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Abstract. In this paper we study the hydrodynamic (small mass approxima-

tion) limit of a Fokker-Planck equation. This equation arises in the kinetic

description of the evolution of a particle system immersed in a viscous Stokes
flow. We discuss two different methods of hydrodynamic convergence. The

first method works with initial data in a weighted L2 space and uses weak

convergence and the extraction of convergent subsequences. The second uses
entropic initial data and gives an L1 convergence to the solution of the limit

problem via the study of the relative entropy.

1. Introduction.

1.1. Introduction to the problem. We study the hydrodynamic limit for a
Fokker-Planck equation that arises in the modeling of a system of large particles
immersed in a much larger number of micromolecules. Examples of such particle
systems include dilute solutions of polymers that arise often in industrial settings
[2, 7, 8, 21, 24]. Typically, macromolecules (or more precisely, the monomer parts
they are comprised of) are modeled by ideal spheres whose interactions are medi-
ated by interactions with the micromolecules. We model the micromolecules as an
incompressible fluid governed by Stokes flow. The interactions of these idealized
particles with the fluid are modeled by admissible boundary conditions, Brownian
noise and the introduction of damping.

The dynamics of particle motion is described by a phase-space vector (x, v) ∈
Rnx × Rnv . If the statistics of the particle motion is described by the probability
density f(t, x, v) ≥ 0, then the evolution of f is governed by the Fokker-Planck
equation

∂tf + v · ∇xf +
1

m
∇v · (Ff) =

1

m2
∇v · (G(x)∇vf), (1)

with the particle mass represented by m. The force F (t, x, v) in our model is chosen
so that F (t, x, v) = −∇V (x) − G(x)v, where V (x) is a potential that depends on
the particles’ configuration and G(x)v is the damping (hydrodynamic) force term.
The potential V (x) captures all interactions between beads that are not mediated
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by the fluid. This allows, particularly, for the incorporation in the model of any
type of spring forces between beads.

The Fokker-Planck equation (1) is naturally associated to the phase-space sto-
chastic differential system{

ẋ(t) = v,

v̇(t) = − 1
m (G(x)v +∇V (x)) +

√
2
m G1/2(x)Ẇ (t),

where W (t) is the centered Gaussian vector in Rn with covariance E(Ẇ (t)Ẇ (t′))
= Iδ(t− t′). Here E stands for expectation with respect to Gaussian measure. The
inclusion of the friction matrix G(x) in the Brownian forcing term is an instance of
the fluctuation-dissipation theorem which asserts that fluctuations caused by white
noise and the response to small perturbations applied to the system are in balance.
This is evident by the Einstein-Smoluchowski relation [10, 32, 35] that states that
the diffusion tensor (related to thermal motion) is proportional to friction G(x). The
study of the limit m→ 0 in the stochastic system is the celebrated Smoluchowski-
Kramers approximation (see e.g. [11]).

Equation (1) is very important in the description of polymer models when inertial
effects are involved. This is reminiscent of the inertial kinetic models in the work
by P. Degond and H. Liu [6]. Therein, the authors introduce novel kinetic models
for Dumbell-like and rigid-rod polymers in the presence of inertial forces and show
formally that when inertial effects vanish the limit is consistent with well accepted
macroscopic models in polymer rheology. A direct quote from [6] reasons on the
importance of kinetic models involving inertial effects in describing polymer sedi-
mentation: “In current kinetic theory models for polymers, the inertia of molecules
is often neglected. However, neglect of inertia in some cases leads to incorrect
predictions of the behavior of polymers. The forgoing considerations indicate that
the inertial effects are of importance in practical applications, e.g., for short time
characteristics of materials based on the relevant underlying phenomena”.

One of the differences with the theory in the Degond & Liu work is that we
take into account hydrodynamic interactions between N particles, with the use of
the symmetric, non negative, 3N × 3N friction tensor G(x) that contains all the
information for these interactions. These hydrodynamic interactions are the result
of a particle’s motion that perturbs the fluid and has an effect on other particles’
movement. The constant friction case G(x) = γI (for γ > 0) is interesting in its
own right as it corresponds to particles that “sink freely” without any hydrody-
namic type of interaction between them. In this trivial case, there is no account
of hydrodynamic effects and the parabolic limit is derived with no difficulty as we
show. In a similar spirit as in [6], our goal is to show rigorously that equation
(1) leads to the derivation of a well accepted Smoluchowski type of equation when
inertial effects are ignored (see Theorem 1.1).

Before we proceed with the details of the limiting approximation, we should note
the difficulties in computing the exact formula for friction G(x) (or most commonly
the mobility µ = G−1(x)) for every N particle configuration. In practice, this would
involve solving a linear Stokes system with very complicated boundary conditions,
i.e., the N particles’ surface. A particular modelling problem is the appropriate way
to compute these interactions for overlapping particles and particles that are almost
touching. More specific, for particles that are very close, integrable singularities of
the friction tensor are possible (lubrication effects). Below we give the two most
important approximations of the mobility tensor used in simulations.
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The first non-trivial approximation to mobility is the Oseen tensor that corre-
sponds to Green’s kernel solution of a Stokes problem for point particles [8, 23]. For
N particles with centers {xi}Ni=1, radius a, in a fluid with viscosity η, the Oseen
tensor µOS = [µOSij ]Ni,j=1 is a 3N × 3N tensor with 3× 3 blocks

µOSij =

{
1

8πη|Rij |

(
I + R̂ij ⊗ R̂ij

)
, i 6= j

1
6πηa I, i = j,

where Rij = xi − xj and R̂ij = Rij/|Rij |. This approximation works quite well
when particles are well separated (|Rij | � a), but it is degenerate for particle
configurations that involve particles relatively close. This implies that the Oseen
tensor cannot be a meaningful choice that leads to a well-posed theory (in the sense
of existence, uniqueness, macroscopic limit, . . . ).

The Rotne-Prager-Yamakawa approximation of the mobility tensor [33, 36] is a
nonnegative correction to the Oseen tensor that applies to all particle configura-
tions. In addition, Rotne and Prager [33] obtained a way to calculate mobilities for
overlapping spheres. The expression for the RPY 3N × 3N mobility has blocks

µRPYij =


1

8πη|Rij |

[(
1 + 2a2

3|Rij |2

)
I +
(

1− 2a2

|Rij |2

)
R̂ij ⊗ R̂ij

]
, |Rij | > 2a

1
6πηa

[(
1− 9|Rij |

32a

)
I +

3|Rij |
32a R̂ij ⊗ R̂ij

]
, |Rij | ≤ 2a.

Eigenvalues of the tensor depend continuously on the particles’ positions, they are
bounded and the RPY mobility is locally integrable in space. On the other hand,
the tensor is still not strictly positive. In more detail, when two spheres (of radius
a) almost coincide and their centers have distance d = |Rij | � a, then the minimum
eigenvalues λmin(x1, x2) of RPY are of order O(d). This in turn implies that the
friction associated to the RPY tensor is of order O( 1

d ) and hence gives an integrable
singularity.

We should note that the exact computation of the eigenvalues of the RPY mo-
bility for N > 2 is impossible and the problem of directly obtaining the best lower
bounds for λmin(x1, . . . , xN ) is still open. On the other hand, the additive nature
of hydrodynamic interactions suggests a bound from below that is linear with re-
spect to particle distances. For instance, for N particles in a configuration with all
interparticle distances equal to d = |Rij | � a ∀i, j, the minimum eigenvalues can
be computed exactly and are once again of order O(d). Moreover, for two nearly

touching spheres with dimensionless gap parameter ξ =
|Rij |
a − 2 (with ξ � 1),

lubrication theory suggests that the leading order of the friction tensor is O( 1
ξ )

[3, 22, 23, 31].
We now turn our focus to the study of the diffusion limit for kinetic equation (1)

which begins by introducing the appropriate scaling to separate conservative and
dissipative terms. We repeat the scaling procedure in [6] that involves the change
of variables,

m = ε2, v′ = εv, x′ = x.

Thus, (1) becomes (after we re-introduce the notation for x, v in the place of x′, v′

and set initial conditions) the Cauchy problem

∂tfε + Lεfε = 0, fε(0, x, v) = f0,ε(x, v),

with Lε =
1

ε
(v · ∇xfε −∇V (x) · ∇vfε)−

1

ε2
∇v · (G(x)(∇vfε + vfε)) .

