

∫ ∞

0
ϕ(s)ds < ∞

)
.

• (H2) (Separated initial data): For k ∈ [d] fixed in H0, the initial data and system parameters are
chosen to be properly partitioned as follows:

r0 > 0, vk
1i(0) − Λ2 >

1
2
, vk

2 j(0) + Λ3 < −
1
2
.

• (H3) (Small fluctuations and coupling strength): The perturbation of local velocity in each cluster
group and the coupling strength are sufficiently small:

2κ1

T∞m

∫ ∞

r0
2

ϕ(s)ds <DV(0) ≤

√
T∞m min(N1,N2)ϕ(D∞X )

2 max(N1,N2)T∞M
.

When the admissible set (H) is assumed, the author of [2] verified the following bi-cluster flocking
of system (1.5):

Proposition 2.4. [2] (Bi-cluster flocking) Suppose that Z1 = {(x1i, v1i,T1i)}
N1
i=1 and

Z2 = {(x2 j, v2 j,T2 j)}
N2
j=1 are a global-in-time solution to the bi-cluster dynamical system (1.5). Further,

assume that the admissible set (H) is valid. Then, we can get the following bi-cluster flocking result
in time.

1. min
1≤i≤N1,1≤ j≤N2

∥x1i − x2 j∥ ≥ t +
r0

2
, DX(t) < D∞X .
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2. DV(t) ≤ DV(0) exp (−Λ1t) +
2κ1

T∞mΛ1
exp

(
−
Λ1

2
t
)
ϕ
(r0

2

)
+

2κ1

T∞mΛ1
ϕ
( t + r0

2

)
.

3. DT (t) ≤ DT (0) exp(−Λ4t) + Λ5 exp
(
−
Λ4

2
t
)
ζ
(r0

2

)
+ Λ5ζ

( t + r0

2

)
.

In Section 4, we extend the sufficient frameworks for the bi-cluster flocking of Proposition 2.4 to
the multi-cluster flocking result.

3. Mono-cluster flocking

This section provides suitable sufficient frameworks for the mono-cluster flocking and gives
sufficient conditions to guarantee the non-emergence of mono-cluster flocking to system (1.5) when ϕ
is integrable. Finally, in the case of system (1.5) under non-integrable ϕ, we present a sufficient
condition independent of coupling strength for mono-cluster flocking to arise.

3.1. Mono-cluster flocking

This subsection recalls a dissipative structure for position-velocity-temperature L∞-diameters
derived in [2] and gives a mono-cluster flocking result different from Proposition 2.3 which is the
mono-cluster flocking of system (1.5) proven in [2]. For this, we begin with the following dissipative
inequalities for system (1.5):

Proposition 3.1. [2] Suppose that {(xi, vi,Ti)}Ni=1 is a solution to the system (1.5). Then, we have that
for a.e. t ∈ R+ − {0},∣∣∣∣∣dDX

dt

∣∣∣∣∣ ≤ DV ,
dDV

dt
≤ −κ1

(
ϕ(DX)

T∞M
−

D2
V

2T∞m

)
DV ,

dDT

dt
≤ −

κ2ζ(DX)
(T∞M)2 DT .

Now, we are ready to study the new mono-cluster flocking result of system (1.5).

Theorem 3.1. (Mono-cluster flocking) Assume that {(xi, vi,Ti)}Ni=1 is a solution to the system (1.5).
Suppose that there exists a nonnegative number D∞X ∈ R+ such that the following conditions hold:

D2
V(0) <

2ϕ(D∞X )T∞m
T∞M

,

DX(0) −

√
T∞MT∞m

κ1
√

2ϕ(D∞X )
log

 2ϕ(D∞X )T∞m − T∞M D2
V(0)( √

2ϕ(D∞X )T∞m +
√

T∞M DV(0)
)2

 ≤ D∞X .
(3.1)

Then, we attain the following assertions for t ∈ R+:

1. DX(t) ≤ D∞X ,

2. DV(t) ≤
(

T∞M
2ϕ(D∞X )T∞m

+

(
1

D2
V(0)
−

T∞M
2ϕ(D∞X )T∞m

)
exp

(
2κ1ϕ(D∞X )t

T∞M

))− 1
2

,

3. DT (t) ≤ DT (0) exp
(
−
κ2ζ(D∞X )
(T∞M)2 t

)
.
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Proof. (i) (The case of DV(t) > 0 for t ∈ R+) First, we set g(t) as

g(t) =
1

D2
V(t)

.

It follows from the second assertion of Proposition 3.1 that

dg(t)
dt
≥

2κ1

T∞M
ϕ(DX(t))g(t) −

κ1

T∞m
, a.e. t ∈ R+ − {0}. (3.2)

Due to inequality (3.1) and the continuity of DX, the following set:

S := {s > 0 | (1) holds for t ∈ (0, s)}

is nonempty and we denote t∗ := sup S > 0. Next, we claim that

t∗ = +∞.

For the proof by contradiction, suppose that t∗ < ∞. Then, we can obtain from inequality (3.2) and the
definition of S that

dg(t)
dt
≥

2κ1

T∞M
ϕ(D∞X )g(t) −

κ1

T∞m
, a.e. t ∈ (0, t∗).

Moreover, using Grönwall’s lemma with the above inequality yields that

g(t) ≥
T∞M

2ϕ(D∞X )T∞m
+

(
g(0) −

T∞M
2ϕ(D∞X )T∞m

)
exp

(
2κ1ϕ(D∞X )t

T∞M

)
, t ∈ [0, t∗].

This induces that for t ∈ [0, t∗],

DV(t) ≤
(

T∞M
2ϕ(D∞X )T∞m

+

(
1

D2
V(0)
−

T∞M
2ϕ(D∞X )T∞m

)
exp

(
2κ1ϕ(D∞X )t

T∞M

))− 1
2

. (3.3)

Accordingly, we combine inequality (3.3) with the first assertion of Proposition 3.1 to estimate that for
t ∈ [0, t∗],

DX(t)

≤ DX(0) +
∫ t

0
DV(s) ds

≤ DX(0) +
∫ t

0

(
T∞M

2ϕ(D∞X )T∞m
+

(
1

D2
V(0)
−

T∞M
2ϕ(D∞X )T∞m

)
exp

(
2κ1ϕ(D∞X )s

T∞M

))− 1
2

ds

< DX(0) +
∫ ∞

0

(
T∞M

2ϕ(D∞X )T∞m
+

(
1

D2
V(0)
−

T∞M
2ϕ(D∞X )T∞m

)
exp

(
2κ1ϕ(D∞X )s

T∞M

))− 1
2

ds

= DX(0) −

√
T∞MT∞m

κ1
√

2ϕ(D∞X )
log

 2ϕ(D∞X )T∞m − T∞M D2
V(0)( √

2ϕ(D∞X )T∞m +
√

T∞M DV(0)
)2

 ≤ D∞X ,
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which contradicts to t∗ < ∞. Therefore, t∗ = ∞ and for t ∈ R+,

DX(t) ≤ D∞X . (3.4)

Hence, one has for t ∈ R+,

DV(t) ≤
(

T∞M
2ϕ(D∞X )T∞m

+

(
1

D2
V(0)
−

T∞M
2ϕ(D∞X )T∞m

)
exp

(
2κ1ϕ(D∞X )t

T∞M

))− 1
2

.

In addition, because the third assertion of Proposition 3.1 and inequality (3.4) hold, we derive that for
a.e. t ∈ R+ − {0},

dDT

dt
≤ −

κ2ζ(DX)
(T∞M)2 DT ≤ −

κ2ζ(D∞X )
(T∞M)2 DT ,

which implies that for t ∈ R+,

DT (t) ≤ DT (0) exp
(
−
κ2ζ(D∞X )
(T∞M)2

)
.

(ii) (The case of DV(t) = 0 for some t ∈ R+) We define s∗ by

s∗ := inf{t ∈ R+ | DV(t) = 0}.

Then, s∗ ∈ R+ and applying the Cauchy–Lipschitz theory implies that

DV(t) = 0, t ≥ s∗.

Finally, if we follow the arguments employed in the first case, we immediately reach the desired mono-
cluster flocking estimate.

Before we end this subsection, we provide the following remark:

Remark 3.1. Although T∞m ϕ(D∞X )
2T∞M

of Eq (2.1) and 2ϕ(D∞X )T∞m
T∞M

of Eq (3.1) satisfy the following inequality for
D∞X ≥ 0:

T∞m ϕ(D∞X )
2T∞M

≤
2ϕ(D∞X )T∞m

T∞M
,

but the following term diverges to −∞ when 2ϕ(D∞X )T∞m and T∞M D2
V(0) are close to each other in

Eq (3.1):

log

 2ϕ(D∞X )T∞m − T∞M D2
V(0)( √

2ϕ(D∞X )T∞m +
√

T∞M DV(0)
)2

 .
Thus, it is unknown which of Proposition 2.3 and Theorem 3.1 yields better mono-cluster flocking
result.

