In this article, a wavelet entropy, which behaves as a shifted version of the standard wavelet $ (q, q') $-entropy of fractal signals, is presented. The shifted wavelet $ (q, q') $-entropy is obtained by computing the standard $ (q, q') $-entropy functional on a weighted relative-wavelet-energy (RWE) representation of fractal signals; it is shown that the weight within the RWE plays the role of a shifting factor in the characteristics of the standard wavelet $ (q, q') $-entropy. Therefore the shifted wavelet $ (q, q') $-entropy relocates the wavelet entropy values to any point of the fractality index range, which allows us to analyze a wide variety of fractal signal families thus improving on previously proposed entropies in the literature. Information planes for these entropies are obtained using different shifts and values of parameters $ q $ and $ q' $, which allow us to highlight the potential applications for a fractal signal analysis. Moreover, an experimental study using synthesized exact fractal signals shows that the shifted wavelet entropy can classify stationary long-memory signals from short-memory ones and can also be used to differentiate other fractal signal families.
Citation: Julio César Ramírez Pacheco, Joel Antonio Trejo-Sánchez, Luis Rizo-Domínguez. The shifted wavelet $ (q, q') $-entropy and the classification of stationary fractal signals[J]. Networks and Heterogeneous Media, 2025, 20(1): 89-103. doi: 10.3934/nhm.2025006
In this article, a wavelet entropy, which behaves as a shifted version of the standard wavelet $ (q, q') $-entropy of fractal signals, is presented. The shifted wavelet $ (q, q') $-entropy is obtained by computing the standard $ (q, q') $-entropy functional on a weighted relative-wavelet-energy (RWE) representation of fractal signals; it is shown that the weight within the RWE plays the role of a shifting factor in the characteristics of the standard wavelet $ (q, q') $-entropy. Therefore the shifted wavelet $ (q, q') $-entropy relocates the wavelet entropy values to any point of the fractality index range, which allows us to analyze a wide variety of fractal signal families thus improving on previously proposed entropies in the literature. Information planes for these entropies are obtained using different shifts and values of parameters $ q $ and $ q' $, which allow us to highlight the potential applications for a fractal signal analysis. Moreover, an experimental study using synthesized exact fractal signals shows that the shifted wavelet entropy can classify stationary long-memory signals from short-memory ones and can also be used to differentiate other fractal signal families.
[1] |
B. B. Mandelbrot, J. R. Wallis, Noah, joseph, and operational hydrology, Water Resour. Res., 4 (1968), 909–918. https://doi.org/10.1029/WR004i005p00909 doi: 10.1029/WR004i005p00909
![]() |
[2] |
G. G. Booth, F. R. Kaen, P. E. Koveos, R/S analysis of foreign exchange rates under two international monetary regimes, J. Monet. Econ., 10 (1982), 407–415. https://doi.org/10.1016/0304-3932(82)90035-6 doi: 10.1016/0304-3932(82)90035-6
![]() |
[3] |
P. Gilfriche, V. Deschodt-Arsac, E. Blons, L. M. Arsac, Frequency-specific fractal analysis of postural control accounts for control strategies, Front. Physiol., 9 (2018), 293. https://doi.org/10.3389/fphys.2018.00293 doi: 10.3389/fphys.2018.00293