(2)
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Our main objective is to study the (zero mass) limit ε → 0, for both fε and
the hydrodynamical density ρε :=

∫
fε dv, where integration is assumed everywhere

over Rnv (or Rnx ×Rnv when spatial variables are also involved). The second term of
Lε in (2) is responsible for the system approaching local equilibrium Gibbs states
ρM(v), with M(v) being the standard Maxwellian distribution

M(v) = e−
|v|2
2 /(2π)

n
2 (3)

and ρ the limit of ρε.
We give two results of convergence which are discussed in Section 1.2. First, we

show in Theorem 1.1 that ρε converges weakly to ρ and that the limiting distri-
bution satisfies the Smoluchowski equation ∂tρ = ∇ · (G−1(∇ρ + ρ∇V (x))). The
convergence is proven under very mild assumptions on the hydrodynamic tensor,
i.e., local integrability for the friction and mobility. This observation implies that
the RPY tensor as well as any other physically meaningful nonnegative choice of
mobility satisfies the assumptions of the first result. We then ask the following
question: Is it possible to achieve a stronger convergence, say in an L1 setting? We
give a definite answer in Theorem 1.2. The result that we prove is a more theoreti-
cal one, in that it does not apply to the realistic examples of mobilities mentioned
earlier, but it is mathematically interesting in its own right. We work with entropic
initial data that are “well prepared” in the sense that the tails are accommodated
by a Maxwellian, and we show that more stringent control on the hydrodynamic
mobility is required (typically G−1 ∈ (W 3,∞(Rnx))n×n). The analysis uses a relative
entropy functional and solutions that are renormalized in the spirit of Le Bris &
Lions [27]. As a result, a rigorous justification of the computations is completed by
a regularization process explained in detail.

We mention that similar macroscopic limits in the parabolic scaling regime have
been considered by many authors in the past, and for various collision operators
that lie in the fast scale ε−2. A discussion of the literature cannot, by any means, be
inclusive. We only outline here some works that are relevant [1, 5, 9, 12, 14, 29, 30].
For instance, in [5] this limit is considered for the linear Boltzmann equation with
a collision operator of the form

∫
σ(x, v, ω)f(ω) dµ(ω) − f

∫
σ(x, v, ω) dµ(ω), for

a σ-finite measure dµ(ω), and under the assumption that there exists a unique
stationary state F (x, v) for which

F (x, v)

∫
σ(x, v, ω) dµ(ω) =

∫
σ(x, v, ω)F (x, ω) dµ(ω) a.e.

The collision kernel σ(x, v, ω) is assumed measurable with
∫
σ(x, v, ω) dµ(ω) <

∞ and it does not satisfy the micro-reversibility condition σ(x, v, ω)F (x, ω) =
σ(x, ω, v)F (x, v). Such models are prominent in the theory of plasmas, semiconduc-
tors, rarefied gases etc. In [30] the authors study the parabolic limit for the nonlinear
Boltzmann operatorM(v)(1−f)

∫
f dv−f

∫
M(v)(1−f) dv. This operator appears

in the study of semiconductors, where f(t, x, v) is the fraction of occupied states (oc-
cupancy number). The operator leads to relaxation to the Fermi-Dirac distribution

fF−D(µ, v) =
(

1 + e(
1
2 |v|

2−µ)
)−1

, where µ is the Fermi energy that depends implic-

itly on ρ(µ) =
∫
fF−D(µ, v) dv. When the limit is considered for ε = τ

L → 0 (mean
free path τ is small compared to characteristic length scale L) then f → fF−D and
the Fermi energy µ satisfies the diffusive equation ∂tρ(µ) = ∇x · (D(µ)∇x(µ− V )),
for a diffusive coefficient D(µ) with an explicit structure. The electrostatic potential
V (t, x) appears in the transport term v · ∇xf − ∇xV · ∇vf , which is in scale ε−1.
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The Rosseland approximation for the radiative transfer equation has been studied
in [1]. Equations that lead to nonlinear diffusions in the limit have been considered
in [9].

Finally, we mention that the particle system described here without the inclusion
of Brownian motion has also been studied in relevant works (see e.g. [19, 20]). In
this present work, the derivation of a convection-diffusion limit is carried out for a
linear Fokker-Planck equation with dominating friction and Brownian forcing terms
governed by an anisotropic tensor G(x). The equation is of particular importance in
the theory of particles moving in Stokes flows. The limiting Smoluchowski equation
that we derive is the cornerstone of the kinetic theory of polymer chains in dilute
solutions [7, 8, 24].

1.2. Main theorems. We now bring our attention to the two main results of
hydrodynamic convergence. In both of the results we are about to give, we assume
that the solution to equation (2) is weak (in the sense that will be explained in
Section 2) thus allowing for quite irregular coefficients. We make two assumptions.
First, we assume a non- degenerate, nonnegative definite friction such that G−1(x)
exists a.e. and we also assume that e−V (x) ∈ L1(Rnx). These assumptions suggest
that there exists a unique global equilibrium state explicitly given by

Meq(x, v) = e−V (x)M(v)/Z, with Z = (2π)
n
2

∫
e−V (x) dx. (4)

We also consider V (x) bounded from below in the sense that inf V (x) > −∞.
In the first theorem, we establish weak convergence of the hydrodynamic variable

ρε(t, x) based on weak compactness arguments. The proof is actually quite straight-
forward. We assume a solution of (2) in the mild-weak sense. Such a solution fε
lives in C(R+,D′(Rnx × Rnv )). We also make the assumption that the initial data
are in the weighted L2

Meq
space, where L2

Meq
=MeqL

2(Meq dv dx) =MeqL
2(dµ)

(for a measure µ with density Meq), i.e.,

‖fε(0, x, v)‖L2
Meq

< C ∀ε > 0, for some C > 0. (5)

We prove in Section 3 the following theorem.

Theorem 1.1. Let fε be a mild-weak solution to (2) with bounded initial en-
ergy ‖fε(0, ·, ·)‖L2

Meq
< ∞ (uniformly in ε > 0), and let ρε be the hydrodynam-

ical density ρε :=
∫
fε dv. Assume that the non-degenerate a.e. friction tensor

G(x) and potential V (x) satisfy conditions : G−1(x) &G(x) ∈ (L1
loc(Rnx))n×n,

∇V (x) ∈ (L2
loc(Rnx))n, G−1/2∇V (x) ∈ (L2

loc(Rnx))n and e−V (x) ∈ L1(Rnx). In the
limit ε→ 0, we have the convergence

ρε ⇀ ρ in C([0, T ], w − L2(dx)),

where ρ is the solution to the Smoluchowski equation

∂tρ = ∇x · (G−1(∇xρ+∇V (x)ρ)) in C([0, T ],D′(Rnx)). (6)

In the second theorem, we use the relative entropy functional to prove an L1

convergence result. The relative entropy H(f |g) between two densities f, g is defined
by

H(f |g) =

∫∫
f log

f

g
dv dx, (7)

and in the present work it will be used to control the distance of a solution fε of
(2) from the local Gibbs state ρM(v) as ε→ 0.
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The relative entropy has been used in the study of many asymptotic problems.
The earliest example appears to be in the study of the hydrodynamic limit for
the Ginzburg-Landau problem in [37]. In [34], the author takes a probabilistic
approach to the use of relative entropy. Other more elaborate cases include the
Vlasov-Navier-Stokes system [17], hydrodynamic limits for the Boltzmann equation
[13].

To prove Theorem 1.2, we make the following assumptions. First, we need con-
ditions that give control of the hydrodynamical tensor G−1(x) and potential V (x),
i.e.,

‖∇kG−1‖L∞(Rnx ) <∞, ‖∇k(G−1∇V (x))‖L∞(Rnx ) <∞, 1 ≤ k ≤ 3. (A1)

We also assume that the initial condition ρ(0, x) to equation (6) satisfies

ae−V (x) ≤ ρ(0, x) ≤ Ae−V (x) for some A > a > 0 and
ρ(0, x)/e−V (x) ∈W 3,∞(Rnx).

