In this paper we study the hydrodynamic (small mass approximation) limit of a Fokker-Planck equation. This equation arises in the kinetic description of the evolution of a particle system immersed in a viscous Stokes flow. We discuss two different methods of hydrodynamic convergence. The first method works with initial data in a weighted L2 space and uses weak convergence and the extraction of convergent subsequences. The second uses entropic initial data and gives an L1 convergence to the solution of the limit problem via the study of the relative entropy.
Citation: Ioannis Markou. Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces[J]. Networks and Heterogeneous Media, 2017, 12(4): 683-705. doi: 10.3934/nhm.2017028
In this paper we study the hydrodynamic (small mass approximation) limit of a Fokker-Planck equation. This equation arises in the kinetic description of the evolution of a particle system immersed in a viscous Stokes flow. We discuss two different methods of hydrodynamic convergence. The first method works with initial data in a weighted L2 space and uses weak convergence and the extraction of convergent subsequences. The second uses entropic initial data and gives an L1 convergence to the solution of the limit problem via the study of the relative entropy.
[1] |
The nonaccretive radiative transfer equations: Existence of solutions and Rosseland approximation. J. Funct. Anal. (1988) 77: 434-460. ![]() |
[2] | (1994) Dynamics of Polymeric Liquids: Kinetic Theory, vol 2.John Wiley & Sons. |
[3] |
Friction and mobility of many spheres in Stokes flow. J. Chem. Phys. (1994) 100: 3780-3790. ![]() |
[4] | Information-type measures of difference of probability distributions and indirect observations. Stud. Sci. Math. Hung. (1967) 2: 299-318. |
[5] | Diffusion limit for nonhomogeneous and non-micro-reversible processes. Indiana Univ. Math. J. (2000) 49: 1175-1198. |
[6] |
Kinetic models for polymers with inertial effects. Netw. Heterog. Media (2009) 4: 625-647. ![]() |
[7] | (1996) Introduction to Polymer Physics.Oxford University Press. |
[8] | (1986) The Theory of Polymer Dynamics. New York: Oxford University Press. |
[9] |
Non linear diffusions as limit of kinetic equations with relaxation collision kernels. Arch. Ration. Mech. Anal. (2007) 186: 133-158. ![]() |
[10] |
Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. (1905) 322: 549-560. ![]() |
[11] |
Some remarks on the Smoluchowski-Kramers approximation. J. Stat. Phys. (2004) 117: 617-634. ![]() |
[12] |
Diffusion limit of The Vlassov-Poisson-Fokker-Planck system. Commun. Math. Sci. (2010) 8: 463-479. ![]() |
[13] | F. Golse, C. D. Levermore and L. Saint-Raymond, La Méthode de L'entropie Relative Pour les Limites Hydrodynamiques de Modéles Cinétiques Séminaire Equations aux Derivées Partielles, Exp. No. XIX, Ecole Polytechnique, 2000. |
[14] | Limite fluide des équations de Boltzmann des semi-conducteurs pour une statistique de Fermi-Dirac. Asympot. Anal. (1992) 6: 135-160. |
[15] |
Hydrodynamic limit for the Vlasov-Poisson-Fokker-Planck system: Analysis of the two-dimensional case. Math. Models Methods Appl. Sci. (2005) 15: 737-752. ![]() |
[16] |
Hydrodynamic limit for the Vlasov-Navier-Stokes equation. Part Ⅰ: Light particles regime. Indiana Univ. Math. J. (2004) 53: 1495-1515. ![]() |
[17] |
Hydrodynamic limit for the Vlasov-Navier-Stokes equation. Part Ⅱ: Fine particles regime. Indiana Univ. Math. J. (2004) 53: 1517-1536. ![]() |
[18] | P. -E. Jabin, private communication. |
[19] |
Identification of the dilute regime in particle sedimentation. Comm. Math. Phys. (2004) 250: 415-432. ![]() |
[20] | P. -E. Jabin and B. Perthame, Notes on mathematical problems on the dynamics of dispersed particles interacting through a fluid, in Modeling in Applied Sciences, a Kinetic Theory Approach (eds. N. Bellomo and M. Pulvirenti), Birkhäuser, (2000), 111-147. |
[21] | (1990) Polymers in Solution: Their Modelling and Structure.Oxford University Press. |
[22] |
Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow. J. Fluid Mech. (1984) 139: 261-290. ![]() |
[23] | (1991) Microhydrodynamics: Principles and Selected Applications. Boston: Butterworth-Heinemann. |
[24] | J. G. Kirkwood, John Gamble Kirkwood Collected Works: Macromolecules, vol 3, Documents on modern physics, Gordon and Breach, 1967. |
[25] | A lower bound for discrimination information in terms of variation. IEEE Trans. Inform. Theory (1967) 13: 126-127. |
[26] |
Renormalized solutions of some transport equations with partially $W^{1, 1}$ velocities and applications. Ann. Mat. Pura Appl. (2004) 183: 97-130. ![]() |
[27] |
Existence and uniqueness of solutions to Fokker-Planck type equations with irregular coefficients. Comm. Partial Differential Equations (2008) 33: 1272-1317. ![]() |
[28] | (1964) Information and Information Stability of Random Variables and Processes. San Francisco: Holden-Day. |
[29] | Diffusion approximation of the linear semiconductor Boltzmann equation: analysis of boundary layers. Asympot. Anal. (1991) 4: 293-317. |
[30] |
Charge transport in semiconductors with degeneracy effects. Math. Methods Appl. Sci. (1991) 14: 301-318. ![]() |
[31] | M. Reichert, Hydrodynamic Interactions in Colloidal and Biological Systems, Ph. D thesis, University Konstanz, 2006. |
[32] |
H. Risken,
The Fokker-Planck Equation. Methods of Solution and Applications,
in Springer Series in Synergetics, 18 2nd edition, Berlin, 1989. doi: 10.1007/978-3-642-61544-3
![]() |
[33] | Variational treatment of hydrodynamic iteractions in polymers. J. Chem. Phys. (1969) 50: 4831-4837. |
[34] | S. Varadhan, Entropy methods in hydrodynamic scaling, Proceedings of the International Congress of Mathematicians, Birkhäuser, Basel, 1 (1995), 196-208 |
[35] |
Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen. Ann. Phys. (1906) 326: 756-780. ![]() |
[36] |
Transport properties of polymer chains in dilute solutions: Hydrodynamic interactions. J. Chem. Phys. (1970) 53: 436-443. ![]() |
[37] |
Relative entropy and hydrodynamics of Ginzburg-Landau models. Lett. Math. Phys. (1991) 22: 63-80. ![]() |