![]() |
[4] |
M. Frezza, A fractal-based approach for modeling stock price variations, Chaos, 28 (2018), 091102. https://doi.org/10.1063/1.5050867 doi: 10.1063/1.5050867
![]() |
[5] |
L. P. Bu, P. J. Shang, Scaling analysis of stock markets, Chaos, 24 (2014), 023107. https://doi.org/10.1063/1.4871479 doi: 10.1063/1.4871479
![]() |
[6] |
C. Y. Zhang, H. Y. Cui, Z. Z. He, L. Su, D. Fu, Fractals in carbon nanotube buckypapers, RSC Adv., 6 (2016), 8639–8643. https://doi.org/10.1039/C5RA23465D doi: 10.1039/C5RA23465D
![]() |
[7] |
M. A. Fernandes, E. A. Ribeiro Rosa, A. Cristina, A. M. T. Grégio, P. C. Trevilatto, L. R. Azevedo-Alanis, Applicability of fractal dimension analysis in dental radiographs for the evaluation of renal osteodystrophy, Fractals, 24 (2016), 1650010. https://doi.org/10.1142/S0218348X16500109 doi: 10.1142/S0218348X16500109
![]() |
[8] |
S. W. Ducharme, R. E. A. van Emmerik, Fractal dynamics, variability, and coordination in human locomotion, Kinesiology Rev., 7 (2018), 26–35. https://doi.org/10.1123/kr.2017-0054 doi: 10.1123/kr.2017-0054
![]() |
[9] |
J. Sen, D. McGill, Fractal analysis of heart rate variability as a predictor of mortality: A systematic review and meta-analysis, Chaos, 28 (2018), 072101. https://doi.org/10.1063/1.5038818 doi: 10.1063/1.5038818
![]() |
[10] |
A. L. Goldberger, L. A. Amaral, J. M. Hausdorff, P. C. Ivanov, C. K. Peng, H. E. Stanley, Fractal dynamics in physiology: Alterations with disease and aging, Proc. Nat. Acad. Sci., 99 (2002), 2466–2472. https://doi.org/10.1073/pnas.012579499 doi: 10.1073/pnas.012579499
![]() |
[11] |
D. G. Stephen, J. Anastas, Fractal fluctuations in gaze speed visual search, Atten. Percept. Psychophys, 73 (2011), 666–677. https://doi.org/10.3758/s13414-010-0069-3 doi: 10.3758/s13414-010-0069-3
![]() |
[12] |
M. Iosa, G. Morone, A. Fusco, F. Marchetti, C. Caltagirone, S. Paolucci, et al., Loss of fractal gait harmony in Parkinson's Disease, Clin. Neurophysiol., 127 (2016), 1540–1546. https://doi.org/10.1016/j.clinph.2015.11.016 doi: 10.1016/j.clinph.2015.11.016
![]() |
[13] |
L. G. A. Alves, P. B. Winter, L. N. Ferreira, R. M. Brielmann, R. I. Morimoto, L. A. N. Amaral, Long-range correlations and fractal dynamics in c. elegans: Changes with aging and stress, Phys. Rev. E, 96 (2017), 022417. https://doi.org/10.1103/PhysRevE.96.022417 doi: 10.1103/PhysRevE.96.022417
![]() |
[14] |
P. Li, L. Yu, A. S. P. Lim, A. S. Buchman, F. A. J. L. Scheer, S. A. Shea, et al., Fractal regulation and incident alzheimer's disease in elderly individuals, Alzheimers. Dement., 14 (2018), 1114–1125. https://doi.org/10.1016/j.jalz.2018.03.010 doi: 10.1016/j.jalz.2018.03.010
![]() |
[15] |
M. Gilmore, C. X. Yu, T. L. Rhodes, W. A. Peebles, Investigation of rescaled range analysis, the hurst exponent, and long-time correlations in plasma turbulence, Phys. Plasmas, 9 (2002), 1312–1317. https://doi.org/10.1063/1.1459707 doi: 10.1063/1.1459707
![]() |
[16] |
P. Xu, A discussion on fractal models for transport physics of porous media, Fractals, 23 (2015), 1530001. https://doi.org/10.1142/S0218348X15300019 doi: 10.1142/S0218348X15300019
![]() |
[17] |
J. Beran, R. Sherman, M. S. Taqqu, W. Willinger, Long-range dependence in variable-bit-rate video traffic, IEEE Trans. Commun., 43 (1995), 1566–1579. https://doi.org/10.1109/26.380206 doi: 10.1109/26.380206