}
(A2)

Finally, the use of the maximum principle for the parabolic equation (6) in Rnx
requires certain admissibility conditions at infinity. We can choose for instance the
following condition for a given T > 0,

sup
0≤t≤T

lim sup
x→∞

∣∣∣∇k ρ(t, x)

e−V (x)

∣∣∣ ≤ Ck for Ck > 0, 0 ≤ k ≤ 3, (A3)

where | · | is the Hilbert-Schmidt norm of the tensor. In Section 4 we prove

Theorem 1.2. Let fε(0, x, v) be initial data to the F-P equation (2) such that
fε(0, x, v) ≥ 0, satisfying the energy bound

sup
ε>0

∫∫
fε(0, x, v)(1 + V (x) + |v|2 + log fε(0, x, v)) dv dx < C <∞. (8)

Moreover, we assume that e−V (x) ∈ L1(Rnx) and that the hydrodynamic tensor
G−1(x) and potential V (x) satisfy condition (A1). Let ρ(0, x) ∈ D′(Rnx) be ini-
tial data to the limit equation (6), satisfying∫

ρ(0, x) dx =

∫∫
fε(0, x, v) dv dx = 1,

as well as condition (A2). We finally make the assumption that the initial data are
prepared so that

H(fε(0, ·, ·)|ρ(0, ·)M(v))→ 0 as ε→ 0.

Then, for any T > 0, if ρ(t, x) ∈ C([0, T ],D′(Rnx)) is a solution to the limit equation
that satisfies (A3), we have

sup
0≤t≤T

H(fε(t, ·, ·)|ρ(t, ·)M(v))→ 0 as ε→ 0.

The rest of the paper is organized as follows. In the next section, we give a formal
derivation of the macroscopic limit and present the main steps in the proof of the
two theorems mentioned above. We also give an exact description of the type of
solutions we assume for problem (2) in each theorem. Sections 3 & 4 are devoted
to the proof of each theorem with all the a priori estimates.
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2. Formal derivation of the limit problem and outline of proofs of the
main theorems. We begin by writing the collision operator in form

∇v · (G(x)(∇vfε + vfε)) = ∇v ·
(
M(v)G(x)∇v

(
fε
M(v)

))
.

This form is indicative of why the collision part of Lε is responsible for the dissipa-
tion of energies. Let us now introduce the hydrodynamical variables for the density
ρε, the flux vector Jε, and the kinetic pressure tensor Pε of the particle system, i.e.,

ρε(t, x) :=

∫
fε dv, Jε(t, x) :=

∫
vfε dv, Pε(t, x) :=

∫
v ⊗ vfε dv. (9)

In the study of the limit ε→ 0, we want to derive an equation for the hydrodynamic
variable ρ(t, x) which is formally the limit of ρε.

First, integrating (2) in velocity space, we obtain

∂tρε +
1

ε
∇x · Jε = 0. (10)

We want to derive an expression for the evolution of Jε and study the order of
magnitude in ε of the terms involved in it. In the derivation of the equation for the
first moment, we multiply the F-P equation (2) by v and integrate in velocity. The
resulting equation is

ε2∂tJε(t, x) + ε(∇x · Pε(t, x) +∇V (x)ρε(t, x)) = −G(x)Jε(t, x). (11)

As we show in our proof, the main contributions in (11) come from the rhs term
and the second and third terms in the lhs. Indeed, rewriting the pressure tensor we
have ∫

vivjfε dv = −
∫
∂vi(M)vj

fε
M

dv =

∫
δijfε dv +

∫
M∂vi

(
fε
M

)
vj dv,

which implies

Pε(t, x) = ρεI +

∫
M∇v

(
fε
M

)
⊗ v dv. (12)

With the help of (12), equation (11) now gives

Jε = −εG−1(x)(∇xρε +∇V (x)ρε)−ε2G−1(x)∂tJε

−εG−1(x)∇x ·
∫
M∇v

(
fε
M

)
⊗ v dv.

(13)

The last term in (13) contains the part
∫
M∇v

(
fε
M

)
⊗ v dv which appears in the

expression for Pε(t, x). This term will be shown to be of order ε if one uses the
appropriate a priori estimate e.g. in L2(µ). This implies that in the limit ε → 0,
we should be able to establish that Pε(t, x)→ ρ(t, x)I. The term ε2G−1(x)∂tJε will
be shown to be of order ε2, as long as we give an appropriate interpretation to a
solution Jε(t, x) of (13). Hence, we will justify rigorously the following expansion
for Jε,

Jε(t, x) = −εG−1(x)(∇xρε +∇V (x)ρε) + ε2 . . . . (14)

Finally, as we let ε→ 0, the system of equations (10) & (14) converges to

∂tρ+∇x · J = 0

J = −G−1(x)(∇xρ+∇V (x)ρ),
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where J is the limit of Jε/ε. At the same time, since fε approaches local Gibbs
states, it follows that fε → ρ(t, x)M(v). All this is enough to suggest that the limit
equation for ρ solves the Smoluchowski equation (6).

It is now time to give a brief step by step outline of the proof of Theorems 1.1
& 1.2. We begin with the first result, in which we show weak convergence to the
solution of the limiting problem.

In the first step of the proof, we decompose fε(t, x, v) into a local equilibrium
state M(v)ρε(t, x), and a deviation M(v)g̃ε(t, x, v). With the help of the a pri-
ori energy estimate we can extract convergent subsequences for ρε(t, x), g̃ε, and
1
εG

1/2(x)∇v g̃ε(t, x, v). Then, we can show that ρε is compact in C([0, T ], w −
L2(Rnx)), for any T > 0. Next, we write an evolution equation for g̃ε(t, x, v) (an
equation in the distributional sense) and pass to the limit ε → 0. To achieve this,
since we are dealing with a weak formulation, we have to find the order in ε of each
integral term in this equation and ignore all the lower order terms in ε. The last
step is to use the limit equation for g̃ε(t, x, v) and the limit equation for ρε(t, x) to
derive the Smoluchowski equation.

In terms of the type of solutions we work with, we shall assume that the op-
erator Lε generates a continuous semigroup in L2

Meq
, so we write fε(t, x, v) =

e−tLεfε(0, x, v). Using the maximum principle and energy dissipation (see Sec-
tion 3), it is easy to show that solutions to ∂tfε + Lεfε = 0 remain bounded in
L2
Meq
∩ L∞. We define

Definition 2.1. A mild-weak solution fε of (2) lies in the space

fε ∈ C(R+;D′(Rnx × Rnv )) ∩ L∞loc(R+;L2
Meq
∩ L∞) (15)

and satisfies∫∫
fε(T, ·, ·)ϕ(·, ·) dv dx−

∫∫
fε(0, ·, ·)ϕ(·, ·) dv dx

− 1

ε

∫ T

0

∫∫
(v · ∇xϕ−∇V (x) · ∇vϕ) fε dv dx ds

+
1

ε2

∫ T

0

∫∫
∇vϕ ·G(x)(∇vfε + vfε) dv dx ds = 0 ,

for any test function ϕ(x, v) ∈ C1
c (Rnx × Rnv ) and T > 0.

For the second result, we use the relative entropy of fε with respect to local
equilibrium states. The relative entropy functional H(f |g) between two probability
densities f, g is a measure of distance between them. Indeed, by the celebrated
Csiszár-Kullback-Pinsker inequality ([4, 25, 28]) we have

‖f − g‖L1 ≤
√

2H(f |g).

Thus, by finding lim
ε→0

H(fε|ρM) we can control the square of the L1 distance between

fε and ρM in the limit ε→ 0. Here we show that the dissipation of relative entropy
H(fε|ρM) contains a non negative part and remainder terms. It is important to
show that these remainder terms vanish as ε → 0. Once we show that in the limit
the relative entropy is strictly dissipative, it will be enough to consider initial data
“prepared” in a way such that H(fε(0, ·, ·)|ρ(0, ·)M) → 0 as ε → 0 and it follows
that H(fε(t, ·, ·)|ρ(t, ·)M)→ 0 with t ∈ [0, T ], for any T > 0.
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We work with weak solutions of equation (2). Such solutions have been shown
to exist in [27] for coefficients that have a Sobolev type of regularity and satisfy
certain growth assumptions (see Proposition 1 below).

Definition 2.2. A weak solution fε of (2) belongs to the space

X := {fε| fε ∈ L∞([0, T ];L1 ∩ L∞) & G1/2∇vfε ∈ (L2([0, T ], L2))n}, (16)

for all times T > 0 (with fε(0, ·, ·) ∈ L1 ∩L∞). To be more precise, a weak solution
fε satisfies∫∫

fε(T, ·, ·)ϕ(T, ·, ·) dv dx−
∫∫

fε(0, ·, ·)ϕ(0, ·, ·) dv dx−
∫ T

0

∫∫
fε∂tϕdv dx ds

− 1

ε

∫ T

0

∫∫
(v · ∇xϕ−∇V (x) · ∇vϕ) fε dv dx ds

+
1

ε2

∫ T

0

∫∫
∇vϕ ·G(x)(∇vfε + vfε) dv dx ds = 0 ,

for any test function ϕ(t, x, v) ∈ C1((0, T );C1
c (Rnx ×Rnv ))∩C([0, T ];C1

c (Rnx ×Rnv )).