3.2. Non-emergence of mono-cluster flocking

This subsection guarantees the non-emergence of mono-cluster flocking of the system (1.5) with
integrable ϕ and sufficient small κ1. For this, we employ the main strategies implemented in [29] for
the targeted system (1.5).
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3.2.1. Basic frameworks

This subsubsection offers basic notations and preliminary estimates to show the non-emergence
of the mono-cluster flocking of system (1.5) when ϕ is integrable. First, we consider the following
subdivided n ≥ 2 configurations {Z0

α}
n
α=1 of Z0 = {(x0

i , v
0
i ,T

0
i )}Ni=1 satisfying

(x0
αi, v

0
αi,T

0
αi), (x0

α j, v
0
α j,T

0
α j) ∈ Z0

α ⇐⇒ v0
αi = v0

α j,

where
|Z0
α| =: Nα ≥ 1, Z0 = ∪̇

n
α=1Z0

α.

In other words, we primarily deal with the initial configuration Z0 that is not in a mono-cluster flocking
state. Subsequently, we reorganize the system (1.5) to distinguish the n-dynamics initiated from n-
subdivided initial configurations Z0

α as follows:

dxαi

dt
= vαi, t > 0, i = 1, · · · ,Nα, α = 1, · · · , n, n ≥ 2,

dvαi

dt
=
κ1

N

Nα∑
j=1

ϕ(∥xαi − xα j∥)
(
vα j − ⟨vα j, vαi⟩vαi

Tα j

)

+
κ1

N

∑
β,α

Nβ∑
j=1

ϕ(∥xαi − xβ j∥)
(
vβ j − ⟨vβ j, vαi⟩vαi

Tβ j

)
,

dTαi

dt
=
κ2

N

Nα∑
j=1

ζ(∥xαi − xα j∥)
(

1
Tαi
−

1
Tα j

)

+
κ2

N

∑
β,α

Nβ∑
j=1

ζ(∥xαi − xβ j∥)
(

1
Tαi
−

1
Tβ j

)
,

(xαi(0), vαi(0),Tαi(0)) = (x0
αi, v

0
αi,T

0
αi) ∈ R

d × Sd−1 × (R+ − {0}).

(3.5)

In the following, we denote local averages and local deviations for α = 1, · · · , n

xcen
α =

1
Nα

Nα∑
i=1

xαi, vcen
α =

1
Nα

Nα∑
i=1

vαi, x̂αi := xαi − xcen
α , v̂αi := vαi − vcen

α ,

and we set the following notation to estimate the degree of separation between n-subdivided initial
configuration sets {Z0

α}
n
α=1.

D(x0) := max
α,β,i, j

∥x0
αi − x0

β j∥, θ0 := min
α,β

arccos⟨vcen
α (0), vcen

β (0)⟩,

λ0 := min
(

cos((δ + ϵ)θ0) − cos((1 − 4δ − ϵ)θ0),

cos(δθ0) − cos((1 − δ)θ0) − (D(x0) + 2T0) ·
(N − 1)κ1

NT∞m

)
,

where two auxiliary parameters ϵ, δ ∈ (0, 1) will be specified later such that λ0 > 0 in Section 3.2.2 and
we define T0 as

T0 := max
α,β,i, j

0,−
⟨x0

αi − x0
β j, v

cen
α (0)⟩

λ0

 .
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We observe that D(x0), θ0 and λ0 are dependent on given initial data non-mono-cluster flocking
state. As we will see later, T0 is indeed the time when two agents belonging to different cluster
groups begin to move away from each other linearly and λ0 is needed to estimate T0. For the detailed
descriptions, see Section 3.2.2.

Next, we set the coupling strength κ̃0 dependent on given initial data Z0 = {(x0
i , v

0
i )}Ni=1 of the

system (1.5) as follows:

(i) (The case of minα,β,i, j⟨(x0
αi − x0

β j), v
cen
α ⟩ < 0): We define κ̃0 as

κ̃0 = min
(NT∞m (1 − cos(δθ0))

2(N − 1)T0
,

NT∞m (cos(δθ0) − cos((1 − δ)θ0) − λ0)
(N − 1)(D(x0) + 2T0)

,

λ0(cos(δθ0) − cos((δ + ϵ)θ0))

(1 − γN)
∫ ∞

0
ϕ(s)ds

)
, where γN :=

minα Nα

N
.

(ii) (The case of minα,β,i, j⟨(x0
αi − x0

β j), v
cen
α ⟩ ≥ 0): We define κ̃0 as

κ̃0 =
λ̃0(1 − cos(δ̃θ0))

(1 − γN)
∫ ∞

0
ϕ(s)ds

, where λ̃0 := cos(δ̃θ0) − cos((1 − δ̃)θ0).

Herein, an auxiliary parameter δ̃ ∈ (0, 1) will be determined such that λ̃0 > 0 later in Section 3.2.2.

Finally, we present the definitions of △αi,β j(t) and vmin
α , which will be crucially used to verify the

non-emergence of mono-cluster flocking in the system (1.5). We let

△αi,β j(t) := ⟨xαi(t) − xβ j(t), vcen
α (t)⟩, vmin

α := min
1≤i≤Nα

⟨vαi(t), eα(T0)⟩ ,

where eα(t) := vcen
α (t)
∥vcen
α (t)∥ . Note that △αi,β j(t) shows how well Zα(t) and Zβ(t) are separated from each other

at time t. Therefore, rigorous estimates concerning △αi,β j(t) are important to obtain the non-emergence
of mono-cluster flocking in the system (1.5).

3.2.2. Non-emergence of mono-cluster flocking

In what follows, we demonstrate the non-emergence of the mono-cluster flocking of the TCSUS
system (1.5). For this, we assume that T0 > 0 throughout the subsubsection. If otherwise, it is a trivial
case when T0 = 0 (see Theorem 3.2). Now, we begin with the following preparatory lemmas:

Lemma 3.1. Suppose that Zα is a solution to the system (3.5) with given initial data Z0
α that is a

non-mono-cluster flocking state for each α ∈ {1, · · · , n}. Assume that there exists a positive number
δ ∈

(
0, 1

3

)
such that

0 < κ1 <
NT∞m (1 − cos(δθ0))

2(N − 1)T0
.

Then, one has for t ∈ [0,T0] and α , β,

1. ⟨vαi, vcen
α ⟩ > cos(δθ0), ⟨vβ j, vcen

α ⟩ < cos((1 − δ)θ0),

2. ⟨vαi, vβ j⟩ < cos((1 − δ)θ0), ⟨eα, eβ⟩ < cos((1 − 3δ)θ0).
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Proof. To estimate the first assertion of (1), we first see that

dvαi

dt
=
κ1

N

N∑
j=1

ϕ(∥xαi − x j∥)
(
v j − ⟨v j, vαi⟩vαi

T j

)

=
κ1

N

N∑
j,αi

ϕ(∥xαi − x j∥)
(
v j − ⟨v j, vαi⟩vαi

T j

)
.

Then, the triangle inequality and ϕ ≤ 1 yield that∥∥∥∥∥dvαi

dt

∥∥∥∥∥ ≤ (N − 1)κ1

NT∞m
,

where we used Proposition 2.2 and ∥v j − ⟨v j, vαi⟩vαi∥ ≤ 1. Thus, it follows that∣∣∣∣∣ d
dt
⟨vαi, vcen

α ⟩

∣∣∣∣∣ ≤ 2(N − 1)κ1

NT∞m
,

which implies by the condition for κ1 and construction of Z0
α that for t ∈ [0,T0],

⟨vαi(t), vcen
α (t)⟩ = ⟨vαi(0), vcen

α (0)⟩ +
∫ t

0

d
ds
⟨vαi(s), vcen

α (s)⟩ds

≥ ⟨vαi(0), vcen
α (0)⟩ −

2(N − 1)κ1T0

NT∞m

= 1 −
2(N − 1)κ1T0

NT∞m
> cos(δθ0).

To prove the second assertion of (1), we employ the same method as in the proof of the first assertion
of (1) as follows: ∥∥∥∥∥dvβ j

dt

∥∥∥∥∥ ≤ (N − 1)κ1

NT∞m
and then,

∣∣∣∣∣ d
dt
⟨vβ j, vcen

α ⟩

∣∣∣∣∣ ≤ 2(N − 1)κ1

NT∞m
.

From the definitions of Z0
α and θ0, we get that for t ∈ [0,T0],

⟨vβ j, vcen
α ⟩ ≤ ⟨vβ j(0), vcen

α (0)⟩ +
2(N − 1)κ1T0

NT∞m
= ⟨vcen

β (0), vcen
α (0)⟩ +

2(N − 1)κ1T0

NT∞m

≤ cos(θ0) +
2(N − 1)κ1T0

NT∞m
≤ cos(θ0) + 1 − cos(δθ0) < cos((1 − δ)θ0),

where we used the assumption for κ1. Next, following the proof of (1), we can also attain the first
assertion of (2) for t ∈ [0,T0]:

⟨vαi, vβ j⟩ < cos((1 − δ)θ0).

