We show how to obtain general nonlinear aggregation-diffusion models, including Keller-Segel type models with nonlinear diffusions, as relaxations from nonlocal compressible Euler-type hydrodynamic systems via the relative entropy method. We discuss the assumptions on the confinement and interaction potentials depending on the relative energy of the free energy functional allowing for this relaxation limit to hold. We deal with weak solutions for the nonlocal compressible Euler-type systems and strong solutions for the limiting aggregation-diffusion equations. Finally, we show the existence of weak solutions to the nonlocal compressible Euler-type systems satisfying the needed properties for completeness sake.
Citation: José Antonio Carrillo, Yingping Peng, Aneta Wróblewska-Kamińska. Relative entropy method for the relaxation limit of hydrodynamic models[J]. Networks and Heterogeneous Media, 2020, 15(3): 369-387. doi: 10.3934/nhm.2020023
[1] | José Antonio Carrillo, Yingping Peng, Aneta Wróblewska-Kamińska . Relative entropy method for the relaxation limit of hydrodynamic models. Networks and Heterogeneous Media, 2020, 15(3): 369-387. doi: 10.3934/nhm.2020023 |
[2] | Ioannis Markou . Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces. Networks and Heterogeneous Media, 2017, 12(4): 683-705. doi: 10.3934/nhm.2017028 |
[3] | Tadahisa Funaki, Hirofumi Izuhara, Masayasu Mimura, Chiyori Urabe . A link between microscopic and macroscopic models of self-organized aggregation. Networks and Heterogeneous Media, 2012, 7(4): 705-740. doi: 10.3934/nhm.2012.7.705 |
[4] | Kenneth H. Karlsen, Süleyman Ulusoy . On a hyperbolic Keller-Segel system with degenerate nonlinear fractional diffusion. Networks and Heterogeneous Media, 2016, 11(1): 181-201. doi: 10.3934/nhm.2016.11.181 |
[5] | Raimund Bürger, Harold Deivi Contreras, Luis Miguel Villada . A Hilliges-Weidlich-type scheme for a one-dimensional scalar conservation law with nonlocal flux. Networks and Heterogeneous Media, 2023, 18(2): 664-693. doi: 10.3934/nhm.2023029 |
[6] | Julio César Ramírez Pacheco, Joel Antonio Trejo-Sánchez, Luis Rizo-Domínguez . The shifted wavelet $ (q, q') $-entropy and the classification of stationary fractal signals. Networks and Heterogeneous Media, 2025, 20(1): 89-103. doi: 10.3934/nhm.2025006 |
[7] | Young-Pil Choi, Seok-Bae Yun . A BGK kinetic model with local velocity alignment forces. Networks and Heterogeneous Media, 2020, 15(3): 389-404. doi: 10.3934/nhm.2020024 |
[8] | John D. Towers . The Lax-Friedrichs scheme for interaction between the inviscid Burgers equation and multiple particles. Networks and Heterogeneous Media, 2020, 15(1): 143-169. doi: 10.3934/nhm.2020007 |
[9] | Raimund Bürger, Kenneth H. Karlsen, John D. Towers . On some difference schemes and entropy conditions for a class of multi-species kinematic flow models with discontinuous flux. Networks and Heterogeneous Media, 2010, 5(3): 461-485. doi: 10.3934/nhm.2010.5.461 |
[10] | Elisabeth Logak, Isabelle Passat . An epidemic model with nonlocal diffusion on networks. Networks and Heterogeneous Media, 2016, 11(4): 693-719. doi: 10.3934/nhm.2016014 |
We show how to obtain general nonlinear aggregation-diffusion models, including Keller-Segel type models with nonlinear diffusions, as relaxations from nonlocal compressible Euler-type hydrodynamic systems via the relative entropy method. We discuss the assumptions on the confinement and interaction potentials depending on the relative energy of the free energy functional allowing for this relaxation limit to hold. We deal with weak solutions for the nonlocal compressible Euler-type systems and strong solutions for the limiting aggregation-diffusion equations. Finally, we show the existence of weak solutions to the nonlocal compressible Euler-type systems satisfying the needed properties for completeness sake.