Notice that the definition of a mild-weak solution (given earlier) is similar to
the one for weak solutions presented above. Main difference is that in the case of
weak solutions, the weak formulation requires that test functions are also functions
of time t. The existence of a unique weak solution, for coefficients that are not
smooth, is given in the following proposition borrowed from [27].

Proposition 1. (see [27]) Assume that the potential V (x) and diffusion G1/2(x)
satisfy the following assumptions:

(i) G(x)v +∇V (x) ∈ (W 1,1
loc (Rnx × Rnv ))n (ii) tr(G) ∈ L∞(Rnx)

(iii)
G(x)v +∇V (x)

1 + |x|+ |v|
∈ (L∞(Rnx × Rnv ))n

(iv) G1/2(x) ∈ (W 1,2
loc (Rnx))n×n (v)

G1/2(x)

1 + |x|
∈ (L∞(Rnx))n×n.

Then, given initial data fε(0, ·, ·) ∈ L1 ∩L∞, there exists a unique weak solution fε
of (2) that belongs to X.

3. Diffusive limit via weak compactness. Proof of Theorem 1.1.

3.1. A priori estimate and weak compactness. In this section we collect all
the convergence results needed for the proof of Theorem 1.1. We begin with the
decomposition of fε. We write

fε =M(v)(ρε + g̃ε),

where the hydrodynamic variable ρε has already been defined in (9) and g̃ε is a
deviation from the local equilibrium state ρεM(v) that satisfies∫

g̃εM(v) dv = 0.

We also note that integrating (2) in velocity we obtain the hydrodynamic equation
for ρε

∂tρε +
1

ε
∇x ·

∫
M(v)∇v g̃ε dv = 0. (17)

We prove the following.
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Lemma 3.1. Assume a mild-weak solution fε of (2) with an L2
Meq

bound on the

initial data, i.e., ‖fε(0, ·, ·)‖L2
Meq

< ∞. Then, there exists a sequence εi → 0 such

that

ρεi ⇀ ρ weakly in L2(dx) ∀t ≥ 0,

g̃εi ⇀ g̃ weakly in L2(M(v)dvdx) ∀t ≥ 0,

1

εi
G1/2∇v g̃εi ⇀ J weakly in L2(M(v)dvdxdt).

Proof. In order to study the limit ε → 0, we begin with the a priori estimate
in L2

Meq
(Rnx × Rnv ). This is an energy estimate for hε(t, x, v) in L2(dµ), with

hε(t, x, v) := fε(t, x, v)/Meq. It is achieved by multiplying (2) with hε and in-
tegrating in dµ to get

1

2

∫
h2ε(t, x, v) dµ+

1

ε2

∫ t

0

∫ ∣∣∣G1/2(x)∇vhε(s, x, v)
∣∣∣2 dµ ds =

1

2

∫
h2ε(0, x, v) dµ.

(18)
To simplify the analysis, we consider the basic assumption inf V (x) > −∞.

Then, a priori estimate (18) gives the following two bounds,∫
ρ2ε dx <∞,

∫∫
g̃2εM(v) dv dx <∞ ∀t ≥ 0. (19)

For the first bound in (19) we used a simple Jensen inequality on the L2(dµ) estimate
for hε. We also have (as a result of equation (18)) the energy bound,

1

ε2

∫ T

0

∫∫
|G1/2∇v g̃ε|2M(v) dv dx ds <∞ for any T > 0. (20)

Based on equations (19) & (20), and after picking a sequence εi → 0, we can
extract a subsequence which without loss of generality we still call εi so that all the
convergences in the statement of the lemma hold.

It is important to comment that we want something stronger than just ρε being
weakly compact in L2(dx) ∀t ≥ 0. We actually want a uniform (in time) type of
convergence, so that we don’t have a problem when we later pass to the limit in
integrals of time. For this reason, we prove that ρε is compact in C([0, T ], w−L2(dx))
in the lemma that follows.

Lemma 3.2. Under the assumptions of Theorem 1.1, ρε is compact in C([0, T ],w−
L2(dx)), i.e.,

ρε ⇀ ρ in C([0, T ],w− L2(dx)).

Proof. Consider the functional H(t) =
∫
φ(x)ρε(t, x)dx , 0 < t < T , for a fixed

T > 0 and φ ∈ C∞c (Rnx). H(t) can be proven to be pointwise finite for any 0 < t < T ,
using the Cauchy-Schwartz inequality and always assuming finite initial energy.

Now, if we consider t1, t2 > 0 such that 0 ≤ t1 ≤ t2 ≤ T , we have

H(t2)−H(t1) =

∫
φ(x)ρε(t, x)

∣∣∣t=t2
t=t1

dx (Use weak form of (17))

=
1

ε

∫ t2

t1

∫∫
∇xφ(x) · ∇v g̃εM(v) dv dx ds

≤
(∫ t2

t1

∫∫
|G−1/2∇xφ(x)|2M(v) dvdxds

) 1
2
(∫ t2

t1

∫∫
|G1/2∇v g̃ε|2

ε2
M(v) dvdxds

) 1
2
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≤ (t2 − t1)
1
2

(∫
|G−1/2∇xφ(x)|2dx

) 1
2
(∫ t2

t1

∫∫
|G1/2∇v g̃ε|2

ε2
M(v) dv dx ds

) 1
2

≤ C(t2 − t1)
1
2 .

The Arzelá-Ascoli theorem states that pointwise boundedness and equicontinuity
suffice to show that the family

∫
φ(x)ρε(t, x) dx is compact in C([0, T ]) for a given

function φ ∈ C∞c (Rnx). Notice that condition G−1(x) ∈ (L1
loc(Rnx))n×n is important

so that the first integral is finite.
Next, we use a standard density argument to show that

∫
φ(x)ρε(t, x) dx is com-

pact in C([0, T ]) for φ ∈ Cc(Rnx) . Since Cc(Rnx) is now a separable space, sep-
arability will allow us to make use of Cantor’s diagonal argument and extract a
subsequence ρεj so that∫

φ(x)ρεj (t, x) dx→
∫
φ(x)ρ(t, x) dx as j →∞,

for any φ in a countable subset of Cc(Rnx), and uniformly on [0, T ]. This last
convergence can be extended to any φ ∈ Cc(Rnx) again by use of a density argument.

We close by approximating any function φ ∈ L2(Rnx) by a sequence φm ∈ Cc(Rnx),
so that φm → φ a.e. and ‖φm − φ‖L2 → 0. This way, we show∫

ρε(t, x)(φ(x)− φm(x)) dx→ 0 as m→ 0,

uniformly in ε > 0 and [0, T ]. This yields that ρ ∈ L2(Rnx) and that ρε is compact
in C([0, T ], w − L2(Rnx)). (see [15]).

3.2. Passage to the limit. Now that weak compactness of ρε has been estab-
lished uniformly in [0, T ], we can proceed with the derivation of an equation for the
deviation g̃ε, i.e.,

ε∂tg̃ε −∇x ·
∫
M∇v g̃ε dv + v · (∇x(ρε + g̃ε) +∇V (x)(ρε + g̃ε))

−∇V (x) · ∇v g̃ε =
1

ε

1

M
∇v · (MG(x)∇v g̃ε).

(21)

A mild solution of (21) will be in C(R+,D′(Rnx ×Rnv )). The weak formulation is
given by the expression

ε

∫∫
M(v)ϕ (g̃ε(t2)− g̃ε(t1)) dvdx

+

∫ t2

t1

∫∫
M(v)∇xϕ ·

(∫
M(v′)∇v′ g̃ε dv′

)
dvdxds

+

∫ t2

t1

∫∫
M(v)v · (−∇xϕρε + ϕ∇V (x) ρε) dvdxds

+

∫ t2

t1

∫∫
M(v) (−∇xϕ · ∇v g̃ε + ϕ∇V (x) · ∇v g̃ε) dvdxds

−
∫ t2

t1

∫∫
M(v)ϕ∇V (x) · ∇v g̃ε dvdxds = −1

ε

∫ t2

t1

∫∫
M(v)∇vϕ ·G∇v g̃ε dvdxds,

(22)

where ϕ(x, v) ∈ C∞c (Rnx × Rnv ). In the lemma that follows, we show what happens
when we let ε→ 0 in (22).
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Lemma 3.3. Under the assumptions of Theorem 1.1, in the limit ε→ 0 the limiting
functions ρ and J (from Lemma 3.1) satisfy∫ t2

t1

∫∫
M(v)v · (−∇xϕρ+ ϕ∇V (x) ρ) dv dx ds

= −
∫ t2

t1

∫∫
M(v)∇vϕ ·G1/2J dv dx ds ∀ϕ ∈ C∞c (Rnx × Rnv ).