Finally, to verify the second assertion of (2), we combine (1) and the first assertion of (2) to attain that
for t ∈ [0,T0],

arccos(⟨eα, eβ⟩) ≥ − arccos(⟨eα, vαi⟩) + arccos(⟨vαi, vβ j⟩) − arccos(⟨vβ j, eβ⟩)
> (1 − δ)θ0 − 2δθ0 = (1 − 3δ)θ0.

Therefore, ⟨eα, eβ⟩ < cos((1 − 3δ)θ0) for t ∈ [0,T0] and we conclude this lemma.
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The following lemma plays a key role in deriving the desired result:

Lemma 3.2. Let Zα be a solution to the system (3.5) with given initial data Z0
α that is a non-mono-

cluster flocking state for each α = 1, · · · , n. Suppose that there exists a positive number δ ∈
(
0, 1

3

)
such

that

0 < κ1 < min
(

NT∞m (1 − cos(δθ0))
2(N − 1)T0

,
NT∞m (cos(δθ0) − cos((1 − δ)θ0) − λ0)

(N − 1)(D(x0) + 2T0)

)
, λ0 > 0.

Then, we obtain that

min
α,β,i, j

△αi,β j(T0) > 0.

Proof. First, we note that

∥xαi(t) − xβ j(t)∥ =

∥∥∥∥∥∥xαi(0) − xβ j(0) +
∫ t

0
(vαi(s) − vβ j(s))ds

∥∥∥∥∥∥ ≤ D(x0) + 2T0.

Hence, we have from the arguments studied in Lemma 3.1 and the definition of λ0 that

d
dt
△αi,β j = ⟨vαi, vcen

α ⟩ − ⟨vβ j, vcen
α ⟩ + ⟨xαi − xβ j, v̇cen

α ⟩

> cos(δθ0) − cos((1 − δ)θ0) − (D(x0) + 2T0)
(N − 1)κ1

NT∞m
≥ λ0 > 0,

which leads to the following result using the definition of T0:

△αi,β j(t) > △αi,β j(0) + λ0t and thus, △αi,β j(T0) > △αi,β j(0) + λ0T0 > 0.

From the above relation, we take minα,β,i, j to derive that

min
α,β,i, j

△αi,β j(T0) > 0.

We reach the desired lemma.

Subsequently, to prove the main result using the bootstrapping argument, we denote T̄0

T̄0 := sup
{
t ∈ (T0,∞)

∣∣∣∣∣ min
α,i
⟨vαi(s), eα(T0)⟩ > cos((δ + ϵ)θ0), s ∈ [T0, t)

}
,

where an auxiliary parameter ϵ ∈ (0, 1) will be determined in Lemma 3.3. Here, we observe from
Lemma 3.2 that eα(T0) is well-defined. In addition, T̄0 is well-defined due to Lemma 3.1. Indeed,

⟨vαi(T0), eα(T0)⟩ > cos(δθ0) > cos((δ + ϵ)θ0).

From now on, we claim that
T̄0 = ∞.

Networks and Heterogeneous Media Volume 18, Issue 4, 1493–1527.



1507

Lemma 3.3. Assume that Zα is a solution to the system (3.5) given initial data Z0
α that is a non-mono-

cluster flocking state for each α = 1, · · · , n. Suppose that there exist positive numbers ϵ and δ that
satisfy

0 < δ <
1 − 2ϵ

5
, ϵ ∈

(
0,

1
2

)
, 0 < κ1 <

NT∞m (1 − cos(δθ0))
2(N − 1)T0

, λ0 > 0.

Then, for t ∈ [T0, T̄0],

max
α,β, j
⟨vβ j, eα(T0)⟩ < cos((1 − 4δ − ϵ)θ0), min

α,β,i, j
⟨vαi − vβ j, eα(T0)⟩ > λ0.

Proof. To get the first assertion, from the definition of T̄0 and Lemma 3.1, we estimate that

arccos(⟨vβ j, eα(T0)⟩) ≥ arccos(⟨eβ(T0), eα(T0)⟩) − arccos(⟨vβ j, eβ(T0)⟩)
> (1 − 3δ)θ0 − (δ + ϵ)θ0 = (1 − 4δ − ϵ)θ0.

This leads us to deduce that

max
α,β, j
⟨vβ j, eα(T0)⟩ < cos((1 − 4δ − ϵ)θ0).

Additionally, the definition of T̄0 and the first assertion yield that

min
α,β,i, j
⟨(vαi − vβ j), eα(T0)⟩ > cos((δ + ϵ)θ0) − cos((1 − 4δ − ϵ)θ0) ≥ λ0.

We need the following lemma to verify that T̄0 = ∞:

Lemma 3.4. Let Zα be a solution to the system (3.5) given initial data Z0
α that is a non-mono-cluster

flocking state for each α = 1, · · · , n. Assume that there exist positive numbers ϵ and δ that satisfy
0 < δ < 1−2ϵ

5 , ϵ ∈
(
0, 1

2

)
, and

0 < κ1 < min
(

NT∞m (1 − cos(δθ0))
2(N − 1)T0

,
NT∞m (cos(δθ0) − cos((1 − δ)θ0) − λ0)

(N − 1)(D(x0) + 2T0)

)
, λ0 > 0.

Then, we reach that

ϕM(t) := max
α,β,i, j

ϕ(∥xβ j − xαi∥) ≤ ϕ(λ0(t − T0)), t ∈ [T0, T̄0).

Proof. By applying Lemma 3.2 and Lemma 3.3, we induce that for t ∈ [T0, T̄0),

∥xαi − xβ j∥ ≥ ⟨(xαi − xβ j), eα(T0)⟩

= ⟨(xαi(T0) − xβ j(T0)), eα(T0)⟩ +
∫ t

T0

⟨(vαi(s) − vβ j(s)), eα(T0)⟩ds

>

∫ t

T0

⟨(vαi(s) − vβ j(s)), eα(T0)⟩ds > λ0(t − T0).

Then, this leads to the following result for t ∈ [T0, T̄0) due to the monotonicity of ϕ:

ϕM(t) := max
α,β,i, j

ϕ(∥xβ j − xαi∥) ≤ ϕ(λ0(t − T0)).

Hence, we conclude the desired lemma.
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Subsequently, we estimate the time derivative of vmin
α to demonstrate the main result.

Lemma 3.5. Let Zα be a solution to the system (3.5) given initial data Z0
α that is a non-mono-cluster

flocking state for each α = 1, · · · , n. Then, for α = 1, · · · , n, it follows that for t ∈ [T0, T̄0),

v̇min
α ≥ −

κ1(1 − γN)ϕM

T∞m
.

Proof. First, we fix α ∈ {1, · · · , n}; then, we select index iα := iα(t) ∈ {1, · · · ,Nα} at time t such that

vmin
α = ⟨vαiα , eα(T0)⟩.

Then, if we use system (3.5), Proposition 2.2, and the definitions of iα and T̄0, we obtain that

v̇min
α = ⟨v̇αiα , eα(T0)⟩

=
κ1

N

Nα∑
j=1

〈
ϕ(∥xαiα − xα j∥)

(
vα j − ⟨vα j, vαiα⟩vαiα

Tα j

)
, eα(T0)

〉

+
κ1

N

∑
β,α

Nβ∑
j=1

〈
ϕ(∥xαiα − xβ j∥)

(
vβ j − ⟨vβ j, vαiα⟩vαiα

Tβ j

)
, eα(T0)

〉

≥
κ1

N

∑
β,α

Nβ∑
j=1

〈
ϕ(∥xαiα − xβ j∥)

(
vβ j − ⟨vβ j, vαiα⟩vαiα

Tβ j

)
, eα(T0)

〉
≥ −

κ1ϕM

T∞m
·

(N − Nα)
N

≥ −
κ1(1 − γN)ϕM

T∞m
,

where we employed
∥vβ j − ⟨vβ j, vαiα⟩vαiα∥ ≤ 1.

Thus, we get the desired lemma.

Finally, we are ready to study the non-emergence of the mono-cluster flocking of system (3.5) under
the integrable communication weight ϕ, i.e.,

∥ϕ∥L1 =

∫ ∞

0
ϕ(s)ds < ∞.

Theorem 3.2. (Non-emergence of mono-cluster flocking) Assume that Zα is a solution to the
system (3.5) with given initial data Z0

α that is a non-mono-cluster flocking state for each α = 1, · · · , n.
Suppose that T0 > 0 and there exist positive numbers ϵ and δ that satisfy 0 < δ < 1−2ϵ

5 and ϵ ∈
(
0, 1

2

)
such that

0 < κ1 < κ̃0, λ0 > 0.

