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Abstract: In this article, a wavelet entropy, which behaves as a shifted version of the standard
wavelet (q, q′)-entropy of fractal signals, is presented. The shifted wavelet (q, q′)-entropy is obtained
by computing the standard (q, q′)-entropy functional on a weighted relative-wavelet-energy (RWE)
representation of fractal signals; it is shown that the weight within the RWE plays the role of a shifting
factor in the characteristics of the standard wavelet (q, q′)-entropy. Therefore the shifted wavelet (q, q′)-
entropy relocates the wavelet entropy values to any point of the fractality index range, which allows us
to analyze a wide variety of fractal signal families thus improving on previously proposed entropies in
the literature. Information planes for these entropies are obtained using different shifts and values of
parameters q and q′, which allow us to highlight the potential applications for a fractal signal analysis.
Moreover, an experimental study using synthesized exact fractal signals shows that the shifted wavelet
entropy can classify stationary long-memory signals from short-memory ones and can also be used to
differentiate other fractal signal families.
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1. Introduction

In the beginning, fractal analyses were applied in precipitation patterns in hidrology [1] and foreign
exchange rates in economy [2]. However, in recent years, fractality is an important concept in fields
such as Physiology [3], Economics [4], Finance [5], Chemistry [6] and Dentistry [7], to name but a
few. For instance, in Physiology, fractal analyses have been applied in heart-beat dynamics [8,9], stride-
to-stride duration [10] and human gaze dynamics [11], where the fractality index allows researchers
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to distinguish amongst healthy and diseased people [12]. This makes fractal analyses essential in
Physiology since it can be used as a biomarker to highlight some affections early [13, 14]. Moreover,
fractals are present in plasma turbulence in Physics [15, 16] and variable-bit-rate (VBR) video traffic
in computer networks [17], where it can be used to enhance the performance and design of network
algorithmics.

In all the above applications, the fractality index (popularly known to as the Hurst index) plays a
prominent role an indicator of the “state” of a phenomena; therefore, their efficient estimation is
crucial in any fractal signal analysis framework [18]. Many estimators of the fractality parameter or
Hurst-index have been proposed in the literature; for instance, the wavelet method [19, 20] and the
detrended fluctuation analysis (DFA) [21] are two popular estimators that are used across
disciplines [22–24]. For an in-depth presentation of some definitions and algorithms to estimate the
fractality exponent, the interested reader may refer to [18, 25–28]. Fractal stochastic models, fractal
signal estimation, fractal signal analysis and the more recent fractal signal classification are common
terms associated with fractality. In principle, fractal signal classification is defined as the process of
determining the stationary or nonstationary nature of any fractal [29, 30]; nowadays, it defines the
process of determining wheter or not a given fractal lies within a fractality interval, αT . Naturally, this
fractal signal classification term may be extended to other intervals; however, the above definition is
broader than the original stationary/nonstationary one. Historically, the importance of the fractal
signal classification stems from the fact that it determines characteristics such as the type of
Hurst-index estimator to be used, the form of autocorrelations, and the smoothness of sample paths.

Many techniques for fractal signal classification (in the stationary/nonstationary sense) have been
proposed in the literature, such as the signal summation conversion (SSC) [30, 31] and various
techniques based on wavelet entropies [32, 33]. It is important to note that no methodology exists in
the literature to classify fractal signals within a more general fractality range.

Motivated by the latter, in this article, a new class of wavelet entropy that shifts its behavior is
proposed and its application for fractal signal classification is briefly studied. In a more general sense,
entropies allow researchers to quantify the information content or complexity of a random signal or
system [34, 35]. Entropies can be categorized as extensive, such as the Shannon entropy, or
nonextensive, such as the Tsallis [36] and Abe entropies [37]. Nonextensive entropies have proven to
be useful in applications, where long-range interactions, long-range correlations, and fractality are
present. Now, entropic quantifiers are widely used in the literature and generalizations have been
proposed in order to deal with the ever increasing complexity of the data under study. Generalizations
may be achieved by changing the domain of definition of the signal, such as in spectral [38] and
wavelet entropies [39, 40], or by adding extra parameters to increase the flexibility and the posibility
to switch the extensive/nonextensive entropy character, such as in the (q, q′)-entropy [41].