(23)

Proof. We use the notation Ij (1 ≤ j ≤ 6) for the integral terms that appear in
the weak formulation (22) in their order of appearance. The study of the order of
magnitude for each of them reveals that in the limit ε → 0 only terms I3 & I6 do
not vanish. In all the estimates that follow we use (19) & (20), so that we have

I1 = ε

∫∫
M(v)ϕ (g̃ε(t2)− g̃ε(t1)) dv dx

≤ ε
(∫∫

ϕ2M(v) dv dx

)1/2(∫∫
(|g̃ε(t2)|2 + |g̃ε(t1)|2)M(v) dv dx

)1/2

≤ Cε = O(ε).

I2 =

∫ t2

t1

∫∫∫
M(v)M(v′)∇xϕ(x, v, s) · ∇v′ g̃ε(x, v′, s) dv′ dv dx ds

≤ ε
∫ t2

t1

∫∫∫
M(v)M(v′)|G−1/2∇xϕ|

|G1/2∇v′ g̃ε|
ε

dv′ dv dx ds

≤ ε
(∫ t2

t1

∫∫
M(v)|G−1/2∇xϕ|2 dv dx ds

)1/2

×
(

1

ε2

∫ t2

t1

∫∫
M(v′)|G1/2∇v′ g̃ε|2 dv′ dx ds

)1/2

≤ Cε = O(ε).

I3 =

∫ t2

t1

∫∫
M(v)v · (−∇xϕρε + ϕ∇V (x) ρε) dv dx ds

≤
(∫ t2

t1

∫∫
M(v)|v|2(|∇xϕ|2 + |ϕ∇V (x)|2) dv dx ds

)1/2(∫ t2

t1

∫
ρ2ε dx ds

)1/2

≤ C
(∫∫

M(v)|v|2(|∇xϕ|2 + |ϕ∇V (x)|2) dx

)1/2(∫ t2

t1

∫
ρ2ε dx ds

)1/2

= O(1).

I4 =

∫ t2

t1

∫∫
M(v) (−∇xϕ · ∇v g̃ε + ϕ∇V (x) · ∇v g̃ε) dv dx ds

≤ ε
(∫ t2

t1

∫∫
M(v)(|G−1/2∇xϕ|2 + |ϕG−1/2∇V (x)|2) dv dx ds

)1/2

×
(∫ t2

t1

∫∫
1

ε2
|G1/2∇v g̃ε|2M(v) dv dx ds

)1/2

≤ Cε = O(ε).

I5 = −
∫ t2

t1

∫∫
M(v)ϕ∇V (x) · ∇v g̃ε dv dx ds
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≤ ε
(∫ t2

t1

∫∫
M(v)|ϕG−1/2∇V (x)|2 dv dx ds

)1/2

×
(∫ t2

t1

∫∫
1

ε2
|G1/2∇v g̃ε|2M(v) dv dx ds

)1/2

≤ Cε = O(ε).

I6 =
1

ε

∫ t2

t1

∫∫
M(v)∇vϕ ·G∇v g̃ε dv dx ds

≤
(∫ t2

t1

∫∫
|G1/2∇vϕ|2M(v) dv dx ds

)1/2

×
(∫ t2

t1

∫∫
1

ε2
|G1/2∇v g̃ε|2M(v) dv dx ds

)1/2

= O(1).

Now that we have established all the above bounds, we take ε → 0 and use the
convergence results in Lemmas 3.1 & 3.2 to derive (23).

Proof of Theorem 1.1. We write the hydrodynamic equation (17) for ρε in its weak
form, and take the limit ε→ 0 to obtain∫

φ(·)ρ(t, ·)
∣∣∣t=t2
t=t1

dx =

∫ t2

t1

∫∫
M(v)∇xφ ·G−1/2J dv dx ds ∀φ ∈ C∞c (Rnx). (24)

In order to give the limiting equation for ρ(t, x) we should combine (23) & (24). The
two equations can be coupled for the choice of test function ϕ(x, v) = ∇xφ ·G−1v,
where φ ∈ C∞c (Rnx). The only problem is that this function is not smooth or
compactly supported in Rnv , so we have to modify it slightly (for non smooth G−1(x)
regularization in x is also needed).

We begin by taking the cut-off function χδ1(v) = χ(δ1v), where χ(v) ∈ C∞c (Rnv )
is a function with values 0 ≤ χ(v) ≤ 1 such that χ(v) = 1 for |v| ≤ 1 and χ(v) =
0 for |v| ≥ 2. We also consider the standard mollification function,

ηδ2(v) =
1

δn2
η

(
v

δ2

)
for η ∈ C∞c (Rnv ) such that

∫
η(v) dv = 1.

We now take the function ϕδ1,δ2(x, v) =
(
χδ1(v)∇xφ ·G−1v

)
?ηδ2 . A standard result

for the mollified function is that ϕδ1,δ2 converges to ϕ a.e. in Rnv (as δ1, δ2 → 0).
Obviously ∇xϕδ1,δ2 converges to ∇xϕ a.e. in Rnv , since the cut-off and mollification
acts only in the v variable.

By the substitution of ϕ with ϕδ1,δ2 in (23), we have∫ t2

t1

∫∫
M(v)v · (−∇xϕδ1,δ2 ρ+ ϕδ1,δ2∇V (x) ρ) dv dx ds =

−
∫ t2

t1

∫∫
M(v)∇vϕδ1,δ2 ·G1/2J dv dx ds.

We also have

∇vϕδ1,δ2(x, v) = ∇v
(
(∇xφ ·G−1v χδ1(v)) ? ηδ2

)
= ∇v(∇xφ ·G−1v χδ1(v)) ? ηδ2

=
(
∇xφ ·G−1χδ1(v) +∇xφ ·G−1v∇vχδ1(v)

)
? ηδ2 ,

where we use the fact that ∇v(f ? ηδ) = ∇vf ? ηδ.
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A typical estimate for ∇vχδ1(v) is |∇vχδ1(v)| ≤ Cδ1. This can be easily seen
by the definition of χδ1 and the fact that |∇vχ| ≤ C for some C > 0, since χ ∈
C∞c (Rnv ). This estimate, together with the computation of ∇vϕδ1,δ2(x, v) above and
the dominated convergence theorem imply that in the limit δ1, δ2 → 0, we actually
have that (23) holds with ϕ(x, v) = ∇xφ(x) · G−1v. This choice of test function
allows the coupling of (24) and (23) that yields∫

φ(·)ρ(t, ·)
∣∣∣t=t2
t=t1

dx =

∫ t2

t1

∫ (
∇x · (G−1∇xφ) +∇xφ ·G−1∇V (x)

)
ρ dx ds,

which is the weak form of (6). This completes the proof of Theorem 1.1.

4. Diffusive limit via relative entropy and proof of Theorem 1.2. To prove
Theorem 1.2, we begin with the a priori estimates that will be used later to show
that the remainder term rε is of order O(ε). The exact formula for rε is given in
the study of the evolution of H(fε|ρM) in Section 4.2.

4.1. A priori estimates. The following proposition contains all the estimates
needed for a solution fε.

Proposition 2. Assume fε is a solution of (2), with initial data satisfying (8).
Let also 0 < T <∞. Then, the following hold:
(i) fε(1 + V (x) + |v|2 + ln fε) is bounded in L∞((0, T ), L1(Rnx × Rnv )),
(ii) 1

εG
1/2(x)(v

√
fε + 2∇v

√
fε) is in L2((0, T ),Rnx × Rnv ),

(iii) |v|2fε is bounded in L∞((0, T ), L1(Rnx × Rnv )).

Proof. (i) We introduce the free energy associated with the F-P equation (2),

E(fε) :=

∫∫
fε

(
ln fε +

|v|2

2
+ V (x)

)
dv dx.

The free energy is dissipated since

d

dt
E(fε) = − 1

ε2

∫∫
|dε|2 dv dx,

where

dε = G1/2(x)(v
√
fε + 2∇v

√
fε) = 2

√
MG1/2(x)∇v

√
fε
M

.