Then, we attain that

min
α,β,i, j

sup
t∈R+
∥xαi − xβ j∥ = ∞, min

α,β,i, j
lim inf

t→∞
∥vαi − vβ j∥ > 0.

Meanwhile, when T0 = 0, we let λ̃ > 0 and δ̃ ∈
(
0, 1

2

)
. Then, we can reach the same results as above.

Networks and Heterogeneous Media Volume 18, Issue 4, 1493–1527.



1509

Proof. To demonstrate the desired results, we divide them by the following dichotomy:

T0 > 0 or T0 = 0.

(i) (The case of T0 > 0) For the proof by contradiction, suppose that T̄0 < ∞. Then, there exist
α ∈ {1, · · · , n} and iα ∈ {1, · · · ,Nα} such that

⟨vαiα(T̄0), eα(T0)⟩ = cos((δ + ϵ)θ0).

Then, we use Lemmas 3.1, 3.4 and 3.5 to obtain that for t ∈ [T0, T̄0],

⟨vαiα , eα(T0)⟩ ≥ vmin
α ≥ vmin

α (T0) −
κ1(N − Nα)

NT∞m

∫ t

T0

ϕM(s)ds

≥ cos(δθ0) −
κ1(N − Nα)

NT∞m λ0
∥ϕ∥L1 ≥ cos(δθ0) −

κ1(1 − γN)
T∞m λ0

∥ϕ∥L1

> cos((δ + ϵ)θ0),

which gives a contradiction; therefore, T̄0 = ∞. Then, the second assertion of Lemmas 3.3 and 3.4
with T̄0 = ∞ yield the desired result.
(ii) (The case of T0 = 0) This case is trivial, but we provide the proof rigorously to compare with the
proof regarding the first assertion. Let

T ∗0 := sup
{
t ∈ R+ − {0}

∣∣∣∣∣ min
α,i
⟨vαi, eα(0)⟩ > cos(δ̃θ0), t ∈ [0, t)

}
, where δ̃ ∈

(
0,

1
2

)
.

It follows from the definition of Zα that T ∗0 > 0 exists. For the proof by contradiction, suppose that
T ∗0 < ∞. Next, we employ the same method as utilized in proof of the first assertion of Lemma 3.1 to
estimate that

⟨vβ j(t), eα(0)⟩ < cos(1 − δ̃)θ0, t ∈ [0,T ∗0).

Hence, we have

min
α,β,i, j
⟨vαi(t) − vβ j(t), eα(0)⟩ > cos(δ̃θ0) − cos((1 − δ̃)θ0) =: λ̃0 > 0.

Then, similarly to the proof of Lemma 3.4, one can show that

ϕM(t) ≤ ϕ(λ̃0t), t ∈ [0,T ∗0]

and thus, for t ∈ [0,T ∗0), we can get the following estimates using the same methodologies as in the
proof of Lemma 3.5:

⟨vαiα , eα(0)⟩ ≥ vmin
α ≥ vmin

α (0) −
κ1(N − Nα)

NT∞m

∫ t

0
ϕM(s)ds

= 1 −
κ1(N − Nα)

NT∞m

∫ t

0
ϕM(s)ds ≥ 1 −

κ1(N − Nα)
NT∞m λ0

∥ϕ∥L1 > cos(δ̃θ0),

which leads to a contradiction. Therefore, T ∗0 = ∞. Finally, if the arguments of Lemmas 3.3 and 3.4
are applied to the case of T0 = 0, we conclude the desired result.
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3.3. Mono-cluster flocking under non-integrable ϕ

This subsection demonstrates a different sufficient framework than Section 3.1 for mono-cluster
flocking to emerge in the system (1.5) when ϕ is non-integrable by using the previous results of [3].

Proposition 3.2. [3] Let {(xi, vi,Ti)}Ni=1 be a solution to the system (1.5) such that

A(v)(0) := min
1≤i, j≤N

⟨v0
i , v

0
j⟩ > 0, DV(0) <

κ1A(v)(0)
T∞M

∫ ∞

DX(0)
ϕ(s)ds.

Then, there exists a nonnegative number D∞X ∈ R+ satisfying for t ∈ R+,

1. (Group formation) DX(t) ≤ D∞X ,

2. (Velocity alignment) DV(t) ≤ DV(0) exp
(
−
κ1A(v)(0)ϕ(D∞X )

T∞M
t
)
,

3. (Temperature equilibrium) DT (t) ≤ DT (0) exp
(
−
κ2ζ(D∞X )
(T∞M)2 t

)
.

Proof. We employ the same methodologies as the proofs of Lemma 3.1 and Theorem 3.2 in [3] to
obtain the desired result. Although the previous paper [3] dealt with the singular communication weight
ϕ to system (1.5), the proofs of Lemma 3.1 and Theorem 3.2 in [3] can be applied, even assuming the
regular communication weight case covered in this paper.

Due to Proposition 3.2, we note the following remark.

Remark 3.2. It is easy to check that we can remove the condition,

DV(0) <
κ1A(v)(0)

T∞M

∫ ∞

DX(0)
ϕ(s)ds,

when ϕ is non-integrable. In other words, when ϕ is non-integrable, the mono-cluster flocking of the
system (1.5) emerges under the only assumptionA(v)(0) > 0.

Finally, we present the following mono-cluster flocking of system (1.5) under non-integrable ϕ:

Theorem 3.3. (Mono-cluster flocking under non-integrable ϕ) Assume that {(xi, vi,Ti)}Ni=1 is a solution
to the system (1.5) under non-integrable ϕ and suppose that

A(v)(0) := min
1≤i, j≤N

⟨v0
i , v

0
j⟩ > 0.

Then, there exists a nonnegative number D∞X ∈ R+ such that for t ∈ R+,

1. (Group formation) DX(t) ≤ D∞X ,

2. (Velocity alignment) DV(t) ≤ DV(0) exp
(
−
κ1A(v)(0)ϕ(D∞X )

T∞M
t
)
,

3. (Temperature equilibrium) DT (t) ≤ DT (0) exp
(
−
κ2ζ(D∞X )
(T∞M)2 t

)
.
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4. Multi-cluster flocking

This section provides several sufficient frameworks for the multi-cluster flocking of the
system (1.5). In Section 3, we studied that mono-cluster flocking does not occur when the coupling
strength κ1 is less than a certain positive value in system (1.5) with integrable ϕ. In Section 3.2.1, we
employed suitable subdivided configurations, {Z0

α}
n
α=1, so that all initial velocities are equal to each

other in each group and deduced some sufficient conditions guaranteeing the non-emergence of the
mono-cluster flocking of the system. Accordingly, we may wonder what the sufficient conditions are
for multi-cluster flocking to occur, so it is necessary to check how little coupling strength is required
for multi-cluster flocking to occur in system (1.5). To achieve this, we reorganize the system (1.5)
under integrable ϕ to a multi-cluster setting and then derive suitable dissipative differential
inequalities with respect position–velocity–temperature. Finally, using bootstrapping arguments for
these inequalities, we deduce appropriate sufficient conditions in terms of the initial data and system
parameters to guarantee the mono-cluster flocking of system (1.5). As a direct consequence, we also
prove that the velocity and temperature of all agents in each cluster group converge to the same
values.

4.1. Reorganization of system (1.5) and basic materials

This subsection converts the TCSUS model (1.5) into some multi-cluster setting. Afterward, we
present basic estimates for the averages of position-velocity-temperature. For this, we begin by
reorganizing the system (1.5) to the following multi-cluster setting:

dxαi

dt
= vαi, t > 0, i ∈ {1, · · · ,Nα}, α ∈ {1, · · · , n}, n ≥ 3, (4.1a)

v̇αi =
κ1

N

Nα∑
j=1

ϕ(∥xαi − xα j∥)
(vα j − ⟨vαi, vα j⟩vαi)

Tα j
(4.1b)

+
κ1

N

∑
β,α

Nβ∑
j=1

ϕ(∥xαi − xβ j∥)
(vβ j − ⟨vαi, vβ j⟩vαi)

Tβ j
, (4.1c)

Ṫαi =
κ2

N

Nα∑
j=1

ζ(∥xαi − xα j∥)
(

1
Tαi
−

1
Tα j

)
+
κ2

N

∑
β,α

Nβ∑
j=1

ζ(∥xαi − xβ j∥)
(

1
Tαi
−

1
Tβ j

)
, (4.1d)

(xαi(0), vαi(0),Tαi(0)) ∈ Z0
α × T 0

αi ⊂ R
d × Sd−1 × (R+ − {0}). (4.1e)

For each cluster group Zα = {(xαi, vαi,Tαi)}
Nα

i=1, we denote the following three configuration vectors:

Aα := (aα1, · · · aαNα
), 1 ≤ α ≤ n, where A ∈ {X,V,T }, a ∈ {x, v,T }, A := (A1, · · · , Aα).