In this work, we consider the following compressible Euler-type systems of equations of the form
∂tρ+divx(ρu)=0,∂t(ρu)+divx(ρu⊗u)=−1ερ∇xδE(ρ)δρ−1ερu | (1.1) |
in the time-spatial domain
E(ρ)=∫Rdh(ρ)dx+∫RdΦ(x)ρdx+Ck2∫Rd(K∗ρ)ρdx, | (1.2) |
with
δE(ρ)δρ=h′(ρ)+Φ+Ck(K∗ρ). | (1.3) |
Here,
In this work, we consider
∂tˉρ=divx(ˉρ∇xδE(ˉρ)δρ) | (1.4) |
by taking the overdamped limit
In this work, we only consider the functional
ρh"(ρ)=p′(ρ),ρh′(ρ)=p(ρ)+h(ρ). | (1.5) |
In this case, we observe that (1.1) reduces to
∂tρ+divx(ρu)=0,∂t(ρu)+divx(ρu⊗u)+1ε∇xp(ρ)=−Ckε(∇xK∗ρ)ρ−1ερu−1ερ∇xΦ | (1.6) |
and (1.4) is equivalent to
∂tˉρ=Δxp(ˉρ)+Ckdivx((∇xK∗ˉρ)ˉρ)+divx(ˉρ∇xΦ); | (1.7) |
consequently, our goal concerning the relaxation limit from (1.1) to (1.4) is equivalent to considering the relaxation limit from (1.6) to (1.7). In particular, for the power-law pressure
h(ρ)={1m−1ρm,m>1,ρlogρ,m=1. |
We will deal with slightly more general internal energy functions. For this reason, we introduce the notation
hm(ρ)={k1ρlogρ,m=1,k2m−1ρm,1<m≤2,k3m−1ρm+o(ρm)asρ→+∞,m>2 | (1.8) |
for some positive constants
|p"(ρ)|≤Ap′(ρ)ρ∀ρ>0, | (1.9) |
where
We can formally obtain that weak solutions
ddt∫Ω(1εh(ρ)+12ρ|u|2+Ck2ε(K∗ρ)ρ+1ερΦ)dx+1ε∫Ωρ|u|2dx=0 | (1.10) |
in the sense of distributions, where we have used the first relation in (1.5).
In order to obtain the free energy dissipation for (1.7) and further to compare its strong solution with the weak solution of (1.6), we define
ˉm=ˉρˉu=−∇xp(ˉρ)−Ck(∇xK∗ˉρ)ˉρ−ˉρ∇xΦ | (1.11) |
and rewrite (1.7) as
∂tˉρ+divx(ˉρˉu)=0,∂t(ˉρˉu)+divx(ˉρˉu⊗ˉu)+1ε∇xp(ˉρ)=−Ckε(∇xK∗ˉρ)ˉρ−1εˉρˉu−1εˉρ∇xΦ+ˉe, | (1.12) |
where
ddt∫Ω(1εh(ˉρ)+12ˉρ|ˉu|2+Ck2ε(K∗ˉρ)ˉρ+1εˉρΦ)dx+1ε∫Ωˉρ|ˉu|2dx=∫Ωˉu⋅ˉedx, | (1.13) |
where we have also assumed that no-flux boundary condition for
∫Ωˉu⋅ˉedx=ddt∫Ω12ˉρ|ˉu|2dx |
and so the relation in (1.13) is essentially the well-known dissipation property for gradient flows of the form (1.4), see [10,11,38] for instance.
For notational simplicity, we define the relative quantity
Θ(t):=1ε∫Ωh(ρ|ˉρ)dx+12∫Ωρ|u−ˉu|2dx+Ck2ε∫Ω(ρ−ˉρ)(K∗(ρ−ˉρ))dx, | (1.14) |
which potentially measures the distance between the two solutions
m≥2−2d,ford≥2, | (1.15) |
then the function
Remark 1. We should always keep in mind that whenever we deal with the equality case in (1.15), the mass of our system (1.7) should be suitably smaller than a threshold value, called the critical mass, in order to deal without finite time blow-up problems, otherwise we can assume that time is small enough and deal with local in time solutions before the blow-up happens. For strict inequalities, we do not have any restrictions on the mass.
We now recall the definition of weak solutions to (1.6) we deal with in this work.
Definition 1.1.
●
●
−∫∞0∫Ω(1εh(ρ)+12ρ|u|2+Ck2ε(K∗ρ)ρ+1ερΦ)˙θ(t)−1ερ|u|2θ(t)dxdt=∫Ω(1εh(ρ)+12ρ|u|2+Ck2ε(K∗ρ)ρ+1ερΦ)|t=0θ(0)dx | (1.16) |
for any non-negative
●
∫Ωρ(t,x)dx=M<∞, for a.e. t>0, |
supt∈(0,T)∫Ω(1εh(ρ)+12ρ|u|2+Ck2ε(K∗ρ)ρ+1ερΦ)dx<∞. |
Notice that, for the periodic case i.e.
Our main result is stated as follows.