Wavelet entropies are already in use in numerous applications such as structural damage
identification in vibration signals [42] and detecting weak level-shifts added to synthesized fractal
signals [43]. In this article, a wavelet entropy that behaves as a shifted version of the wavelet
(q, q′)-entropy [44] is proposed. The shift in the characteristics of the wavelet (q, q′)-entropy is
achieved by computing the entropy in a weighted relative-wavelet-energy (RWE) representation of the
fractal signal; it is shown that the weight and the shift within the resulting entropy are related. A
closed-form expression for the shifted wavelet (q, q′)-entropy is obtained along with their information
planes and potential applications. Additionally, an experimental study is presented, where it is shown
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that the shifted wavelet (q, q′)-entropy allows for the classification of stationary long-memory from
short-memory fractals, which is a feature not available in current fractal signal classification schemes.

The rest of the article is organized as follows. In Section 2, a review of the theory of fractals, their
wavelet analysis, and a brief description of the wavelet (q, q′)-entropy is presented. Moreover, the
weighted RWE is defined and the shifted wavelet (q, q′)-entropy computed. The shifted wavelet (q, q′)
information planes are derived in Section 3; based on these, important applications for fractals are
highlighted. Furthermore, Section 4 presents a brief but complete application of the proposed shifted
wavelet (q, q′)-entropy for the classification of only long-memory/short-memory and to discriminate
long-memory signals. Finally, Section 5 concludes the paper.

2. Materials and methods

2.1. A review of fractals, wavelets and the wavelet analysis of fractal signals

Fractality is defined in a variety of ways; however, the most popular definition is based on the
behavior of their power spectral density (PSD). In this context, a random signal, Xt, is called fractal if
their PSD, S Xt( f ), behaves as a power-law in a range of frequencies, i.e., as in the following equation:

S Xt( f ) ∼ c f | f |−α, f ∈ ( fa, fb), (2.1)

where c f is a constant, α ∈ R is the fractality parameter, and fa, fb represent the lower and upper
power-law bounds respectively [19]. Depending upon α, fa, and fb, several well-known fractal random
processes are obtained (e.g., when fb > fa, fa → 0 and 0 < α < 1, long-memory signals result).
Moreover, for all α ∈ R the signals are self-similar in the sense that their distributional properties are
invariant under dilations in time and space [45] (X(at) = aH x(t)). Stationarity and nonstationarity are
two characteristics of fractal signals: the former is found when α < 1 and the latter when α > 1 [18]. In
addition, long-memory stationary signals appear when 0 < α < 1 and short-memory stationary signals
when −1 < α < 0. Moreover, when α ∈ (1, 3), the signal is regarded as a fractal motion (fractional
Brownian motion, fBm), and when α ∈ (3, 5), it is called an extended fractional motion [25,46]. Fractal
motions are processes whose autocovariance (ACV) function is given by the following:

EBH(t)BH(s) =
σ2

2

{
|t|2H + |s|2H − |t − s|2H

}
, (2.2)

and their corresponding PSD as f → 0 is as follows:

S f Bm( f ) ∼ c| f |−(2H+1), (2.3)

where H ∈ (0, 1). According to Eq (2.1), fBm is a fractal signal with α = 2H + 1 [18, 25]. The
parameter H is commonly called “the Hurst” exponent in honor of English hidrologist Harold Edwin
Hurst. Fractional Gaussian noise (fGn), which is obtained from a fBm process via a differencing
operation, is stationary, self-similar, Gaussian, and has a PSD of the following form [18, 25, 26, 47]:

S fGn = 4σ2
XcH sin2(π f )

∞∑
j=−∞

1
| f + j|2H+1 , | f | <

1
2
, (2.4)
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for H ∈ (0, 1). In the limit of f → 0, the PSD of fGn behaves as S fGn ∼ c| f |−2H+1 and therefore is
a fractal signal with α = 2H − 1. Several other processes are also fractal since their PSD resembles
the form given in Eq (2.1) (e.g., the fractional auto-regressive integrated moving-average (f-ARIMA)
process [48,49] and the so-called pure-power-law (PPL) process described in the work of Percival [50]).
Literature on fractals have proposed analyses, simulation, and estimation frameworks based on time,
frequency, and time-scale domains. More recently, wavelet information tools have been proposed to
unveil the properties of fractal signals. This article proposes a generalization of the wavelet (q, q′)-
entropy by further averaging the RWE with dyadic weights, which has the effect of relocating (within
the fractality index range) the entropies of fractal signals. Wavelet analysis have found applications in a
variety of fields of science due to its versatility for representing and analyzing deterministic and random
signals [51, 52]. They are particularly appropriate for nonstationary signals and may conveniently
represent a signal in terms of a discrete sum of wavelets (discrete wavelet transform (DWT)) or by
a continuous sum of ones (continuous wavelet transform (CWT)). In the context of fractal signals,
wavelet analyses have found extensive applicability [20,53,54], and based on the multiresolution signal
decomposition [55] given by,