Next, we define position-velocity-temperature L∞-diameters to each cluster group as follows:

(i) (The position-velocity-temperature diameters to the α-th cluster group)

DXα := max
1≤i, j≤Nα

∥xαi − xα j∥, DVα := max
1≤i, j≤Nα

∥vαi − vα j∥, DTα := max
1≤i, j≤Nα

|Tαi − Tα j|.
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(ii) (The local averages of velocity and temperature in each cluster group)

vcen
α :=

1
Nα

Nα∑
i=1

vαi, T cen
α :=

1
Nα

Nα∑
i=1

Tαi.

Before we end this subsection, we offer the following lemma regarding the local averages of velocity
and temperature for each cluster group. This lemma will be crucially used to prove that the velocity
and temperature of all agents in each cluster group converges to some unified values.

Lemma 4.1. Assume that Zα = {(xαi, vαi,Tαi)}
Nα

i=1 is a solution to the system (4.1). Then, each local
average (xcen

α , vcen
α ,T cen

α ) satisfies the following relations:

dxcen
α

dt
= vcen

α , t > 0, α ∈ {1, · · · , n}, n ≥ 3,

Nαv̇cen
α =

κ1

N

Nα∑
i=1

Nα∑
j=1

ϕ(∥xαi − xα j∥)
vαi∥vα j − vαi∥

2

2Tα j

+
κ1

N

∑
β,α

Nα∑
i=1

Nβ∑
j=1

ϕ(∥xαi − xβ j∥)
(
vβ j − vαi +

vαi∥vβ j − vαi∥
2

2

)
1

Tβ j
,

NαṪ cen
α =

κ2

N

∑
β,α

Nα∑
i=1

Nβ∑
j=1

ζ(∥xαi − xβ j∥)
(

1
Tαi
−

1
Tβ j

)
.

Proof. The first assertion is trivial. For the second assertion, we take
∑Nα

i=1 to v̇αi and use the standard
trick of interchanging i and j and dividing 2 and

1 − ⟨vαi, vα j⟩ =
∥vαi − vα j∥

2

2
.

For the third assertion, we take
∑Nα

i=1 to Ṫαi and again use the standard trick as above.

4.2. Dissipative inequalities

In the following, we derive several dissipative differential inequalities with respect to position–
velocity–temperature to obtain suitable sufficient frameworks in terms of system parameters and initial
data for the multi-cluster flocking of system (4.1). For this, we define

DX :=
n∑
α=1

DXα , DV :=
n∑
α=1

DVα , DT :=
n∑
α=1

DTα .

Note that the above diameter functionals DX, DV and DT measure the total deviations of position,
velocity and temperature to each cluster group Zα, respectively.

To reduce the TCSUS system (4.1) to its appropriate dissipative structure, we employ the following
functionals: For α = 1, · · · , n,

Φαi j(t) :=
ϕ(∥xαi − xα j∥)

Nα

+

1 −
∑Nα

j=1 ϕ(∥xαi − xα j∥)

Nα

 δi j,
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where δi j denotes the Kronecker delta. Next, for simplicity, we set

ϕαi j := ϕ(∥xαi − xα j∥).

Then, we can easily check that Φαi j satisfies the following properties:

1. Φαi j ≥
ϕαi j

Nα

,

Nα∑
j=1

Φαi j = 1, Φαi j = Φα ji,

2.
Nα∑
j=1

Φαi j
(vα j − ⟨vα j, vαi⟩vαi)

Tα j
=

Nα∑
j=1

ϕαi j

Nα

(vα j − ⟨vα j, vαi⟩vαi)
Tα j

.

Similarly, we can observe that the functional Ψαi j defined by

Ψαi j(t) :=
ζ(∥xαi − xα j∥)

Nα

+

1 −
∑Nα

j=1 ζ(∥xαi − xα j∥)

Nα

 δi j, ζαi j := ζ(∥xαi − xα j∥)

satisfies the following relations:

1. Ψαi j ≥
ζαi j

Nα

,

Nα∑
j=1

Ψαi j = 1, Ψαi j = Ψα ji,

2.
Nα∑
j=1

Ψαi j

(
1

Tαi
−

1
Tα j

)
=

Nα∑
j=1

ζαi j

Nα

(
1

Tαi
−

1
Tα j

)
.

We note that the above functionals of this type have already been used several times in previous
literature [2, 6, 25, 27, 28]. Unlike the aforementioned previous papers, the above functionals can be
applied to a multi-cluster setting.

In what follows, we induce dissipative differential inequalities in terms of DX, DV and DT ,
respectively, to deduce several sufficient frameworks for the multi-cluster flocking estimate of
system (4.1).

Lemma 4.2. (Dissipative structure) Suppose that Zα = {(xαi, vαi,Tαi)}
Nα

i=1 is a solution to the
system (4.1). If we set ϕM and ζM as

ϕM(t) := max
α,β,i, j

ϕ(∥xβ j − xαi∥), ζM(t) := max
α,β,i, j

ζ(∥xβ j − xαi∥).

Then, we have the following three differential inequalities for a.e. t ∈ R+ − {0}:

1.
∣∣∣∣∣dDX

dt

∣∣∣∣∣ ≤ DV ,

2.
dDV

dt
≤ −

κ1 min(N1, · · · ,Nα)ϕ(DX)
NT∞M

DV +
κ1 max(N1, · · · ,Nα)D3

V

2NT∞m
+

2κ1(n − 1)ϕM

T∞m
,

3.
dDT

dt
≤ −

κ2 min(N1, · · · ,Nα)ζ(DX)
N(T∞M)2 DT + 2κ2(n − 1)ζM

(
1

T∞m
−

1
T∞M

)
.

Proof. Cauchy–Schwarz’s inequality immediately yields the first assertion. Next, to prove the third
assertion, we choose two indices, Mt and mt, depending on t, such that

DTα(t) = TαMt(t) − Tαmt(t), 1 ≤ mt,Mt ≤ Nα.
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Now, we recall the subsystem (4.1c) as follows:

Ṫαi =
κ2

N

Nα∑
j=1

ζ(∥xαi − xα j∥)
(

1
Tαi
−

1
Tα j

)
+
κ2

N

∑
β,α

Nβ∑
j=1

ζ(∥xαi − xβ j∥)
(

1
Tαi
−

1
Tβ j

)
.

Then, for a.e. t ∈ R+ − {0}, one can show that by using the definitions of Mt and mt

dDTα

dt
=
κ2

N

Nα∑
j=1

ζ(∥xαMt − xα j∥)
(

1
TαMt

−
1

Tα j

)

−
κ2

N

Nα∑
j=1

ζ(∥xαmt − xα j∥)
(

1
Tαmt

−
1

Tα j

)

+
κ2

N

∑
β,α

Nβ∑
j=1

ζ(∥xαMt − xβ j∥)
(

1
TαMt

−
1

Tβ j

)

−
κ2

N

∑
β,α

Nβ∑
j=1

ζ(∥xαmt − xβ j∥)
(

1
Tαmt

−
1

Tβ j

)
=:I1 + I2 + I3 + I4.

(i) (Estimate of I1+I2) Similar to the proof of Lemma 3.2 in [2], for a.e. t ∈ R+ − {0},

I1 + I2 ≤ −
κ2Nαζ(DXα)

N(T∞M)2 DTα .

(ii) (Estimate of I3+I4) From Proposition 2.2 and the definitions of ϕM and ϕm, for a.e. t ∈ R+ − {0},

I3 + I4 ≤
κ2

N

∣∣∣∣∣∣∣∑
β,α

Nβ∑
j=1

ζ(∥xαMt − xβ j∥)
(

1
TαMt

−
1

Tβ j

)∣∣∣∣∣∣∣
+
κ2

N

∣∣∣∣∣∣∣∑
β,α

Nβ∑
j=1

ζ(∥xαmt − xβ j∥)
(

1
Tαmt

−
1

Tβ j

)∣∣∣∣∣∣∣
≤

2κ2(N − Nα)ζM

N

(
1

T∞m
−

1
T∞M

)
.

Thus, combining I1+I2 and I3+I4 yields that for a.e. t ∈ R+ − {0},

dDTα

dt
≤ −

κ2Nαζ(DXα)
N(T∞M)2 DTα +

2κ2(N − Nα)ζM

N

(
1

T∞m
−

1
T∞M

)
.

Therefore, we take the summation from α=1 to n to the above inequality to get that for a.e. t ∈ R+−{0},

dDT

dt
≤ −

κ2 min(N1, · · · ,Nα)ζ(DX)
N(T∞M)2 DT + 2κ2(n − 1)ζM

(
1

T∞m
−

1
T∞M

)
.