![]() |
[18] |
F. Serinaldi, Use and misuse of some hurst parameter estimators applied to stationary and non-stationary financial time series, Physica A, 389 (2010), 2770–2781. https://doi.org/10.1016/j.physa.2010.02.044 doi: 10.1016/j.physa.2010.02.044
![]() |
[19] |
P. Abry, D. Veitch, Wavelet analysis of long-range-dependent traffic, IEEE Trans. Inf. Theory, 44 (1998), 2–15. https://doi.org/10.1109/18.650984 doi: 10.1109/18.650984
![]() |
[20] |
S. Stoev, M. S. Taqqu, C. Park, J. S. Marron, On the wavelet spectrum diagnostic for hurst parameter estimation in the analysis of internet traffic, Comput. Netw., 48 (2005), 423–445. https://doi.org/10.1016/j.comnet.2004.11.017 doi: 10.1016/j.comnet.2004.11.017
![]() |
[21] |
C. K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, A. L. Goldberger, Mosaic organization of dna nucleotides, Phys. Rev E, 49 (1994), 1685. https://doi.org/10.1103/PhysRevE.49.1685 doi: 10.1103/PhysRevE.49.1685
![]() |
[22] |
P. Ferreira, What detrended fluctuation analysis can tell us about nba results, Physica A, 500 (2018), 92–96. https://doi.org/10.1016/j.physa.2018.02.050 doi: 10.1016/j.physa.2018.02.050
![]() |
[23] |
J. Kwapień, P. Oświecimka, S. Drożdż, Detrended fluctuation analysis made flexible to detect range of cross-correlated fluctuations, Phys. Rev. E, 92 (2015), 052815. https://doi.org/10.1103/PhysRevE.92.052815 doi: 10.1103/PhysRevE.92.052815
![]() |
[24] |
T. K. Lin, H. Fajri, Damage detection of structures with detrended fluctuation and detrended cross-correlation analyses, Smart Mater. Struct., 26 (2017), 035027. https://doi.org/10.1088/1361-665X/aa59d7 doi: 10.1088/1361-665X/aa59d7
![]() |
[25] |
J. C. Gallant, I. D. Moore, M. F. Hutchinson, P. Gessler, Estimating fractal dimension of profiles: A comparison of methods, Math. Geol., 26 (1994), 455–481. https://doi.org/10.1007/BF02083489 doi: 10.1007/BF02083489
![]() |
[26] |
B. Pilgram, D. T. Kaplan, A comparison of estimators for 1f noise, Physica D, 114 (1998), 108–122. https://doi.org/10.1016/S0167-2789(97)00188-7 doi: 10.1016/S0167-2789(97)00188-7
![]() |
[27] |
T. Stadnitski, Measuring fractality, Front. Physiol., 3 (2012), 127. https://doi.org/10.3389/fphys.2012.00127 doi: 10.3389/fphys.2012.00127
![]() |
[28] |
M. S. Taqqu, V. Teverovsky, W. Willinger, Estimators for long-range dependence: An empirical study, Fractals, 3 (1995), 785–798. https://doi.org/10.1142/S0218348X95000692 doi: 10.1142/S0218348X95000692
![]() |
[29] |
A. Eke, P. Herman, L. Kocsis, L. R. Kozak, Fractal characterization of complexity in temporal physiological signals, Physiol. Meas., 23 (2002), R1. https://doi.org/10.1088/0967-3334/23/1/201 doi: 10.1088/0967-3334/23/1/201
![]() |
[30] |
A. Eke, P. Herman, J. Bassingthwaighte, G. Raymond, D. Percival, M. Cannon, et al., Physiological time series: Distinguishing fractal noises from motions, Pflügers Arch. Eur. J. Physiol., 439 (2000), 403–415. https://doi.org/10.1007/s004249900135 doi: 10.1007/s004249900135
![]() |
[31] |
D. Delignieres, S. Ramdani, L. Lemoine, K. Torre, M. Fortes, G. Ninot, Fractal analyses for 'short'time series: A re-assessment of classical methods, J. Math. Psychol., 50 (2006), 525–544. https://doi.org/10.1016/j.jmp.2006.07.004 doi: 10.1016/j.jmp.2006.07.004
![]() |
[32] |