Theorem 1.2. Let
(i)
(ii)
Then the following stability estimate
Θ(t)≤C(Θ(0)+ε),t∈[0,T] |
holds, where
limε→0supt∈[0,T]Θ(t)=0. |
Let us point out that the strictly positive assumptions on
The outline of this paper is as follows. In Section 2, we first review how to obtain the relative entropy inequality for our system using the notion of weak solution in Definition 1.1. We also show our main result in Theorem 1.2 by using the assumptions on the interaction potential and relative entropy estimates. Here, we follow the blueprint of [31] being the most novel aspects how to deal with the case
In this part, we devote ourselves to compare a weak solution
Proposition 1. Let
∫Ω(1εh(ρ|ˉρ)+12ρ|u−ˉu|2+Ck2ε(K∗(ρ−ˉρ))(ρ−ˉρ))|τ=tτ=0dx=−1ε∫t0∫Ωρ|u−ˉu|2dxdτ−∫t0∫Ωρ∇xˉu:(u−ˉu)⊗(u−ˉu)dxdτ−∫t0∫Ωρˉρˉe⋅(u−ˉu)dxdτ−1ε∫t0∫Ωp(ρ|ˉρ)∇x⋅ˉudxdτ−Ckε∫t0∫Ω(K∗(ρ−ˉρ))∇x⋅((ρ−ˉρ)ˉu)dxdτ. | (2.1) |
Proof. Firstly, we introduce the standard choice of test function in (1.16)
θ(τ):={1,for0≤τ<t,t−τκ+1,fort≤τ<t+κ,0,forτ≥t+κ, | (2.2) |
and we have
∫t+κt∫Ω1κ(1εh(ρ)+12ρ|u|2+Ck2ε(K∗ρ)ρ+1ερΦ)dxdτ+1ε∫t0∫Ωρ|u|2dxdτ+1ε∫t+κt∫Ω(t−τκ+1)ρ|u|2dxdτ=∫Ω(1εh(ρ)+12ρ|u|2+Ck2ε(K∗ρ)ρ+1ερΦ)|τ=0dx. |
Letting
∫Ω(1εh(ρ)+12ρ|u|2+Ck2ε(K∗ρ)ρ+1ερΦ)|τ=tτ=0dx=−1ε∫t0∫Ωρ|u|2dxdτ. | (2.3) |
Moreover, integrating (1.13) over time interval
∫Ω(1εh(ˉρ)+12ˉρ|ˉu|2+Ck2ε(K∗ˉρ)ˉρ+1εˉρΦ)|τ=tτ=0dx=−1ε∫t0∫Ωˉρ|ˉu|2dxdτ+∫t0∫Ωˉu⋅ˉedxdτ. | (2.4) |
Next, we deduce from systems (1.6) and (1.12) that the differences
∂t(ρ−ˉρ)+divx(ρu−ˉρˉu)=0,∂t(ρu−ˉρˉu)+divx(ρu⊗u−ˉρˉu⊗ˉu)+1ε∇x(p(ρ)−p(ˉρ))=−Ckε((∇xK∗ρ)ρ−(∇xK∗ˉρ)ˉρ)−1ε(ρu−ˉρˉu)−1ε(ρ−ˉρ)∇xΦ−ˉe. | (2.5) |
Thus, the weak formulation for the equations satisfied by the differences
−∫∞0∫Ωφt(ρ−ˉρ)dxdt−∫∞0∫Ω∇xφ⋅(ρu−ˉρˉu)dxdt−∫Ωφ(ρ−ˉρ)|t=0dx=0, | (2.6) |
−∫∞0∫Ω˜φt⋅(ρu−ˉρˉu)dxdt−∫∞0∫Ω∇x˜φ:(ρu⊗u−ˉρˉu⊗ˉu)dxdt−1ε∫∞0∫Ωdivx˜φ(p(ρ)−p(ˉρ))dxdt−∫Ω˜φ⋅(ρu−ˉρˉu)|t=0dx=−Ckε∫∞0∫Ω˜φ⋅((∇xK∗ρ)ρ−(∇xK∗ˉρ)ˉρ)dxdt−1ε∫∞0∫Ω˜φ⋅(ρu−ˉρˉu)dxdt−1ε∫∞0∫Ω˜φ⋅(ρ−ˉρ)∇xΦdxdt−∫∞0∫Ω˜φ⋅ˉedxdt, | (2.7) |
where
φ=θ(τ)(1εh′(ˉρ)−12|ˉu|2+Ckε(K∗ˉρ)+1εΦ),˜φ=θ(τ)ˉu |
and then we have by letting
∫Ω(1εh′(ˉρ)−12|ˉu|2+Ckε(K∗ˉρ)+1εΦ)(ρ−ˉρ)|τ=tτ=0dx−∫t0∫Ω∂τ(1εh′(ˉρ)−12|ˉu|2+Ckε(K∗ˉρ)+1εΦ)(ρ−ˉρ)dxdτ−∫t0∫Ω∇x(1εh′(ˉρ)−12|ˉu|2+Ckε(K∗ˉρ)+1εΦ)⋅(ρu−ˉρˉu)dxdτ=0 | (2.8) |
and