Xt =

L∑
j=1

∞∑
k=−∞

dx( j, k)ψ j,k(t), (2.5)

where dX( j, k) is the DWT of Xt and {ψ j,k(t) = 2− jψo(2− jt − k), j, k ∈ Z}, permits us to quantify
contributions of each scale in the characteristics of the signal. Since dX( j, k) represents a random
process for each j, [56] many statistical quantities may be computed based on it such as means,
cumulants, and entropies. A statistical measure of particular importance is the wavelet spectrum,
which is given by the following relation:

Ed2
X( j, k) =

∫ ∞

−∞

S X(2− j f )|Ψ( f )|2 d f , (2.6)

where Ψ( f ) represents the Fourier integral of the mother wavelet ψ0(t) and S X(.) is the process’ PSD.
For fractal processes, the wavelet spectrum takes the following form [20]:

Ed2
X( j, k) ∼ 2 jα ×C, (2.7)

where C is a constant that depends on the fractal process under analysis, and α is the fractality
parameter. The wavelet spectrum given in Eq (2.7) plays a fundamental role in the entropic quantities
that will be presented in the paper.

2.2. The time and wavelet (q, q′)-entropy

As mentioned earlier, entropic functionals have found widespread applications in many fields of
science for the analysis of complex signals [57, 58]. The standard Shannon entropy has proven to
be useful; however, in some applications, more robust entropic functionals are needed. Nonextensive
entropies are those such robust measures which generalize the Shannon entropy and allow researchers
to study phenomena with long-range forces, long-memory, power-laws, and systems with asymptotic
long-tails [41,59]. In addition, many of these entropies provide researchers with additional parameters
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to fine-tune analyses. Many entropic functionals may be represented by the following form:

S = −
∑

i

pi∆(pi), (i = 1, 2 . . .N), (2.8)

and differ by the form adopted by ∆(pi). For instance, Tsallis entropy has ∆(pi) = (p1−q
i −1)/(1−q), the

κ-entropy [60] has ∆(pi) = (pκi −p−κi ), and the Abe entropy [61] has ∆(pi) = (pq−1−1
i −pq−1

i )/(q−1−q). All
of these entropies generalize the Shannon entropy and are nonextensive in the sense that Sq(A + B) =
Sq(A) + Sq(B) + (1 − q)Sq(A)Sq(B). An additional level of generalization may be obtained if these
entropies are computed in other domains such as the Fourier or the wavelet domains. The wavelet
Tsallis q-entropy was studied in [32, 43], and this paper proposed the shifted wavelet (q, q′)-entropy
and studied their properties for fractal signal analysis. The (q, q′) entropy was first proposed in [41],
and for a given probability distribution {pi}i=1,2,3,...N , is computed as follows:

S(q,q′)(pi) = −
N∑

i=1

(pi)q − (pi)q
′

q − q′
. (2.9)

It has a q ↔ q
′

invariance and is nonextensive. It is related with the Tsallis entropy according to the
following:

S(q,q′)(pi) =
(q − 1)ST

q (pi) − (q
′

− 1)ST
q′

(pi)

q − q′
, (2.10)

where ST
q represents the Tsallis entropy of parameter q. A time-scale or wavelet (q, q′)-entropy is

obtained by substituting the RWE given by;

RWE1/ f = 2( j−1)α 1 − 2α

1 − 2αN , (2.11)

to the equation given in Eq (2.9). Eq (2.9) represents the unnormalized (q, q′)-entropy functional.
However, for the purposes of the paper, a normalized version is used instead. Thus the normalized
(q, q′)-entropy functional is given by the following relation:

S(q,q′)(pi) =
∑

i

pq
i − pq

′

i

N1−q − N1−q′
(2.12)

= ST
q (pi)

1 − N1−q

N1−q − N1−q′
− ST

q′ (pi)
1 − N1−q

′

N1−q − N1−q′
.