The dissipation of energy implies

E(fε(T, ·, ·)) +
1

ε2

∫ T

0

∫∫
|dε|2 dv dx ds = E(fε(0, ·, ·)). (25)

(ii) It also follows from (25) that dε is of order O(ε) in L2, i.e.,∫ T

0

∫∫
|dε|2 dv dx dt ≤ Cε2, T > 0.

(iii) We now give the bound for
∫∫
|v|2fε dv dx in L∞(0, T ). This bound (uniform in

time) is a straightforward consequence of the elementary Frenchel-Young inequality

ab ≤ h(a) + h∗(b),

where h,h∗ are a Young’s convex pair (h∗ is explicitly computed by the Legendre
transform of the convex function h). Here, we use h(z) = z log z and h∗(z) = ez−1,
i.e.,

1

4

∫∫
|v|2fε dv dx ≤

∫∫
fε log

fε
Meq

dv dx+

∫∫
e
|v|2
4 −1Meq dv dx.
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This implies that∫∫
|v|2fε(t, v, x) dv dx ≤ C for some C > 0, ∀t ∈ [0, T ],

since e−V (x) ∈ L1(Rnx) and the entropy integral is bounded by the a priori estimate.

4.2. Evolution of the relative entropy. We now prove the following result for
the evolution of the relative entropy.

Lemma 4.1. Assume a sufficiently regular solution fε of equation (2), with initial
data fε(0, ·, ·) satisfying (8). It is shown that

H(fε(t, ·, ·)|ρ(t, ·)M) ≤ H(fε(0, ·, ·)|ρ(0, ·)M) +

∫ t

0

rε(s) ds, (26)

for a remainder term rε given explicitly by

rε(t) = −
∫ (

ε∂tJε +∇x ·
(∫
M∇v

(
fε
M

)
⊗ v dv

))
·G−1

(
∇ρ
ρ

+∇V (x)

)
dx.

(27)

Proof. We start with the computation of the evolution of the H(ρε|ρ) relative en-
tropy. This computation becomes partly obsolete later when we perform a similar
computation for H(fε|ρM). Nevertheless, we begin with computing d

dtH(ρε|ρ),

especially since it contains parts important in the computation of d
dtH(fε|ρM).

Hence,

d

dt
H(ρε|ρ) =

d

dt

∫
ρε log

ρε
ρ
dx =

d

dt

∫
ρε log ρε dx−

d

dt

∫
ρε log ρ dx

=

∫
∂tρε(log ρε + 1) dx−

∫
∂tρε log ρ dx−

∫
ρε
ρ
∂tρ dx (Use (10),(6))

=
1

ε

∫
Jε ·
∇ρε
ρε

dx− 1

ε

∫
Jε ·
∇ρ
ρ
dx−

∫
ρε
ρ
∇ ·
(
G−1(∇ρ+∇V (x)ρ)

)
dx

=
1

ε

∫
Jε ·

(
∇ρε
ρε
− ∇ρ

ρ

)
dx+

∫
ρ∇
(
ρε
ρ

)
·G−1

(
∇ρ
ρ

+∇V (x)

)
dx

=
1

ε

∫
Jε ·

(
∇ρε
ρε
− ∇ρ

ρ

)
dx+

∫ (
∇ρε
ρε
− ∇ρ

ρ

)
·G−1

(
∇ρ
ρ

+∇V (x)

)
ρε dx

=

∫ (
∇ρε
ρε
− ∇ρ

ρ

)
·
(

1

ε

Jε
ρε

+G−1
(
∇ρ
ρ

+∇V (x)

))
ρε dx

=−
∫
G

(
1

ε

Jε
ρε

+G−1
(
∇ρ
ρ

+∇V (x)

))
·
(

1

ε

Jε
ρε

+G−1
(
∇ρ
ρ

+∇V (x)

))
ρε dx

+ r′ε = −
∫ ∣∣∣1

ε
G1/2 Jε

ρε
+G−1/2

(
∇ρ
ρ

+∇V (x)

) ∣∣∣2ρε dx+ r′ε.

In the second to last equality, we made use of

∇ρε
ρε
− ∇ρ

ρ
= −1

ε
G
Jε
ρε
− ∇ρ

ρ
−∇V (x)− ε∂tJε

ρε

− 1

ρε
∇x ·

∫
M∇v

(
fε
M

)
⊗ v dv,

(28)



698 IOANNIS MARKOU

which is derived directly from (13). The remainder term r′ε equals

r′ε =−
∫ (

ε∂tJε +∇x ·
∫
M∇v

(
fε
M

)
⊗ v dv

)
·
(

1

ε

Jε
ρε

+G−1
(
∇ρ
ρ

+∇V (x)

))
dx.

Remark 1. Notice that r′ε is a remainder term that should vanish as ε → 0. We
do not bother with showing that r′ε → 0 in rigorous manner, as we mainly work
with the relative entropy H(fε|ρM). Yet, as we remark at the end of Section 4, the
computation of d

dtH(ρε|ρ) alone can be used to establish the convergence of fε that
we prove in Theorem 1.2.

At this point, we compute the evolution of H(fε|ρM) in similar manner. To
make things easier we can introduce the global equilibrium state Meq(x, v) in the
computation that follows

H(fε|ρM) =

∫∫
fε log fε dv dx−

∫∫
fε log (ρM) dv dx

=

∫∫
fε log

fε
Meq

dv dx+

∫∫
fε log

Meq

ρM
dv dx

=

∫∫
fε log

fε
Meq

dv dx+

∫
ρε log

e−V (x)

ρ
dx

= H(fε|Meq)−
∫
ρε log ρ dx−

∫
ρεV (x) dx.

(29)

The reason we introduced H(fε|Meq) is that the term d
dtH(fε|Meq) can be easily

bounded by an integral involving only hydrodynamical variables. Indeed, the time
derivative of H(fε|Meq) is

d

dt

∫∫
fε log

fε
Meq

dv dx = − 1

ε2

∫∫
fε

∣∣∣G1/2∇v log
fε
M

∣∣∣2 dv dx
= − 1

ε2

∫∫
fε

∣∣∣G1/2

(
∇vfε
fε

+ v

) ∣∣∣2 dv dx ≤ − 1

ε2

∫
|G1/2Jε|2

ρε
dx.

(30)

The last inequality in (30) is in fact due to Hölder,

∫
|G1/2Jε|2

ρε
dx =

∫ (∫
G1/2

(
v + ∇vfε

fε

)
fε dv

)2
ρε

dx

≤
∫∫ ∣∣∣G1/2

(
∇vfε
fε

+ v

) ∣∣∣2fε dv dx.
Combining equations (29) & (30), we obtain

d

dt
H(fε|ρM) =

d

dt
H(fε|Meq)−

d

dt

∫
ρε log ρ dx− d

dt

∫
ρεV (x) dx

≤ − 1

ε2

∫
|G1/2Jε|2

ρε
dx− d

dt

∫
ρε log ρ dx− 1

ε

∫
Jε · ∇V (x) dx.

The computation of d
dt

∫
ρε log ρ dx has been performed as a part of the compu-

tation of d
dtH(ρε|ρ) above. We thus have

d

dt
H(fε|ρM) ≤ − 1

ε2

∫
|G1/2Jε|2

ρε
dx− 1

ε

∫
Jε · ∇V (x) dx− 1

ε

∫
Jε ·
∇ρ
ρ
dx
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+

∫ (
∇ρε
ρε
− ∇ρ

ρ

)
·G−1

(
∇ρ
ρ

+∇V (x)

)
ρε dx (Use (28))

= −
∫

1

ε
Jε ·

(
1

ε
G
Jε
ρε

+
∇ρ
ρ

+∇V (x)

)
dx

−
∫ (

1

ε
G
Jε
ρε

+
∇ρ
ρ

+∇V (x)

)
·G−1

(
∇ρ
ρ

+∇V (x)

)
ρε dx+ rε

= −
∫ (

1

ε
G
Jε
ρε

+
∇ρ
ρ

+∇V (x)

)
·
(

1

ε

Jε
ρε

+G−1
(
∇ρ
ρ

+∇V (x)

))
ρε dx+ rε

= −
∫ ∣∣∣1

ε
G1/2 Jε

ρε
+G−1/2

(
∇ρ
ρ

+∇V (x)

) ∣∣∣2ρε dx+ rε,

(31)

with a remainder term rε given by (27). Finally, we integrate (31) in time and (26)
follows.