J. Ramirez Pacheco, D. Torres Román, H. Toral Cruz, Distinguishing stationary/nonstationary scaling processes using wavelet tsallis-entropies, Math. Probl. Eng., 2012 (2012), 867042. https://doi.org/10.1155/2012/867042 doi: 10.1155/2012/867042
![]() |
[33] |
O. Nicolis, J. Mateu, J. E. Contreras-Reyes, Wavelet-based entropy measures to characterize two-dimensional fractional Brownian fields, Entropy, 22 (2020), 196. https://doi.org/10.3390/e22020196 doi: 10.3390/e22020196
![]() |
[34] |
C. Bandt, B. Pompe, Permutation entropy: A natural complexity measure for time series, Phys. Rev. Lett., 88 (2002), 174102. https://doi.org/10.1103/PhysRevLett.88.174102 doi: 10.1103/PhysRevLett.88.174102
![]() |
[35] |
Y. H. Cao, W. Tung, J. B. Gao, V. A. Protopopescu, L. M. Hively, Detecting dynamical changes in time series using the permutation entropy, Phys. Rev. E, 70 (2004), 046217. https://doi.org/10.1103/PhysRevE.70.046217 doi: 10.1103/PhysRevE.70.046217
![]() |
[36] |
C. Tsallis, Possible generalization of boltzmann-gibbs statistics, J. Stat. Phys., 52 (1998), 479–487. https://doi.org/10.1007/BF01016429 doi: 10.1007/BF01016429
![]() |
[37] |
P. A. Varotsos, N. V. Sarlis, H. K. Tanaka, E. S. Skordas, Some properties of the entropy in the natural time, Phys. Rev. E, 71 (2005), 032102. https://doi.org/10.1103/PhysRevE.71.032102 doi: 10.1103/PhysRevE.71.032102
![]() |
[38] |
G. E. Powell, I. C. Percival. A spectral entropy method for distinguishing regular and irregular motion of hamiltonian systems, J. Phys. A Math. Gen., 12 (1979), 2053. https://doi.org/10.1088/0305-4470/12/11/017 doi: 10.1088/0305-4470/12/11/017
![]() |
[39] |
D. G. Perez, L. Zunino, M. Garavaglia, O. A. Rosso, Wavelet entropy and fractional brownian motion time series, Physica A, 365 (2006), 282–288. https://doi.org/10.1016/j.physa.2005.09.060 doi: 10.1016/j.physa.2005.09.060
![]() |
[40] |
L. Zunino, D. G. Perez, M. Garavaglia, O. A. Rosso, Wavelet entropy of stochastic processes, Physica A, 379 (2007), 503–512. https://doi.org/10.1016/j.physa.2006.12.057 doi: 10.1016/j.physa.2006.12.057
![]() |
[41] |
E. P. Borges, Itzhak Roditi, A family of nonextensive entropies, Phys. Lett. A, 246 (1998), 399–402. https://doi.org/10.1016/S0375-9601(98)00572-6 doi: 10.1016/S0375-9601(98)00572-6
![]() |
[42] |
W. X. Ren, Z. S. Sun, Structural damage identification by using wavelet entropy, Eng. Struct., 30 (2008), 2840–2849. https://doi.org/10.1016/j.engstruct.2008.03.013 doi: 10.1016/j.engstruct.2008.03.013
![]() |
[43] |
J. Ramirez-Pacheco, D. Torres-Roman, Cosh window behaviour of wavelet tsallis q-entropies in 1/f $\alpha$ signals, Electron. Lett., 47 (2011), 186–187. https://doi.org/10.1049/el.2010.7167 doi: 10.1049/el.2010.7167
![]() |
[44] | J. Ramírez-Pacheco, L. Rizo-Domínguez, J. A. Trejo-Sánchez, J. Cortez-González, A nonextensive wavelet $(q, q')$-entropy for $1/f^\alpha$ signals, Rev. Mex. de Fis., 62 (2016), 229–234. |
[45] |
M. Maejima, On a class of self-similar processes, Probab. Theory Relat. Fields, 62 (1983), 235–245. https://doi.org/10.1007/BF00538799 doi: 10.1007/BF00538799
![]() |
[46] |
B. D. Malamud, D. L. Turcotte, Self-affine time series: Measures of weak and strong persistence, J. Stat. Plan. Inference, 80 (1999), 173–196. https://doi.org/10.1016/S0378-3758(98)00249-3 doi: 10.1016/S0378-3758(98)00249-3
![]() |
[47] |