Therefore, the normalized wavelet (q, q′)-entropy for fractal signals is obtained by substituting
Eq (2.11) into Eq (2.12) to obtain the following:

S(q,q′)(pi) = ST
q (pi)

1 − N1−q

N1−q − N1−q′
− ST

q′ (pi)
1 − N1−q

′

N1−q − N1−q′
, (2.13)

where ST
q (pi) is the wavelet Tsallis q-entropy given by the following relation:

ST
(q)(pi) =


PN−1

(
2 cosh(αq

′
ln 2

2 )
)

(
PN−1

(
2 cosh(α ln 2

2 )
))q′
−

PN−1
(
2 cosh(αq ln 2

2 )
)

(
PN−1

(
2 cosh(α ln 2

2 )
))q

 × K, (2.14)
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where K =
(
N1−q − N1−q′

)−1
and PN−1(2 cosh u) is a polynomial of order N − 1 of the following form:

PN−1(.) = (2 cosh u)N−1 −
(N − 2)

1!
(2 cosh u)N−3

+
(N − 3)(N − 4)

2!
(2 cosh u)N−5 − . . .

(2.15)

Equation (2.13) is the wavelet (q, q′)-entropy of fractal signals of parameter α and their properties are
briefly described in [44].

3. Results and discussion

3.1. The shifted wavelet (q, q′)-entropy

The RWE (Eq (2.11)) was computed using the wavelet spectrum (Eq (2.7)) substituted in the
following:

E j =
1
N j

∑
k

Ed2
X( j, k), ( j = 1, 2 . . . log2(N)), (3.1)

and averaged in all scales as in the following equation:

RWE j =
E j∑
j E j

, ( j = 1, 2 . . . log2(N)), (3.2)

where N j = 2 j is the number of wavelet coefficients at scale j. Additionally, Zunino and
co-workers [40] introduced the unnormalized wavelet energy, which is computed using the following
relation:

EU
j =

∑
k

Ed2
X( j, k) ( j = 1, 2 . . . log2(N)). (3.3)

The unnormalized wavelet energy produces an unnormalized RWE, which is given by the following:

RWEU
1/ f = 2( j−1)(α−1) 1 − 2(α−1)

1 − 2(α−1)N , (3.4)

and which is a version of the RWE shifted by 1 (in the fractality index range). Motivated by this, it is
therefore evident that by computing the wavelet energy in the following form:

EW
j = (N j)r ×

∑
k

Ed2
X( j, k). (3.5)

The following weighted RWE is obtained:

wRWE1/ f = 2( j−1)(α−r) 1 − 2(α−r)

1 − 2(α−r)N , (3.6)

Equation (3.6) is a shifted by the r (in the fractality range) version of the standard RWE given in
Eq (2.11). Therefore, the weighted RWE (wRWE) is a more general probability mass function (pmf)
to compute entropies in fractal signals and permits obtaining novel versions of the wavelet entropies
presented earlier in the literature.
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Theorem 3.1. Let pi = wRWE1/ f be the shifted by r RWE of fractal signals and S(q,q′)(.) be the
normalized (q, q′)−entropy functional. Then,

S(q,q′)(wRWE1/ f ) = ST
(q,r)(pi)

1 − N1−q

N1−q − N1−q′
− ST

(q′ ,r)(pi)
1 − N1−q

′

N1−q − N1−q′
, (3.7)

where ST
(q,r)(pi) and ST

(q′,r)(pi) are the shifted wavelet Tsallis entropies of parameter q and shift r and
parameter q′ and shift r, respectively.

Proof. Recall from Eq (2.12) that

S(q,q′)(pi) = ST
q (pi)

1 − N1−q

N1−q − N1−q′
− ST

q′ (pi)
1 − N1−q

′

N1−q − N1−q′
;

therefore, by computing ST
q (pi), using pi = wRWE1/ f , the following is obtained:

ST
q (wRWE1/ f ) =

1
1 − N1−q

1 −
N∑

i=1

(
2( j−1)(α−r) 1 − 2α−r

1 − 2(α−r)N

)q


=
1

1 − N1−q

{
1 −

(
1 − 2(α−r)

1 − 2(α−r)N

)q (
1 − 2(α−r)qN

1 − 2(α−r)q

)}
= ST

(q,r)(RWE1/ f ).

Using a similar approach,
ST

q′(wRWE1/ f ) = ST
(q′,r)(RWE1/ f ) :

therefore, substituting ST
(q,r)(wRWE1/ f ) and ST

(q′,r)(wRWE1/ f ), Eq (3.7) results.