∫Ωˉu⋅(ρu−ˉρˉu)|τ=tτ=0dx−∫t0∫Ω∂τˉu⋅(ρu−ˉρˉu)dxdτ−∫t0∫Ω∇xˉu:(ρu⊗u−ˉρˉu⊗ˉu)dxdτ−1ε∫t0∫Ωdivxˉu(p(ρ)−p(ˉρ))dxdτ=−Ckε∫t0∫Ωˉu⋅((∇xK∗ρ)ρ−(∇xK∗ˉρ)ˉρ)dxdτ−1ε∫t0∫Ωˉu⋅(ρu−ˉρˉu)dxdτ−1ε∫t0∫Ω(ρ−ˉρ)ˉu⋅∇xΦdxdτ−∫t0∫Ωˉu⋅ˉedxdτ. | (2.9) |
We can deduce from the computation (2.3)
∫Ω(1εh(ρ|ˉρ)+12ρ|u−ˉu|2+Ck2ε(K∗(ρ−ˉρ))(ρ−ˉρ))|τ=tτ=0dx=−1ε∫t0∫Ω(ρ|u|2−ˉρ|ˉu|2−ˉu⋅(ρu−ˉρˉu))dxdτ−∫t0∫Ω∂τˉu⋅(ρu−ˉρˉu)dxdτ |
−∫t0∫Ω∂τ(1εh′(ˉρ)−12|ˉu|2+Ckε(K∗ˉρ)+1εΦ)(ρ−ˉρ)dxdτ−∫t0∫Ω∇x(1εh′(ˉρ)−12|ˉu|2+Ckε(K∗ˉρ)+1εΦ)⋅(ρu−ˉρˉu)dxdτ−∫t0∫Ω∇xˉu:(ρu⊗u−ˉρˉu⊗ˉu)dxdτ−1ε∫t0∫Ωdivxˉu(p(ρ)−p(ˉρ))dxdτ+Ckε∫t0∫Ωˉu⋅((∇xK∗ρ)ρ−(∇xK∗ˉρ)ˉρ)dxdτ+1ε∫t0∫Ω(ρ−ˉρ)ˉu⋅∇xΦdxdτ. | (2.10) |
Deducing from (1.12) by using
∂τˉu+ˉu⋅∇xˉu=−1ε∇xh′(ˉρ)−Ckε∇x(K∗ˉρ)−1εˉu−1ε∇xΦ+ˉeˉρ, | (2.11) |
where we have used (1.5). Furthermore, multiplying (2.11) with
∂τ(−12|ˉu|2)(ρ−ˉρ)+∂τˉu⋅(ρu−ˉρˉu)+∇x(−12|ˉu|2)⋅(ρu−ˉρˉu)+∇xˉu:(ρu⊗u−ˉρˉu⊗ˉu)=ρ∇xˉu:(u−ˉu)⊗(u−ˉu)−1ερ∇xh′(ˉρ)⋅(u−ˉu)−1ερˉu⋅(u−ˉu)−Ckερ∇x(K∗ˉρ)⋅(u−ˉu)−1ερ∇xΦ⋅(u−ˉu)+ρˉρˉe⋅(u−ˉu). | (2.12) |
Substituting (2.12) into (2.10) and using (1.12)
∫Ω(1εh(ρ|ˉρ)+12ρ|u−ˉu|2+Ck2ε(K∗(ρ−ˉρ))(ρ−ˉρ))|τ=tτ=0dx=−1ε∫t0∫Ωρ|u−ˉu|2dxdτ−∫t0∫Ωρ∇xˉu:(u−ˉu)⊗(u−ˉu)dxdτ+Ckε∫t0∫Ω(∇xK∗(ρ−ˉρ))⋅ρˉudxdτ−∫t0∫Ωρˉρˉe⋅(u−ˉu)dxdτ−1ε∫t0∫Ωp(ρ|ˉρ)divxˉudxdτ−∫t0∫Ω(ρ−ˉρ)∂τ(Ckε(K∗ˉρ)+1εΦ)dxdτ. | (2.13) |
Due to the fact that
∫Ω(K∗ρ)ˉρdx=∫Ω(K∗ˉρ)ρdx, |
consequently,
−∫t0∫Ω(ρ−ˉρ)∂τ(Ckε(K∗ˉρ)+1εΦ)dxdτ=−Ckε∫t0∫Ω(ρ−ˉρ)∂τ(K∗ˉρ)dxdτ=−Ckε∫t0∫Ω(K∗(ρ−ˉρ))∂τˉρdxdτ=Ckε∫t0∫Ω(K∗(ρ−ˉρ))divx(ˉρˉu)dxdτ=Ckε∫t0∫Ω(K∗(ρ−ˉρ))divx(ρˉu)−(K∗(ρ−ˉρ))divx((ρ−ˉρ)ˉu)dxdτ. | (2.14) |
Hence, one can finally obtain by substituting (2.14) into (2.13) that
∫Ω(1εh(ρ|ˉρ)+12ρ|u−ˉu|2+Ck2ε(K∗(ρ−ˉρ))(ρ−ˉρ))|τ=tτ=0dx=−1ε∫t0∫Ωρ|u−ˉu|2dxdτ−∫t0∫Ωρ∇xˉu:(u−ˉu)⊗(u−ˉu)dxdτ−∫t0∫Ωρˉρˉe⋅(u−ˉu)dxdτ−1ε∫t0∫Ωp(ρ|ˉρ)divxˉudxdτ−Ckε∫t0∫Ω(K∗(ρ−ˉρ))divx((ρ−ˉρ)ˉu)dxdτ. |
This exactly completes the proof of the Proposition 1.
In this subsection, we will establish the convergence property in the relaxation limit from (1.6) to (1.12) based on Proposition 1.
With the relative relation (2.1) between solutions to (1.6) and (1.12) at hand, we can prove Theorem 1.2 by showing that terms on the right-hand-side of (2.1) can be absorbed or are
Before getting into the proof of our main theorem, we need firstly to have some auxiliary lemmas which essentially indicate that the relative potential energy can be bounded from below by some positive functions.