4.3. Control of the remainder term. We already gave the formal computation

for d
dtH(fε|ρM). Our goal is to prove that

∫ t
0
rε(s) ds→ 0. The remainder term rε

that we computed in Lemma 4.1 consists of two parts r1,ε and r2,ε, which integrated
in time are∫ T

0

r1,ε dt = −ε
∫ T

0

∫∫
∂tfε v ·G−1

(
∇ρ
ρ

+∇V (x)

)
dv dx dt,

∫ T

0

r2,ε dt =

∫ T

0

∫∫ (
M v ⊗∇v

(
fε
M

))
: ∇
(
G−1

(
∇ρ
ρ

+∇V (x)

))
dv dx dt.

Our task is to show that both integrals vanish as ε→ 0.
In the process of controlling the two terms, we introduce a new notation for ex-

pressions involving the hydrodynamic variable ρ. Thus, we denote with D the ten-
sor D := ∇(G−1(∇ log ρ+∇V (x))), and with E,F the vectors E := G−1(∇ log ρ+
∇V (x)) and F := G−1∇∂t log ρ. The easiest term to control is∣∣∣ ∫ T

0

r2,ε dt
∣∣∣ =

∣∣∣ ∫ T

0

∫∫
Mv ⊗∇v

(
fε
M

)
: Ddv dx dt

∣∣∣
≤
∫ T

0

∫∫
|
√
fε

(
v ⊗G−1/2(x)dε

)
: D| dv dx dt

≤ Cε‖D‖∞

(∫ T

0

∫∫
|G−1/2(x)dε|2

ε2
dv dx dt

)1/2(∫ T

0

∫∫
|v|2fε dv dx dt

)1/2

.

(32)

Finally, for the first term we have∣∣∣ ∫ T

0

r1,ε dt
∣∣∣ =

∣∣∣− ε∫∫ (fε(T, v, x)− fε(0, v, x)) v · E dv dx

+ ε

∫ T

0

∫∫
fε v · F dv dx dt

∣∣∣
≤ ε‖E‖∞

((∫∫
fε(T, x, v)|v|2 dv dx

)1/2

+

(∫∫
fε(0, x, v)|v|2 dv dx

)1/2
)

+ εT 1/2‖F‖∞

(∫ T

0

∫∫
fε(s, x, v)|v|2 dv dx ds

)1/2

. (33)
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We now show why the terms D, E, F are in L∞([0, T ],Rnx).
Stability estimates for the terms D, E, F .
The control of terms D,E, F is achieved by controlling h0 = ρ

e−V (x) and its
derivatives. Notice that the L∞ bound on log ρ

e−V (x) implies a bound of the type

ae−V (x) ≤ ρ ≤ Ae−V (x) for a,A > 0. Such control of h0 is a direct conse-
quence of the maximum principle for the Smoluchowski equation (6). Indeed, if
a < h0(0, x) < A it follows by the maximum principle that a < h0(t, x) < A for
all t ∈ [0, T ], under the condition that ∇ · (G−1(x)∇V (x)) < ∞ and given that
sup0≤t≤T lim supx→∞ |h0(t, x)| ≤ C0. The control of derivatives also follows from a
parabolic maximum principle as we prove in

Lemma 4.2. Let ρ(t, x) be a solution to the Smoluchowski equation (6) with initial
data ρ(0, x). Assume also that conditions (A1)-(A3) are satisfied. It follows that
D, E, F are in L∞([0, T ],Rnx). More precisely, ‖D(t, .)‖L∞(Rnx ) ≤ C‖D(0, .)‖L∞(Rnx )
for 0 ≤ t ≤ T , with similar estimates for E and F .

Proof. First, we define hk := ∇k ρ
e−V (x) and we want to prove that ‖hk‖L∞(Rnx )

remains bounded on the interval [0, T ] for 0 ≤ k ≤ 3. It is enough to show that
‖hk(t, .)‖L∞ ≤ C‖hk(0, .)‖L∞ for 0 ≤ t ≤ T , with the constant C depending on T
and other constants from the bounds in (A1).

The time evolution of h0 is given by

∂t

( ρ

e−V (x)

)
=
∇ ·
(
e−V (x)G−1(x)∇ ρ

e−V (x)

)
e−V (x)

=

∇ ·
(
G−1(x)∇ ρ

e−V (x)

)
−∇V (x) ·G−1(x)∇ ρ

e−V (x)
.

In the notation we introduced for h0, this is written as

∂th0 = ∇ · (G−1(x)∇h0)−∇V (x) ·G−1(x)∇h0. (34)

Differentiating equation (34) m times, taking the inner product (for tensors) with
hm and integrating by parts we obtain an L2 estimate. As a matter of fact, we can
get an Lp theory (for any p > 1) and as a result a maximum principle for |hm| given
that we have the appropriate control of the coefficients.

For instance, for h0 the Lp estimate is

d

dt

∫
hp0 dx+ p(p− 1)

∫
hp−20 ∇h0 ·G−1(x)∇h0 dx

−
∫
hp0∇ · (G−1(x)∇V (x)) dx = 0, p > 1,

which under the assumption ‖∇ · (G−1∇V (x))‖L∞ < ∞ yields ‖h0(t, .)‖L∞ ≤
C‖h0(0, .)‖L∞ for 0 ≤ t ≤ T . It should be noted that for a divergence free or
identity hydrodynamic mobility, the first condition translates to |∇2V (x)| < C for
the potential V (x).

With a bit more work we obtain (see [27])

∂t

(
|h1|2

2

)
−∇·

(
G−1(x)∇

(
|h1|2

2

))
+∇V (x) ·G−1(x)∇

(
|h1|2

2

)
≤ C|h1|2, (35)

where the constant C now depends on ‖∇G−1‖L∞ and ‖∇(G−1∇V (x))‖L∞ . Using
the maximum principle in (35), we have ‖h1(t, .)‖L∞ ≤ C‖h1(0, .)‖L∞ for 0 ≤ t ≤ T .
The maximum principle for |h2| and |h3| is implemented in similar fashion leading
to estimates just like (35).
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Remark 2. The careful reader has already noticed that Lemma 4.2 is the only part
in the proof of Theorem 1.2 where we made use of conditions (A1)-(A3). These
conditions appear to be optimal, at least when the diffusion limit is considered in
unbounded space. For instance, the control of coefficients in (A1) is necessary for
showing the propagation of Lipschitz regularity by deriving (35).

Proof of Theorem 1.2. In Lemma 4.1 we have shown that the evolution of the rel-

ative entropy is controlled by the term
∫ T
0
rε dt =

∫ T
0
r1,ε dt +

∫ T
0
r2,ε dt which is

bounded with the help of equations 32 & 33. Using Proposition 2 and Lemma 4.2,

it follows that
∫ T
0
rε dt→ 0 as ε→ 0, proving Theorem 1.2.

4.4. Regularization of relative entropy. The computations involving the rela-
tive entropy in this Section have been so far performed at a formal level, i.e., by
assuming smooth solutions with derivatives vanishing polynomially fast. It is not a
hard task to give a rigorous derivation of the results by performing a standard reg-
ularization argument which amounts to regularizing all the involved functions e.g.
by convoluting with a mollifier, perform all the computations with the regularized
ones, and finally pass to the limit. In fact, the whole procedure we present here
follows closely the steps of the regularization argument in [27].

The regularization procedure will be presented here for the simpler case H(ρε|ρ),
since there are less computation involved and the reader can get a better grasp of
the full argument. We begin with the assumption of smooth coefficients G(x), V (x)
and we approximate a solution fε by a mollified one fε,δ = fε ? ηδ ∈ C∞(Rnx ×Rnv ).
The mollifier is ηδ = 1

δ2n η
(
x
δ ,

v
δ

)
, with η ∈ C∞c (Rnx × Rnv ) and

∫∫
η(x, v) dvdx = 1.

The equation for the regularized fε,δ is (see [27])

∂tfε,δ + Lεfε,δ = U1
ε,δ +∇v · (G1/2R1

ε,δ), (36)

where the expressions U1
ε,δ, R

1
ε,δ involve the following commutators

U1
ε,δ =− 1

ε
[ηδ, v · ∇x −∇V (x) · ∇v](fε) +

1

ε2
[ηδ, (Gv) · ∇v](fε)

+
1

ε2
[ηδ,∇v · (Gv)](fε) +

1

ε2
[ηδ, G

1/2∇v](G1/2∇vfε),

R1
ε,δ =

1

ε2
[ηδ, G

1/2∇v](fε).