Moreover, a shifted version of the wavelet Shannon entropy presented in Zunino [40], computed in
the same way as the shifted Tsallis is given by the following:

Hα−r =
1

log2(N)

{[
(α − r)N

1 − 2−(α−r)N +
α − r

1 − 2−(α−r)

]
− log2

(
1 − 2(α−r)

1 − 2(α−r)N

)}
. (3.8)

Therefore, the shifted wavelet (q, q′)-entropy is given by the following relation:

Sr
q(pi) = ST

(q,r)(pi)
1 − N1−q

N1−q − N1−q′
− ST

(q′ ,r)(pi)
1 − N1−q

′

N1−q − N1−q′
,

where ST
(q,r)(pi) is the shifted wavelet Tsallis entropy of parameter q and shift r, which is given by the

following:

ST
(q,r)(pi) =


PN−1

(
2 cosh( (α−r)q

′
ln 2

2 )
)

(
PN−1

(
2 cosh( (α−r) ln 2

2 )
))q′
−

PN−1
(
2 cosh( (α−r)q ln 2

2 )
)

(
PN−1

(
2 cosh( (α−r) ln 2

2 )
))q

 × K, (3.9)

where
K =

(
N1−q − N1−q′

)−1
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and the polynomial given in Eq (3.9), PN−1(u), is obtained as follows:

PN−1(.) = (2 cosh u)N−1 −
(N − 2)

1!
(2 cosh u)N−3

+
(N − 3)(N − 4)

2!
(2 cosh u)N−5 − . . .

(3.10)

Therefore, the shifted wavelet (q, q′)-entropy is an entropy with the same characteristics and
advantages as the standard wavelet (q, q′)-entropy; however, unlike the standard version, the shifted
version provides an extra parameter r, which allows us to shift the wavelet (q, q′) entropy values to
any point of the scaling index range, thus increasing the analysis flexibility of the fractals.

3.2. Properties and applications of the shifted wavelet (q, q′)-entropy

As mentioned above, the shifted wavelet (q, q′)-entropy has similar properties and information
planes as those of their standard version but shifted at α = r. This means that it is maximal at α = r
(or around r), increasing for α < r and decreasing for α > r. In addition, the shape or their
information planes is controlled by parameters q and q′; based on these, the shifted wavelet Shannon
and Tsallis entropies may be obtained when (q, q′)→ (1, 1) and q′ → 1, respectively. In the following,
shifted wavelet (q, q′) entropy planes are obtained and discussed for fractal signals of parameter α.

3.3. Shifted wavelet (q, q′) information planes

Figure 1 shows the shifted wavelet (q, q′)-entropy planes for two different values of the pair (q, q′),
r = 0, log2(N) ∈ [5, 15] and the fractality parameter −4 < α < 4 along with three 2D slices
corresponding to signal lengths log2(N) = 7, 9, 11. The top left plot presents the (q, q′) → (0.9, 1)
case. From this plot note that the entropies are maximal at α = 0, increasing for α < 0, decreasing for
α > 0, and symmetrical at the origin (α = 0). The bottom left plot shows three different 2D slices of
the shifted wavelet plane of the top left plots that highlight the signal length effect on the entropy
values. From this plot note that the entropic values are slightly affected by signal length. The top right
plot shows the shifted wavelet entropy planes for q = 12, q′ = 1, r = 0, log2(N) ∈ [5, 15],
and −4 < α < 4. As in the previous case, the entropies are increasing for α < 0, decreasing for α > 0,
and symmetrical at α = 0; however, they are maximal in an interval of the fractality range
(−αC/2 < α < αC/2), and the length of this interval can be controlled by q (or q′). In addition, the 2D
slices for log2(N) = 7, 9, 11 in the bottom right plot reveals that signal length is irrelevant for q ≫ 1.