Lemma 2.1. Let
h(ρ|ˉρ)≥k12min{1ρ,1ˉρ}|ρ−ˉρ|2forany0<ρ<∞andm=1 | (2.15) |
and
h(ρ|ˉρ)≥k2m2min{ρm−2,ˉρm−2}|ρ−ˉρ|2forany0<ρ<∞and1<m≤2. | (2.16) |
Proof. For the case of
h(ρ)=h(ˉρ)+h′(ˉρ)(ρ−ˉρ)+h"(ρ∗)2|ρ−ˉρ|2,ρ∗∈[ρ,ˉρ], |
which implies
h(ρ|ˉρ)=h"(ρ∗)2|ρ−ˉρ|2=k12ρ∗|ρ−ˉρ|2≥k12min{1ρ,1ˉρ}|ρ−ˉρ|2. |
For the case of
h(ρ|ˉρ)=h"(ξ)2|ρ−ˉρ|2=k2m2ξm−2|ρ−ˉρ|2≥k2m2min{ρm−2,ˉρm−2}|ρ−ˉρ|2(ξ∈[ρ,ˉρ]). |
This completes the proof of (2.15) and (2.16).
We remind the readers a result proved in [32,Lemma 2.4].
Lemma 2.2. Let
h(ρ|ˉρ)≥{C1|ρ−ˉρ|2for0≤ρ≤R0,ˉρ∈I,C2|ρ−ˉρ|mforρ>R0,ˉρ∈I,m>1. |
Given
|p(ρ|ˉρ)|≤Ch(ρ|ˉρ)∀ρ,ˉρ>0, and for some C>0. | (2.17) |
Lemma 2.3. Let
(i) If
(ii) If
Then there exists a positive constant
|∫Ω(ρ−ˉρ)(K∗(ρ−ˉρ))dx|≤C∗∫Ωh(ρ|ˉρ)dxfor a.a.t∈[0,T]. | (2.18) |
Proof. Firstly, let us work with the case
|∫Ω(ρ−ˉρ)(K∗(ρ−ˉρ))dx|≤C‖K‖L∞(Ω)‖ρ−ˉρ‖2L1(Ω). | (2.19) |
Due to
‖ρ−ˉρ‖L1(Ω)=∫Ω|ρ−ˉρ|dx=∫Ω√min{1ρ,1ˉρ}|ρ−ˉρ|(√min{1ρ,1ˉρ})−1dx≤(∫Ωmin{1ρ,1ˉρ}|ρ−ˉρ|2dx)12(∫Ωmax{ρ,ˉρ}dx)12≤C(∫Ωmin{1ρ,1ˉρ}|ρ−ˉρ|2dx)12, | (2.20) |
where we have used the mass conservation property of
For the case of
|∫Ω(ρ−ˉρ)(K∗(ρ−ˉρ))dx|≤C‖K‖Lm2(m−1)(Ω)‖ρ−ˉρ‖2Lm(Ω). | (2.21) |
Since
‖ρ−ˉρ‖mLm(Ω)=∫Ω|ρ−ˉρ|mdx=∫Ω(k2m2min{ρm−2,ˉρm−2})m2|ρ−ˉρ|m(k2m2min{ρm−2,ˉρm−2})−m2dx≤(k2m2)−m2(∫Ωk2m2min{ρm−2,ˉρm−2}|ρ−ˉρ|2dx)m2(∫Ωmax{ρm,ˉρm}dx)2−m2≤C(∫Ωk2m2min{ρm−2,ˉρm−2}|ρ−ˉρ|2dx)m2, |
which implies that
‖ρ−ˉρ‖2Lm(Ω)≤C∫Ωk2m2min{ρm−2,ˉρm−2}|ρ−ˉρ|2dx. | (2.22) |
Substituting (2.22) into (2.21) and using (2.16), then, for
It remains to prove the case of
h(ρ|ˉρ)≥C|ρ−ˉρ|2,form>2,ρ≥0,ˉρ∈[δ_,¯δ]. |
Thus, one deduce that
|∫Ω(ρ−ˉρ)(K∗(ρ−ˉρ))dx|≤C‖K‖Lr2(r−1)(Ω)‖ρ−ˉρ‖2Lr(Ω)≤C‖ρ−ˉρ‖2L2(Ω)≤C∫Ωh(ρ|ˉρ)dx, |
where
Corollary 1. Let the assumptions in Lemma 2.3 hold and the parameter
∫Ωh(ρ|ˉρ)+Ck2∫Ω(ρ−ˉρ)(K∗(ρ−ˉρ))dx≥λ∫Ωh(ρ|ˉρ)for a.a.t∈[0,T]. |
So far, all the preparations have been done, we now start to prove our main result.