J. E. Contreras-Reyes, Jensen-autocorrelation function for weakly stationary processes and applications, Physica D, 470 (2024), 134424. https://doi.org/10.1016/j.physd.2024.134424 doi: 10.1016/j.physd.2024.134424
![]() |
[48] |
J. Geweke, S. Porter-Hudak, The estimation and application of long memory time series models, J. Time Ser. Anal., 4 (1983), 221–238. https://doi.org/10.1111/j.1467-9892.1983.tb00371.x doi: 10.1111/j.1467-9892.1983.tb00371.x
![]() |
[49] |
C. W. J. Granger, R. Joyeux, An introduction to long-memory time series models and fractional differencing, J. Time Ser. Anal., 1 (1980), 15–29. https://doi.org/10.1111/j.1467-9892.1980.tb00297.x doi: 10.1111/j.1467-9892.1980.tb00297.x
![]() |
[50] |
D. B. Percival, Stochastic models and statistical analysis for clock noise, Metrologia, 40 (2003), S289. https://doi.org/10.1088/0026-1394/40/3/308 doi: 10.1088/0026-1394/40/3/308
![]() |
[51] |
A. Cohen, J. Kovacevic, Wavelets: The mathematical background, Proc. IEEE, 84 (1996), 514–522. https://doi.org/10.1109/5.488697 doi: 10.1109/5.488697
![]() |
[52] |
L. Hudgins, C. A. Friehe, M. E. Mayer, Wavelet transforms and atmopsheric turbulence, Phys. Rev. Lett., 71 (1993), 3279. https://doi.org/10.1103/PhysRevLett.71.3279 doi: 10.1103/PhysRevLett.71.3279
![]() |
[53] | P. Abry, P. Gonçalvés, P. Flandrin, Wavelets, spectrum analysis and 1/f processes, In: Wavelets and Statistics, New York: Springer, 1995, 15–29. https://doi.org/10.1007/978-1-4612-2544-7-2 |
[54] |
G. W. Wornell, A. V. Oppenheim, Estimation of fractal signals from noisy measurements using wavelets, IEEE Trans. Signal Process., 40 (1992), 611–623. https://doi.org/10.1109/78.120804 doi: 10.1109/78.120804
![]() |
[55] | S. G. Mallat, A theory for multiresolution signal decomposition: The wavelet representation, in IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE, 11 (1989), 674–693. https://doi.org/10.1109/34.192463 |
[56] |
P. Abry, D. Veitch, P. Flandrin, Long-range dependence: Revisiting aggregation with wavelets, J. Time Ser. Anal., 19 (1998), 253–266. https://doi.org/10.1111/1467-9892.00090 doi: 10.1111/1467-9892.00090
![]() |
[57] |
L. Eduardo Virgilio Silva, L. Otavio Murta Jr, Evaluation of physiologic complexity in time series using generalized sample entropy and surrogate data analysis, Chaos, 22 (2012), 043105. https://doi.org/10.1063/1.4758815 doi: 10.1063/1.4758815
![]() |
[58] |
M. J. Xu, P. J. Shang, J. J. Huang, Modified generalized sample entropy and surrogate data analysis for stock markets, Commun. Nonlinear Sci. Numer. Simul., 35 (2016), 17–24. https://doi.org/10.1016/j.cnsns.2015.10.023 doi: 10.1016/j.cnsns.2015.10.023
![]() |
[59] |
G. Kaniadakis, M. Lissia, A. M. Scarfone, Two-parameter deformations of logarithm, exponential, and entropy: A consistent framework for generalized statistical mechanics, Phys. Rev. E, 71 (2005), 046128. https://doi.org/10.1103/PhysRevE.71.046128 doi: 10.1103/PhysRevE.71.046128
![]() |
[60] |
G. Kaniadakis, Statistical mechanics in the context of special relativity, Phys. Rev. E, 66 (2002), 056125. https://doi.org/10.1103/PhysRevE.66.056125 doi: 10.1103/PhysRevE.66.056125
![]() |
[61] |
S. Abe, A note on the q-deformation-theoretic aspect of the generalized entropies in nonextensive physics, Phys. Lett. A, 224 (1997), 326–330. https://doi.org/10.1016/S0375-9601(96)00832-8 doi: 10.1016/S0375-9601(96)00832-8
![]() |