To verify the second assertion, we select two indices Mt and mt depending on t satisfying

DVα(t) = ∥vαMt(t) − vαmt(t)∥, 1 ≤ mt,Mt ≤ Nα.
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We recall the following velocity coupling Eq (4.1b):

v̇αi =
κ1

N

Nα∑
j=1

ϕ(∥xαi − xα j∥)
(vα j − ⟨vαi, vα j⟩vαi)

Tα j

+
κ1

N

∑
β,α

Nβ∑
j=1

ϕ(∥xαi − xβ j∥)
(vβ j − ⟨vαi, vβ j⟩vαi)

Tβ j
.

Hence, we attain that for a.e. t ∈ R+ − {0},

1
2

dD2
Vα

dt
= ⟨vαMt − vαmt , v̇αMt − v̇αmt⟩

=

〈
vαMt − vαmt ,

κ1

N

Nα∑
j=1

ϕαMt j

(
vα j − ⟨vαMt , vα j⟩vαMt

Tα j

)

−
κ1

N

Nα∑
j=1

ϕαmt j

(
vα j − ⟨vαmt , vα j⟩vαmt

Tα j

) 〉

+

〈
vαMt − vαmt ,

κ1

N

∑
β,α

Nβ∑
j=1

ϕ(∥xαMt − xβ j∥)
(
vβ j − ⟨vαMt , vβ j⟩vαMt

Tβ j

)

−
κ1

N

∑
β,α

Nβ∑
j=1

ϕ(∥xαmt − xβ j∥)
(
vβ j − ⟨vαmt , vβ j⟩vαmt

Tβ j

) 〉
=: J1 +J2.

(iii) (Estimate of J1) In the same way as the proof of Lemma 3.2 of [2], for a.e. t ∈ R+ − {0},

J1 ≤ −
κ1Nα

N

ϕ(DXα)
T∞M

−
D2

Vα

2T∞m

 D2
Vα .

(iiii) (Estimate of J2) We employ the following identities:

∥vβ j − ⟨vαMt , vβ j⟩vαMt∥ ≤ 1, ∥vβ j − ⟨vαmt , vβ j⟩vαmt∥ ≤ 1

with Cauchy–Schwarz’s inequality and Proposition 2.2 to estimate that for a.e. t ∈ R+ − {0},

J2 ≤
κ1DVα

N

∥∥∥∥∥∥∥∑
β,α

Nβ∑
j=1

ϕ(∥xαMt − xβ j∥)
(
vβ j − ⟨vαMt , vβ j⟩vαMt

Tβ j

)∥∥∥∥∥∥∥
+
κ1DVα

N

∥∥∥∥∥∥∥∑
β,α

Nβ∑
j=1

ϕ(∥xαmt − xβ j∥)
(
vβ j − ⟨vαmt , vβ j⟩vαmt

Tβ j

)∥∥∥∥∥∥∥
≤

2κ1(N − Nα)ϕMDVα

NT∞m
.
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Then, we combine J1 and J2 to derive that for a.e. t ∈ R+ − {0},

dDVα

dt
≤ −

κ1Nα

N

ϕ(DXα)
T∞M

−
D2

Vα

2T∞m

 DVα +
2κ1(N − Nα)ϕM

NT∞m
.

We take the summation from α=1 to n to the above inequality to obtain that

dDV

dt
≤ −

κ1 min(N1, · · · ,Nα)ϕ(DX)
NT∞M

DV +
κ1 max(N1, · · · ,Nα)D3

V

2NT∞m
+

2κ1(n − 1)ϕM

T∞m
,

because the monotonicity of ϕ implies that

D3
V ≥

∑
α

D3
Vα , min(ϕ(DX1), · · · , ϕ(DXα)) ≥ ϕ(DX).

Finally, we demonstrate the second assertion.

Remark 4.1. In Lemma 4.2, the two terms below

−
κ1 min(N1, · · · ,Nα)ϕ(DX)

NT∞M
DV +

κ1 max(N1, · · · ,Nα)D3
V

2NT∞m
,

−
κ2 min(N1, · · · ,Nα)ζ(DX)

N(T∞M)2 DT

are related to the velocity alignment and temperature equilibrium for each cluster group of system (4.1),
respectively. Meanwhile, the following terms in Lemma 4.2

2(n − 1)ϕMκ1

T∞m
, 2(n − 1)ζM

(
1

T∞m
−

1
T∞M

)
κ2

show the tendency of the velocities and temperatures of system (4.1) to separated into n multi-cluster
groups in system (4.1).

4.3. Multi-cluster flocking

This subsection describes suitable sufficient frameworks (H) for the multi-cluster flocking estimate
and then, under (H), we demonstrate the multi-cluster flocking of the proposed system (4.1). For this,
we first display the admissible data (H) as follows:

(H) := {(X(0),V(0),T (0)) ∈ R2dN × (R+ − {0})N | (H0), (H1), (H2) and (H3) hold.}

(i) (H0) (Notation): For brevity, we denote the following notation:

Λ :=
DV(0)
Λ0

+
4(n − 1)κ1

T∞mΛ
2
0

ϕ
(r0

2

)
+

4(n − 1)κ1

(min1≤α≤n−1 d(Iα, Iα+1)) T∞mΛ0

∫ ∞

r0
2

ϕ(s)ds,

δ ∈ (0, 1), Λ̄0 :=
κ2 min(N1, · · · ,Nα)ζ(D∞X )

N(T∞M)2 ,
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Λ0 :=
δκ1 min(N1, · · · ,Nα)ϕ(D∞X )

NT∞M
,

Λα :=
κ1Nα

NT∞m
Λ0 +

κ1(N − Nα)
NT∞m (min1≤α≤n−1 d(Iα, Iα+1))

∫ ∞

r0
2

ϕ(s)ds,

r0 := min
α<β,i, j

(xk
β j(0) − xk

αi(0)) for some fixed 1 ≤ k ≤ d.

(ii) (H1) (Well prepared conditions): There exists a strictly positive number D∞X > 0 such that

D∞X ≥ DX(0) + Λ, and ϕ is integrable i.e., ∥ϕ∥L1 < ∞.

(iii) (H2) (Separated initial data): For fixed 1 ≤ k ≤ d in (H0), there exist real sequences (ai)n
i=1 and

(bi)n
i=1 such that the initial data and system parameters are selected to be split suitably as follows:

r0 > 0, a1 < b1 < a2 < b2 · · · < an < bn, Iα := [aα, bα] ⊂ [−1, 1], Iα ∩ Iβ = ∅ (β , α),
[vk
αi(0) − Λα, vk

αi(0) + Λα] ⊂ Iα := [aα, bα] ⊂ [−1, 1], α, β = 1, · · · , n, i = 1, · · · ,Nα.

(iii) (H3) (Small fluctuations and coupling strength): The local velocity perturbation for each cluster
group and coupling strength are sufficiently small as follows:

2κ1(
√

1 + δ + 1)(n − 1)
∫ ∞

r0
2
ϕ(s)ds

δ (min1≤α≤n−1 d(Iα, Iα+1)) T∞m
< DV(0) ≤

√
2(1 − δ)ϕ(D∞X ) min(N1, · · · ,Nα)T∞m

(1 + δ) max(N1, · · · ,Nα)T∞M
.

Next, we give a brief comment regarding (H). The assumption (H1) is that the sufficient condition
guarantees a group formation to each cluster group. Note that (H2) implies that position initial data
for each cluster group should be sufficiently separate from each other to verify the multi-cluster
flocking result. Indeed, if vk

αi(0) is covered by Iα := [aα, bα], then we take sufficiently small κ1 so that
[vk
αi(0) − Λα, vk

αi(0) + Λα] ⊂ Iα because Λα is linearly proportional to κ1. (H3) describes that the
velocity perturbation between each pair of cluster groups is sufficiently small to deduce the velocity
alignment for each cluster group. Here, we can find the admissible data satisfying the
assumption (H3) when κ1 is sufficiently small. Moreover, under sufficiently large r0 and suitable
temperature initial data and small coupling strength regime, we can check that the sufficient
framework (H) is admissible data.

To prove the multi-cluster flocking result, we define the following set:

S :=
{

s > 0
∣∣∣∣∣ min
α,β,i, j

∥xαi(t) − xβ j(t)∥ ≥
(

min
1≤α≤n−1

d(Iα, Iα+1)
)

t +
r0

2
, t ∈ [0, s)

}
,

where d(Iα, Iα+1) is a distance between adjacent intervals Iα and Iα+1. Herein, we observe that S is
nonempty due to the assumption (H2) and the continuity of ∥xαi(t) − xβ j(t)∥, and we set

sup S =: T ∗.

Lemma 4.3. Assume that Zα = {(xαi, vαi,Tαi)}
Nα

i=1 is a solution to the system (4.1). Suppose that (H0),
(H1), and (H3) hold. Then, it follows that

DV(t) <
√

(1 + δ)DV(0), DX(t) ≤ D∞X , t ∈ [0,T ∗]. (4.2)
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Proof. First, we consider

S ′ :=
{
s > 0

∣∣∣∣∣ the desired estimates Eq (4.2) hold, t ∈ [0, s], s ≤ T ∗
}
.