Proof of Theorem 1.2. Firstly, one can easily see from the definition of
Θ(t)+1ε∫t0∫Ωρ|u−ˉu|2dxdτ=Θ(0)−∫t0∫Ωρ∇xˉu:(u−ˉu)⊗(u−ˉu)dxdτ |
−Ckε∫t0∫Ω(K∗(ρ−ˉρ))divx((ρ−ˉρ)ˉu)dxdτ−1ε∫t0∫Ωp(ρ|ˉρ)divxˉudxdτ−∫t0∫Ωρˉρˉe⋅(u−ˉu)dxdτ:=Θ(0)+J1+J2+J3+J4. | (2.23) |
Now, we estimate
For
J1=−∫t0∫Ωρ∇xˉu:(u−ˉu)⊗(u−ˉu)dxdτ≤‖∇xˉu‖L∞((0,T)×Ω)∫t0∫Ωρ|u−ˉu|2dxdτ≤C∫t0Θ(τ)dτ. | (2.24) |
We will estimate
J2=−Ckε∫t0∫Ωdivx((ρ−ˉρ)ˉu)(K∗(ρ−ˉρ))dxdτ=Ckε∫t0∫Ω(ρ−ˉρ)ˉu⋅(∇xK∗(ρ−ˉρ))dxdτ≤Cε∫t0‖ˉu‖L∞(Ω)‖∇xK‖L∞(Ω)‖ρ−ˉρ‖2L1(Ω)dτ≤Cε∫t0‖ρ−ˉρ‖2L1(Ω)dτ≤Cε∫t0∫Ωmin{1ρ,1ˉρ}|ρ−ˉρ|2dxdτ≤Cε∫t0∫Ωh(ρ|ˉρ)dxdτ≤C∫t0Θ(τ)dτ, | (2.25) |
where we have used (2.20) in the third last inequality and Lemma 2.1 in the second last inequality.
For the case
J2=Ckε∫t0∫Ω(ρ−ˉρ)ˉu⋅(∇xK∗(ρ−ˉρ))dxdτ≤Ckε‖ˉu‖L∞(0,T;Lm2(m−1)(Ω))‖∇xK‖L∞(Ω)∫t0‖ρ−ˉρ‖2Lm(Ω)dτ≤Cε∫t0‖ρ−ˉρ‖2Lm(Ω)dτ. | (2.26) |
Substituting (2.22) into (2.26), we have by Lemma 2.1
J2≤Cε∫t0∫Ωm2min{ρm−2,ˉρm−2}|ρ−ˉρ|2dxdτ≤Cε∫t0∫Ωh(ρ|ˉρ)dxdτ≤C∫t0Θ(τ)dτ. | (2.27) |
Finally, for the case
J2=Ckε∫t0∫Ω(ρ−ˉρ)ˉu⋅(∇xK∗(ρ−ˉρ))dxdτ≤Ckε‖ˉu‖L∞(0,T;Lp(Ω))‖∇xK‖Lq(Ω)∫t0‖ρ−ˉρ‖2L2(Ω)dτ≤Cε∫t0‖ρ−ˉρ‖2L2(Ω)dτ≤Cε∫t0∫Ωh(ρ|ˉρ)dxdτ≤C∫t0Θ(τ)dτ, | (2.28) |
where
For
J3=−1ε∫t0∫Ωp(ρ|ˉρ)divxˉudxdτ≤1ε‖∇xˉu‖L∞((0,T)×Ω)∫t0∫Ω|p(ρ|ˉρ)|dxdτ≤Cε∫t0∫Ωh(ρ|ˉρ)dxdτ≤C∫t0Θ(τ)dτ. | (2.29) |
For
J4=−∫t0∫Ωρ(u−ˉu)⋅ˉeˉρdxdτ≤12ε∫t0∫Ωρ|u−ˉu|2dxdτ+ε2∫t0∫Ωρ|ˉeˉρ|2dxdτ≤12ε∫t0∫Ωρ|u−ˉu|2dxdτ+Cεt, | (2.30) |
where we have used the fact that
Θ(t)+12ε∫t0∫Ωρ|u−ˉu|2dxdτ≤Θ(0)+C∫t0Θ(τ)dτ+Cεt. |
Hence, Gronwall's inequality leads to
Θ(t)≤˜C(Θ(0)+ε) |
for any
Recalling the definition of
Corollary 2. Let all conditions in Theorem 1.2 hold, then we can conclude that the weak solution of (1.1) converges to the solution
‖ρ−ˉρ‖L∞(0,T;L2(Ω))→0asε→0 |
and
‖√ρ(u−ˉu)‖L∞(0,T;L2(Ω))∩L2(0,T;L2(Ω))→0asε→0, |
where
Our goal in this section is to prove existence of weak solutions to the system (1.6) by using the methods of convex integration and oscillatory lemma shown in the seminal work by C. De Lellis and L. Székelyhidi [18]. Similar methods are later applied to deal with the compressible Euler system by E. Chiodaroli [13], the Euler systems with non-local interactions by J. A. Carrillo et al. [8] and some more general "variable coefficients" problems in [20,14,22,23].
The proof of the existence theory for the weak solutions of Euler flow (1.6) on any bounded domain
For simplicity, we take the coefficients
Ω=([−1,1]|{−1,1})d,d=2,3, | (3.1) |
is the "flat" torus. One should notice that this method is applicable for the general connected bounded domains
∂tρ+divx(ρu)=0,∂t(ρu)+divx(ρu⊗u)+∇xp(ρ)=−(∇xK∗ρ)ρ−ρu−ρ∇xΦ | (3.2) |
with initial data
ρ(0,⋅)=ρ0,u(0,⋅)=u0. | (3.3) |
Theorem 3.1. Let
p∈C[0,∞)∩C2(0,∞),p(0)=0,K∈C2(Ω),Φ∈C2(Ω). |
Let the initial data
ρ∈C2([0,T]×Ω),ρ>0,u∈Cweak([0,T];L2(Ω;Rd))∩L∞((0,T)×Ω;Rd). |
For the reader's convenience and completeness of this paper, we give a sketch of the proof of Theorem 3.1 following the blueprint of [8].