The notation we follow for commutators is

[ηδ, c](f) = ηδ ? (cf)− c(ηδ ? f) and [ηδ, c1](c2f) = ηδ ? (c1 · c2f)− c1 · (ηδ ? c2f),

where c is a differential operator (or vector), and c1, c2 are general differential
vectors. This implies that the equation for ρε,δ :=

∫
fε,δ dv is

∂tρε,δ +
1

ε
∇x · Jε,δ =

∫
U1
ε,δ dv, (37)

where Jε,δ :=
∫
vfε,δ dv.

The regularized limiting equation for ρ (with ρδ = ρ ? ηδ) is

∂tρδ = ∇x · (G−1(∇xρδ +∇V (x)ρδ)) + U2
δ +∇x · (G−1/2R2

δ), (38)
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with

U2
δ =[ηδ,∇x · (G−1∇V (x))](ρ) + [ηδ, G

−1∇V (x) · ∇x](ρ)

+ [ηδ,∇x ·G−1/2](G−1/2∇xρ) + [ηδ, G
−1/2∇x](G−1/2∇xρ),

R2
δ =[ηδ, G

−1/2∇x](ρ).

It has be shown (see Section 5.3 in [27]) that

U1
ε,δ, U

2
δ

δ→0−−−→ 0 L∞ + L2([0, T ], L1
loc)

R1
ε,δ, R

2
δ
δ→0−−−→ 0 L∞([0, T ], L2

loc),

for fixed ε > 0, as long as conditions in Proposition 1 are satisfied.
Next, multiplying (36) by v and integrating in velocity while using the definition

of ρε,δ we get

ε2∂tJε,δ + ε(∇xρε,δ +∇V (x)ρε,δ) + ε∇x ·
∫
M∇v

(
fε,δ
M

)
⊗ v dv

+GJε,δ = ε2
∫
v U1

ε,δ dv − ε2
∫
G1/2R1

ε,δ dv.

(39)

Since we want to take advantage of the fact that commutators vanish (as δ → 0)
on compact sets, we have to introduce a smooth cut-off function φR(x) = φ

(
x
R

)
,

where φ is a smooth function on Rnx , s.t. 0 ≤ φ ≤ 1, with φ(x) = 1 for |x| ≤ 1 and
φ(x) = 0 for |x| ≥ 2. It follows that ∇φR(·) = 1

R∇φ
( ·
R

)
. The idea is to include the

function φR in every integral and send R→∞, after sending δ → 0. That way we
can make integral terms that involve commutators vanish.

For this reason, we introduce a relative entropy integral with a cut-off HR(ρε,δ|ρδ)
=
∫
ρε,δ log

ρε,δ
ρδ
φR dx. Differentiating the entropy HR(ρε,δ|ρδ) and using (37)-(39)

we obtain

d

dt
HR(ρε,δ|ρδ) =

∫
∂tρε,δ(log ρε,δ + 1)φR dx−

∫
∂tρε,δ log ρδφR dx

−
∫
ρε,δ
ρδ

∂tρδφR dx = . . . = I1 + I2 + I3.

The expressions I1, I2, I3 that involve commutators are

I1(ε, δ, R) =

∫∫
U1
ε,δ(log ρε,δ + 1)φR dvdx−

∫∫
U1
ε,δ log ρδφR dvdx

−
∫∫

(U2
δ +∇x · (G−1/2R2

δ))
ρε,δ
ρδ

φR dvdx,

I2(ε, δ, R) =
1

ε

∫
Jε,δ · ∇φR(logρε,δ + 1) dx− 1

ε

∫
Jε,δ · ∇φR log ρδ dx

+

∫
ρε,δ∇φR ·G−1

(
∇xρδ
ρδ

+∇V (x)

)
dx,

and

I3(ε, δ, R) = −
∫ ∣∣∣1

ε
G1/2 Jε,δ

ρε,δ
+G−1/2

(
∇ρδ
ρδ

+∇V (x)

) ∣∣∣2ρε,δφR dx+ r′ε,δ,R,
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with the remainder term being

r′ε,δ,R =−
∫(

ε∂tJε,δ +∇x ·
∫
M∇v

(
fε,δ
M

)
⊗ v dv−ε

∫
vU1

ε,δ dv +ε

∫
G1/2R1

ε,δ dv

)
·
(

1

ε

Jε,δ
ρε,δ

+G−1
(
∇ρδ
ρδ

+∇V (x)

))
φR dx.

The trick is to take both δ → 0 and R →∞ while letting ε→ 0. Since we have
the freedom of choice of how δ,R should behave for a fixed ε, we will consider them
as functions of ε which we will describe in detail, i.e., δ(ε) and R(ε). Indeed, for a
given ε > 0, consider δ(ε) s.t. |U1

ε,δ|, |R1
ε,δ| < ε, for all δ < δ(ε). This way, we have

|U1
ε,δ|, |R1

ε,δ| → 0 while we let both ε, δ(ε)→ 0.
If we consider R fixed and take δ → 0, it is easy to see by the convergence

properties of commutators (L∞ in time) that
∫ T
0
I1 dt → 0. The exception is the

last term of I1 that is treated separately. Same thing holds for the part of the
remainder term that involves commutators as we let δ → 0.

A bound for the first term in I2 is∣∣∣1
ε

∫ T

0

∫
Jε,δ · ∇φR(log ρε,δ + 1) dxdt

∣∣∣ ≤ 1

R
‖∇φ‖L∞

∫ T

0

∫
|x|>R

|Jε,δ|
ε
|(log ρε,δ + 1)| dxdt.

The exact same treatment holds for the second term in I2. It is obvious that these
two integrals will vanish in the limit R → ∞ (partly due to the stability results
similar to Lemma 4.2). It will not matter how fast R tends to infinity, so we can
choose e.g. R(ε) = 1

ε . For the third term in I2, we have∣∣∣ ∫ T

0

∫
ρε,δ∇φR ·G−1

(
∇xρδ
ρδ

+∇V (x)

)
dxdt

∣∣∣ ≤ C∥∥∥G−1(x)

1 + |x|

∥∥∥
L∞
‖∇φ‖L∞

·
∫ T

0

∫
|x|>R

|ρε,δ|
∣∣∣∇xρδ
ρδ

+∇V (x)
∣∣∣ dxdt,

which vanishes as R→∞ given the growth condition (see Proposition 1) in G−1(x).
The last term in I1 which equals∫∫

G−1/2R2
δ · ∇x

(
ρε,δ
ρδ

)
φR dvdx+

∫∫
G−1/2R2

δ · ∇φR
ρε,δ
ρδ

dvdx,

contains two terms. The first one is treated like the terms in I1, and the second like
these in I2 with a growth condition for G−1/2 (Proposition 1).

In the last step, we send ε → 0 (while δ(ε) → 0 and R(ε) → ∞) and combine

this with the fact that lim
ε→0

∫ T
0
I1(ε, δ(ε), R(ε)) dt = lim

ε→0

∫ T
0
I2(ε, δ(ε), R(ε)) dt = 0 to

derive

lim
ε→0

HR(ε)(ρε,δ(ε)(T, ·)|ρδ(ε)(T )) ≤ lim
ε→0

HR(ε)(ρε,δ(ε)(0, ·)|ρδ(ε)(0)) +

∫ T

0

lim
ε→0

r′ε,δ,R dt.

We finish with the estimates of previous subsection that prove that the remainder
term vanishes as ε→ 0. This yields the desired estimate

lim
ε→0

H(ρε(T, ·)|ρ(T, ·)) ≤ lim
ε→0

H(ρε(0, ·)|ρ(0, ·)).

Finally, we can remove the assumption on the smoothness of coefficients by regu-
larizing them in x and pass to the limit.
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Remark 3. The regularization procedure above was carried out for the H(ρε|ρ)
relative entropy which instantly implies fε → ρM in L1. Indeed, by showing L1

convergence of ρε(t, x) to the limiting distribution ρ(t, x) it follows that fε converges
to ρM (in L1) using the following simple argument. We decompose fε − ρM as in

fε − ρM = fε − ρεM+ (ρε − ρ)M.

It is trivial to show that the second term (ρε − ρ)M of the decomposition → 0 in
L1 by assumption. For the first term fε − ρεM, we have

‖fε − ρεM‖L1 ≤
√

2

(∫∫
fε log

fε
ρεM

dv dx

)1/2

≤
√

2ε

(∫∫
|G−1/2dε|2

ε2
dv dx

)1/2

≤
√

2εC → 0 as ε→ 0.

The inequalities used in the first line are the Csiszár-Kullback-Pinsker and log-
Sobolev in that order. Finally, the a priori energy bound (used in second line)
concludes the argument.
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