Let sup S ′ =: T ∗∗ and suppose that T ∗∗ < T ∗ for the proof by contradiction. Then, one has for
t ∈ [0,T ∗∗],

D2
V(t) ≤ (1 + δ)D2

V(0) ≤
2(1 − δ)ϕ(D∞X ) min(N1, · · · ,Nα)T∞m

max(N1, · · · ,Nα)T∞M

and

−
κ1 min(N1, · · · ,Nα)ϕ(DX)

NT∞M
≤ −

κ1 min(N1, · · · ,Nα)ϕ(D∞X )
NT∞M

.

Then, for a.e. t ∈ (0,T ∗∗), the second assertion of Lemma 4.2 and the above estimates lead to the
following inequalities:

dDV

dt
≤ −

κ1 min(N1, · · · ,Nα)ϕ(DX)
NT∞M

DV +
κ1 max(N1, · · · ,Nα)D3

V

2NT∞m
+

2κ1(n − 1)ϕM

T∞m

≤ −
δκ1 min(N1, · · · ,Nα)ϕ(D∞X )

NT∞M
DV +

2κ1(n − 1)ϕM

T∞m

= −Λ0DV +
2κ1(n − 1)ϕM

T∞m
.

This gives from Grönwall’s lemma that for t ∈ [0,T ∗∗],

DV(t) ≤DV(0) exp (−Λ0t) +
2κ1(n − 1)

T∞mΛ0
exp

(
−
Λ0

2
t
)
ϕ
(r0

2

)
+

2κ1(n − 1)
T∞mΛ0

ϕ

(
(min1≤α≤n−1 d(Iα, Iα+1)) t + r0

2

)
,

(4.3)

where we used the definition of S and the fact that

ϕM ≤ ϕ
((

min
1≤α≤n−1

d(Iα, Iα+1)
)

t +
r0

2

)
.

Moreover, we again employ Grönwall’s lemma to reach that for t ∈ [0,T ∗∗],

DV(t) ≤DV(0) exp (−Λ0t) +
2κ1(n − 1)

(min1≤α≤n−1 d(Iα, Iα+1)) T∞m

∫ ∞

r0
2

ϕ(s)ds. (4.4)

Next, using the definition of T ∗∗ yields that

D2
V(T ∗∗) = (1 + δ)D2

V(0) or DX(T ∗∗) = D∞X .

In the former case, it is contradictory to (H3) because inequality (4.4) implies that

DV(T ∗∗) =
√

1 + δDV(0) ≤ DV(0) +
2κ1(n − 1)

(min1≤α≤n−1 d(Iα, Iα+1)) T∞m

∫ ∞

r0
2

ϕ(s)ds.
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In the latter case, we estimate from inequality (4.3) that for t ∈ [0,T ∗∗],

DX(t) ≤ DX(0) +
∫ t

0
DV(s)ds

≤ DX(0) +
∫ t

0

[
DV(0) exp (−Λ0s) +

2κ1(n − 1)
T∞mΛ0

exp
(
−
Λ0

2
s
)
ϕ
(r0

2

)
+

2κ1(n − 1)
T∞mΛ0

ϕ

(
(min1≤α≤n−1 d(Iα, Iα+1)) s + r0

2

) ]
ds

< DX(0) + Λ ≤ D∞X .

(4.5)

Accordingly, DX(T ∗∗) < D∞X , which is contradictory. Finally, sup S ′ = T ∗∗ = T ∗. We have reached the
desired lemma.

Subsequently, we claim that T ∗ = ∞, which is crucial to derive the multi-cluster flocking estimate
of the system (4.1).

Theorem 4.1. Following Lemma 4.3, we further assume that (H2) holds. Then, we get that

T ∗ = ∞.

This is equivalent to

min
α,β,i, j

∥xαi(t) − xβ j(t)∥ ≥
(

min
1≤α≤n−1

d(Iα, Iα+1)
)

t +
r0

2
, t ∈ R+.

Proof. For the proof by contradiction, suppose that T ∗ < ∞. From the definition of S , we select four
indices that satisfy

1 ≤ α∗ < β∗ ≤ n, i∗ ∈ {1, · · · ,Nα∗} and j∗ ∈ {1, · · · ,Nβ∗}

such that
∥xα∗i∗(T ∗) − xβ∗ j∗(T ∗)∥ =

(
min

1≤α≤n−1
d(Iα, Iα+1)

)
T ∗ +

r0

2
.

Then, we show that for the k ∈ {1, · · · , d} chosen in (H0),

∥xα∗i∗(T ∗) − xβ∗ j∗(T ∗)∥ ≥ xk
β∗ j∗(T

∗) − xk
αi∗(T

∗)

= xk
β∗ j∗(0) − xk

α∗i∗(0) +
∫ T ∗

0

(
vk
β∗ j∗(t) − vk

α∗i∗(t)
)

dt

≥ r0 +

∫ T ∗

0

(
vk
β∗ j∗(t) − vk

α∗i∗(t)
)

dt.

Next, we integrate system (4.1b) and employ the following relation:

∥vα j − ⟨vαi, vα j⟩vαi∥
2 = 1 − ⟨vαi, vα j⟩

2 = (1 − ⟨vαi, vα j⟩)(1 + ⟨vαi, vα j⟩) ≤ D2
Vα

to attain that for t ∈ [0,T ∗],

|vk
αi(t) − vk

αi(0)| ≤ ∥vαi(t) − vαi(0)∥ ≤
∫ t

0
∥v̇αi∥ds
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≤
κ1Nα

NT∞m

∫ t

0
DVα(s)ds +

κ1(N − Nα)
NT∞m

∫ t

0
ϕM(s)ds

≤
κ1Nα

NT∞m

∫ ∞

0
DVα(s)ds +

κ1(N − Nα)
NT∞m

∫ ∞

0
ϕ
(

min
1≤α≤n−1

d(Iα, Iα+1)s +
r0

2

)
ds

≤
κ1Nα

NT∞m

∫ ∞

0
DV(s)ds +

κ1(N − Nα)
NT∞m

∫ ∞

0
ϕ
(

min
1≤α≤n−1

d(Iα, Iα+1)s +
r0

2

)
ds

≤
κ1Nα

NT∞m
Λ +

κ1(N − Nα)
NT∞m

∫ ∞

0
ϕ
(

min
1≤α≤n−1

d(Iα, Iα+1)s +
r0

2

)
ds

=
κ1Nα

NT∞m
Λ +

κ1(N − Nα)
NT∞m (min1≤α≤n−1 d(Iα, Iα+1))

∫ ∞

r0
2

ϕ(s)ds =: Λα,

where we used ϕ ≤ 1, ∥vβ j − ⟨vαi, vβ j⟩vαi∥ ≤ 1, and Λ was estimated in inequality (4.5). Therefore, it
follows by (H2) that for α = 1, · · · , n,

vk
αi(0) + Λα ≥ vk

αi(0) + |vk
αi(t) − vk

αi(0)| ≥ vk
αi(t) = vk

αi(0) + vk
αi(t) − vk

αi(0)
≥ vk

αi(0) − |vk
αi(t) − vk

αi(0)| ≥ vk
αi(0) − Λα =⇒ vk

αi(t) ∈ Iα.

Then, we derive that using the assumption (H2),

∥xα∗i∗(T ∗) − xβ∗ j∗(T ∗)∥ ≥ r0 +

∫ T ∗

0

(
vk
β∗ j∗(t) − vk

α∗i∗(t)
)

dt

>
r0

2
+ min

1≤α≤n−1
d(Iα, Iα+1)T∗,

which gives a contradiction to T ∗ < ∞. Consequently, we conclude that T ∗ = ∞.

Now, we are ready to prove the multi-cluster flocking dynamics under sufficient framework (H) by
applying Lemma 4.3 and Theorem 4.1. In addition, we verify that there exist common velocity and
temperature convergence values depending on the decay rates of the integrable communication weights
ϕ and ζ, respectively, in each cluster group.

Theorem 4.2. Let Zα = {(xαi, vαi,Tαi)}
Nα

i=1 be a solution to the system (4.1) and suppose that the
frameworks (H0), (H1), (H2), and (H3) hold. Then, we obtain the following assertions for t ∈ R+:

1. (Velocity alignment for each cluster group)

DV(t) ≤ DV(0) exp (−Λ0t) +
2κ1(n − 1)

T∞mΛ0
exp

(
−
Λ0

2
t
)
ϕ
(r0

2

)
+

2κ1(n − 1)
T∞mΛ0

ϕ

(
(min1≤α≤n−1 d(Iα, Iα+1)) t + r0

2

)
.