Firstly, we introduce the notations
v⊗w∈Rd×dsym,[v⊗w]i,j=vivj,andv⊙w∈Rd×dsym,0,v⊙w=v⊗w−1dv⋅wI, |
where
Find a vector field
∂tv+divx((v+h[v])⊙(v+h[v])r[v]+H[v])=0,divxv=0 | (3.4) |
in
12|v+h[v]|2r[v](t,x)=e[v](t,x)fora.a.(t,x)∈(0,T)×Ω, | (3.5) |
v(0,⋅)=v0,v(T,⋅)=vT, | (3.6) |
where
Definition 3.2. Let
|Q|=|(0,T)×Ω|. |
An operator
b:Cweak([0,T];L2(Ω;Rd))∩L∞((0,T)×Ω;Rd)→Cb(Q,Rm) |
is
● b maps bounded sets in
● b is continuous, specifically,
b[vn]→b[v]inCb(Q,Rm)(uniformlyfor(t,x)∈Q) |
whenever |
vn→vinCweak([0,T];L2(Ω;Rd))andweakly−(∗)in L∞((0,T)×Ω;Rd); |
● b is causal (non-anticipative), meaning
v(t,⋅)=w(t,⋅)for0≤t≤τ≤Timpliesb[v]=b[w]in[(0,τ]×Ω]∩Q. |
Before quoting the solvability results in [8,22] for system (3.4)-(3.6), we need to further introduce the set of subsolutions:
X0={v|v∈Cweak([0,T];L2(Ω;Rd))∩L∞((0,T)×Ω;Rd),v(0,⋅)=v0,v(T,⋅)=vT, |
∂tv+divxF=0,divxv=0inD′((0,T)×Ω;Rd),forsomev∈C(Q;Rd), |
F∈L∞((0,T)×Ω;Rd×dsym,0)∩C(Q;Rd×dsym,0) |
sup(t,x)∈Qt>τd2λmax[(v+h[v])⊗(v+h[v])r[v]−F+H[v]]−e[v]<0forany0<τ<T}, |
where
Proposition 2. Let the operators
In order to apply Proposition 2 to prove the solvability of (3.2)-(3.3), we need to firstly recast them into the form of (3.4)-(3.6). If we can further verify that assumptions in Proposition 2 hold, then existence of solutions for the system (3.2)-(3.3) is proven. To this end, we take
Following [8] one can write the momentum
ρu=v+V+∇xΨ, |
where
divxv=0,∫ΩΨ(t,⋅)dx=0,∫Ωv(t,⋅)dx=0,V=V(t)∈Rd. |
Similarly, we write the initial momentum
ρ0u0=v0+V0+∇xΨ0,divxv0=0,∫Ωv0dx=∫ΩΨ0dx=0,V0=1|Ω|∫Ωρ0u0dx. |
Accordingly, we may fix
∂tρ+ΔxΨ=0in(0,T)×Ω, |
∂tρ(0,⋅)=−ΔxΨ0,Ψ(0,⋅)=Ψ0,∫ΩΨ(t,⋅)dx=0foranyt∈[0,T]. |
Hence, in the sequel, we assume that that
ρ∈C2([0,T]×Ω),Ψ∈C1([0,T];C3(Ω)) |
are fixed functions. Based on the above decomposition, equation (3.2) reduces to
∂tv+∂tV+divx((v+V+∇xΨ)⊗(v+V+∇xΨ)ρ+(p(ρ)+∂tΨ)I)=−(∇xK∗ρ)ρ−(v+V+∇xΨ)−ρ∇xΦ,divxv=0. | (3.7) |
In order to match (3.5), we fix the "kinetic energy" so that
12|v+V+∇xΨ|2ρ=e≡Π−d2(p(ρ)+∂tΨ), | (3.8) |
where
∂tv+∂tV+divx((v+V+∇xΨ)⊙(v+V+∇xΨ)ρ)=−(∇xK∗ρ)ρ−(v+V+∇xΨ)−ρ∇xΦ:=E,divxv=0. | (3.9) |
One can easily notice from (3.9) that there are still two unknowns
dVdt+V=−1|Ω|∫Ω(∇xK∗ρ)ρdx−1|Ω|∫Ωρ∇xΦdx |
with initial data
∂tv+divx((v+V+∇xΨ)⊙(v+V+∇xΨ)ρ)=E−1|Ω|∫ΩEdx,divxv=0. | (3.10) |
Obviously, the expression on the right-hand-side of (3.10) has zero integral mean at any time
−divx(∇xw+∇⊤xw−2ddivxwI)=E−1|Ω|∫ΩEdxinΩforanyfixedt∈[0,T]. |
Denoting
H[v]=∇xw+∇⊤xw−2ddivxwI, | (3.11) |
one can thus transform system (3.2)-(3.3) to the form coincide with (3.4)-(3.6), namely:
Find a vector field
∂tv+divx((v+V[v]+∇xΨ)⊙(v+V[v]+∇xΨ)ρ+H[v])=0,divxv=0 |
in
12|v+V[v]+∇xΨ|2ρ=e[v]≡Π−d2(p(ρ)+∂tΨ)fora.a.(t,x)∈(0,T)×Ω, | (3.12) |
v(0,⋅)=v0,v(T,⋅)=vT. |
Proof of Theorem 3.1. Taking
To this end, taking
sup(t,x)∈Q,t>τd2λmax[(v0+V[v0]+∇xΨ)⊗(v0+V[v0]+∇xΨ)ρ+H[v0]]−Π(t)+d2(p(ρ)+∂tΨ)<0 |
for any
In order to prove
12|M|2˜r≤d2˜λmax[M⊗M˜r−H]wheneverH∈Rd×dsym,0, M∈Rd,˜r∈(0,∞). | (3.13) |
Fixing
d2λmax[(v+V+∇xΨ)⊗(v+V+∇xΨ)ρ−(F−H[v])]<Π(t)−d2(p(ρ)+∂tΨ). |