As mentioned earlier, when r , 0, the wavelet entropy values are either shifted or relocated at
α = r. This means that for identical q, q′, and N, the shape of the wavelet entropies are identical but
located in different regions of the fractality parameter α. For r , 0, the shifted wavelet entropies are
symmetrical at α = r, increasing for α < r, and decreasing for α > r. Figure 2 illustrates the entropies
when r = 0, 2, 4, 6 and the parameters q, q′, and N identical. Note that the shape of the entropies are
identical though the location is affected by the value of r. This means that the entropies are symmetrical
around r, decreasing for α > r, and increasing for α < r. In addition, when q ≫ 1 and q′ → 1, constant
regions of maximum entropies are observed in the interval r − αC/2 < α < r + αC/2. This means that
constant entropies are observed for |α − r| < αC/2 and varying for |α − r| > αC/2. This result is of
a significant importance since a given fractal signal family can be mapped to |α − r| > αC/2 and can
discriminate these fractals by means of constant/nonconstant entropies. For instance, if r + αC = 0,
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then the discrimination between long-memory and short-memory signals may be achieved, and when
r + αC = 1, stationarity versus nonstationarity can be discriminated. In addition, within a fractal
signal, a specific behavior may be of interest such as the strong correlations versus weak correlations
in long-memory signals.
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Figure 1. Shifted wavelet (q, q′)-entropy planes for r = 0, 5 ≤ N ≤ 15 and α ∈ [−4, 4]. The
top left plot shows the case (q, q′) → (0.9, 1) along with lines representing the signal length
N = 7, 9, 11. The bottom left plot shows the effect of the signal length of the top left plot for
N = 7, 9, 11. The top right plot shows the (q, q′)→ (12, 1) case and the bottom right plot the
dependence of the top right case to the signal length.
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4. Classification of long-memory and short-memory signals

An important family of fractal signals is the class of stationary fractal process (0 < α < 1), which
can be further categorized as short-memory fractals (0 < α < 1/2) and long-memory fractals (1/2 <

α < 1). The fractality point α = 1/2 is the limit between the short-memory and long-memory behavior
and permits the discrimination between those two processes: For α > 1/2, the signals are long-memory
and for α < 1/2, the signals are short-memory. Therefore, by using the shifted wavelet (q, q′)-entropy
with q ≫ 1 and r + αC = 1/2, the discrimination between these two signals may be achieved by the
principle that one family will experiment constant entropies while the other varyies. The left plot of
Figure 3 displays the results of this classification for fGn noise signals with length N = 8192 which is
generated by the Paxson FFT method. For the classifcation, 100 fGn signals in the range (1 + α)/2 =
H ∈ {0.01, .02, . . . , 0.94, 0.95}were generated. This means that 9500 fGn series in total were employed
for the classification. The shifted wavelet entropies were estimated within a signal in blocks, using
sliding windows; therefore, for every signal, {S(q,r)(i), i = 1, 2, . . .} entropies were obtained. Finally, a
variability measure was applied to these entropies by means of the biweigth midvariance. As can be
seen in the figure, the shifted wavelet entropies not only allow us to classify SRD and LRD signals, but
also to perform it efficiently since no other signal is classified as LRD after a certain point within H.
Additionally, the plot includes a reference line to indicate the limit H = 0.5.
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Figure 3. Classification results for stationary fractal signals. The left plot shows the results
for SRD versus LRD and the right plot shows an example for a classification within the LRD
(processes which are less than H = 0.75) and processes which have a higher H.

Here, it is important to note, that although some methodologies exist which classify the LRD and
SRD processes, no other tools has been proposed to classify LRD as “strong” LRD and “light” LRD
signals. By light and strong, we refer to LRD processes with H < 0.75 and H > 0.75, respectively.
The right plot of Figure 3 displays this classification by modifying r accordingly. The classification
was performed in a similar manner as for H = 0.5, with respect to sliding windows and with the
use of the biweigth midvariance. Note, the classifications are also well performed, thereby quickly
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decaying to 0 for H > 0.75. Additionally any other classification within the stationary limit of α may
be perfomed; therefore, the shifted wavelet (q, q′)-entropy allows us to efficiently classify the stationary
fractal signals by modifying the RWE of the process.

5. Conclusions

In this contribution, a shifted version of the wavelet (q, q′)-entropy was presented. The shifted
wavelet entropy allowed us to shift the characteristics of the original wavelet (q, q′)-entropy by
computing it on a weighted RWE. It was shown that there is a direct relationship between the weight
of the RWE and the shift of the wavelet (q, q′)-entropy. The shifted wavelet entropy information
planes were obtained and based on these, potential applications were highlighted. An example
application focused on the classification of stationary fractal signals and it was shown that the shifted
wavelet (q, q′) allows us to not only efficiently classify LRD versus SRD fractals and light versus
strong LRD fractal signals, but also any other signals within the stationary fractal signal range.
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