2. (Temperature equilibrium for each cluster group)

DT (t) ≤ DT (0) exp(−Λ̄0t) + 2κ2(n − 1)
(

1
T∞m
−

1
T∞M

)
exp

(
−
Λ̄0

2
t
)
ζ
(r0

2

)
+ 2κ2(n − 1)

(
1

T∞m
−

1
T∞M

)
ζ

(
(min1≤α≤n−1 d(Iα, Iα+1)) t + r0

2

)
.
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Proof. We apply the second assertion of Lemma 4.2, the definition of the set S , and Theorem 4.1 to
have that for a.e. t ∈ R+ − {0},

dDV

dt
≤ −Λ0DV +

2κ1(n − 1)
T∞m

ϕM

≤ −Λ0DV +
2κ1(n − 1)

T∞m
ϕ
(r0

2
+ min

1≤α≤n−1
d(Iα, Iα+1)t

)
.

From inequality (4.3), we recall that for t ∈ R+,

DV(t) ≤ DV(0) exp (−Λ0t) +
2κ1(n − 1)

T∞mΛ0
exp

(
−
Λ0

2
t
)
ϕ
(r0

2

)
+

2κ1(n − 1)
T∞mΛ0

ϕ

(
(min1≤α≤n−1 d(Iα, Iα+1)) t + r0

2

)
.

Hence, we reach the desired first assertion. To prove the second assertion, we employ the third assertion
of Lemma 4.2, Theorem 4.1, and the second assertion of Lemma 4.3 to get that for a.e. t ∈ R+ − {0},

dDT

dt
≤ −

κ2 min(N1, · · · ,Nα)ζ(DX)
N(T∞M)2 DT + 2κ2(n − 1)ζM

(
1

T∞m
−

1
T∞M

)
≤ −Λ̄0DT + 2κ2(n − 1)

(
1

T∞m
−

1
T∞M

)
ζ
((

min
1≤α≤n−1

d(Iα, Iα+1)
)

t +
r0

2

)
.

We use Grönwall’s lemma to yield that for t ∈ R+,

DT (t) ≤ DT (0) exp(−Λ̄0t) + 2κ2(n − 1)
(

1
T∞m
−

1
T∞M

)
exp

(
−
Λ̄0

2
t
)
ζ
(r0

2

)
+ 2κ2(n − 1)

(
1

T∞m
−

1
T∞M

)
ζ

(
(min1≤α≤n−1 d(Iα, Iα+1)) t + r0

2

)
.

We conclude the desired second assertion.

As a direct consequence, we present the following result that the velocity and temperature of each
agent in each cluster group converge to some same nonnegative value, respectively:

Corollary 4.1. Assume that Zα = {(xαi, vαi,Tαi)}
Nα

i=1 is a solution to system (4.1). Then, under the
sufficient frameworks (H0), (H1), (H2), and (H3), there exist some convergence values v∞α and T∞α for
α = 1, · · · , n that satisfy that for t ∈ R+,

1. (Velocity convergence value for each cluster group)

∥vαi(t) − v∞α ∥ =O
(

exp
(
−
Λ0

2
t
)
+ ϕ

(
(min1≤α≤n−1 d(Iα, Iα+1)) s + r0

2

)
+

∫ ∞

t
ϕ

(
(min1≤α≤n−1 d(Iα, Iα+1)) s + r0

2

)
ds

)
.
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2. (Temperature convergence value for each cluster group)

|Tαi(t) − T∞α | = O
(

exp
(
−
Λ̄0

2
t
)
+ ζ

(
(min1≤α≤n−1 d(Iα, Iα+1)) s + r0

2

)
+

∫ ∞

t
ζ

(
(min1≤α≤n−1 d(Iα, Iα+1)) s + r0

2

)
ds

)
.

Proof. Remember from Lemma 4.1 that

Nαv̇cen
α =

κ1

N

Nα∑
i=1

Nα∑
j=1

ϕ(∥xαi − xα j∥)
vαi∥vα j − vαi∥

2

2Tα j

+
κ1

N

Nα∑
i=1

Nβ∑
j=1

ϕ(∥xαi − xβ j∥)
(
vβ j − vαi +

vαi∥vβk − vαi∥
2

2

)
1

Tβ j
.

If we denote v∞α as

v∞α := lim
t→∞

vcen
α (t)

= vcen
α (0) +

κ1

NNα

Nα∑
i=1

Nα∑
j=1

∫ ∞

0
ϕ(∥xαi − xα j∥)

vαi∥vα j − vαi∥
2

2Tα j

+
κ1

NNα

Nα∑
i=1

Nβ∑
j=1

∫ ∞

0
ϕ(∥xαi − xβ j∥)

(
vβ j − vαi +

vαi∥vβ j − vαi∥
2

2

)
1

Tβ j
,

then we have that

∥vcen
α (t) − v∞α ∥ ≤

κ1

NNα

Nα∑
i=1

Nα∑
j=1

∫ ∞

t
ϕ(∥xαi − xα j∥)

vαi∥vα j − vαi∥
2

2Tα j

+
κ1

NNα

Nα∑
i=1

Nβ∑
j=1

∫ ∞

t
ϕ(∥xαi − xβ j∥)

(
vβ j − vαi +

vαi∥vβ j − vαi∥
2

2

)
1

Tβ j

because

vcen
α = vcen

α (0) +
κ1

NNα

Nα∑
i=1

Nα∑
j=1

∫ t

0
ϕ(∥xαi − xα j∥)

vαi∥vα j − vαi∥
2

2Tα j
ds

+
κ1

NNα

Nα∑
i=1

Nβ∑
j=1

∫ t

0
ϕ(∥xαi − xβ j∥)

(
vβ j − vαi +

vαi∥vβ j − vαi∥
2

2

)
1

Tβ j
ds.

Then, the multi-flocking estimate studied in Theorem 4.1 and the monotonicity and non-negativity of
ϕ imply that

∥vcen
α (t) − v∞α ∥ = O

(
exp (−Λ0t) +

∫ ∞

t
ϕ

(
(min1≤α≤n−1 d(Iα, Iα+1)) s + r0

2

)
ds

)
.
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Subsequently, we recall from Theorem 4.1 that

∥vαi(t) − vcen
α (t)∥ =O

(
exp

(
−
Λ0

2
t
)
+ ϕ

(
(min1≤α≤n−1 d(Iα, Iα+1)) s + r0

2

) )
.

We combine the above estimates to derive that for α = 1, · · · , n,

∥vαi(t) − v∞α ∥ =O
(

exp
(
−
Λ0

2
t
)
+ ϕ

(
(min1≤α≤n−1 d(Iα, Iα+1)) s + r0

2

)
+

∫ ∞

t
ϕ

(
(min1≤α≤n−1 d(Iα, Iα+1)) s + r0

2

)
ds

)
.

Similar to the above, there exists some positive value T∞α such that for α = 1, · · · , n,

|Tαi(t) − T∞α | = O
(

exp
(
−
Λ̄0

2
t
)
+ ζ

(
(min1≤α≤n−1 d(Iα, Iα+1)) s + r0

2

)
+

∫ ∞

t
ζ

(
(min1≤α≤n−1 d(Iα, Iα+1)) s + r0

2

)
ds

)
.

We conclude the desired results.

5. Conclusion

In this paper, we have demonstrated various sufficient frameworks regarding the mono-cluster
flocking, the non-emergence of mono-cluster flocking, and multi-cluster flocking of the TCSUS
system. First, we presented the admissible data for the mono-cluster flocking of TCSUS to occur.
From the result, we observed that the mono-cluster flocking occurs when the coupling strength is
large enough, and then we were interested in how small the coupling strength must be to avoid
mono-cluster flocking emerging. Second, we verified that if the coupling strength is smaller than
some appropriate value in the TCSUS model with an integrable communication weight ϕ, then the
mixed configuration gradually becomes separated after some time, and then each sub-ensemble
simultaneously moves away linearly as the time increases. Hence, this showed the non-emergence of
the mono-cluster flocking to the system. However, when ϕ is non-integrable, we did not provide a
suitable sufficient framework for the non-emergence of the mono-cluster flocking and we only gave a
sufficient condition independent of the coupling strength for mono-cluster flocking to occur. Third,
employing the spatial separation r0 and velocity separations Iα’s, when the initial configuration is well
separated given similar to multi-cluster, we proved that the multi-cluster flocking holds in the system
with an integrable ϕ. The novelty of this paper is that we have extended the multi-cluster flocking of
system (1.2) (see [29]) to a temperature field and generalize the bi-cluster flocking of system (1.5)
(see [2]) to the multi-cluster flocking. We were unable to demonstrate a sufficient framework where
the multi-cluster flocking emerges in a mixed initial configuration (not well separated) rather than
from the multi-cluster flocking under the conditions such that the initial configuration is well
separated could be an interesting research topic. This issue is left for future work.
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