By the definition of
12|v+V+∇xΨ|2ρ<Π(t)−d2(p(ρ)+∂tΨ), |
which implies that
JAC was partially supported by the EPSRC grant number EP/P031587/1. JAC acknowledges partial support through the Changjiang Visiting Professorship Scheme of the Chinese Ministry of Education. YP was supported by the CSC (China Scholarship Council) during her visit at Imperial College London. AWK was partially supported by the grant Iuventus Plus no. 0871/IP3/2016/74 of Ministry of Sciences and Higher Education Republic of Poland. YP's visit at Institute of Mathematics, Polish Academy of Sciences was supported by the programme "Guests of IMPAS".
1. | Young-Pil Choi, In-Jee Jeong, Relaxation to Fractional Porous Medium Equation from Euler–Riesz System, 2021, 31, 0938-8974, 10.1007/s00332-021-09754-w | |
2. | Young-Pil Choi, Large friction limit of pressureless Euler equations with nonlocal forces, 2021, 299, 00220396, 196, 10.1016/j.jde.2021.07.024 | |
3. | Shih-Wei Chou, John M. Hong, Hsin-Yi Lee, Ying-Chieh Lin, Global Entropy Solutions and Zero Relaxation Limit for Greenberg--Klar--Rascle Multilane Traffic Flow Model, 2022, 54, 0036-1410, 5949, 10.1137/22M1473716 | |
4. | Nuno J. Alves, Athanasios E. Tzavaras, The relaxation limit of bipolar fluid models, 2022, 42, 1078-0947, 211, 10.3934/dcds.2021113 | |
5. | José A. Carrillo, Young-Pil Choi, Yingping Peng, Large friction-high force fields limit for the nonlinear Vlasov–Poisson–Fokker–Planck system, 2022, 15, 1937-5093, 355, 10.3934/krm.2021052 | |
6. | José A. Carrillo, Young-Pil Choi, Jinwook Jung, Quantifying the hydrodynamic limit of Vlasov-type equations with alignment and nonlocal forces, 2021, 31, 0218-2025, 327, 10.1142/S0218202521500081 | |
7. | José A. Carrillo, Young-Pil Choi, Mean-Field Limits: From Particle Descriptions to Macroscopic Equations, 2021, 241, 0003-9527, 1529, 10.1007/s00205-021-01676-x | |
8. | H. Egger, J. Giesselmann, Stability and asymptotic analysis for instationary gas transport via relative energy estimates, 2023, 0029-599X, 10.1007/s00211-023-01349-9 | |
9. | Dennis Gallenmüller, Piotr Gwiazda, Agnieszka Świerczewska-Gwiazda, Jakub Woźnicki, Cahn–Hillard and Keller–Segel systems as high-friction limits of Euler–Korteweg and Euler–Poisson equations, 2024, 63, 0944-2669, 10.1007/s00526-023-02656-7 | |
10. | Nuno J Alves, João Paulos, A mode of convergence arising in diffusive relaxation, 2024, 75, 0033-5606, 143, 10.1093/qmath/haae001 | |
11. | Nuno J. Alves, Athanasios E. Tzavaras, Zero-electron-mass and quasi-neutral limits for bipolar Euler–Poisson systems, 2024, 75, 0044-2275, 10.1007/s00033-023-02162-y | |
12. | Young-Pil Choi, Jinwook Jung, Modulated Energy Estimates for Singular Kernels and their Applications to Asymptotic Analyses for Kinetic Equations, 2024, 56, 0036-1410, 1525, 10.1137/22M1537643 | |
13. | Charles Elbar, Piotr Gwiazda, Jakub Skrzeczkowski, Agnieszka Świerczewska-Gwiazda, From nonlocal Euler-Korteweg to local Cahn-Hilliard via the high-friction limit, 2025, 422, 00220396, 264, 10.1016/j.jde.2024.12.009 |