Research article Special Issues

Global existence of 3D rotating magnetohydrodynamic equations arising from Earth's fluid core

  • Received: 27 September 2024 Revised: 10 December 2024 Accepted: 02 January 2025 Published: 09 January 2025
  • The paper is concerned with the three-dimensional magnetohydrodynamic equations in the rotational framework concerning with fluid flow of Earth's core and the variation of the Earth's magnetic field. By establishing new balances between the regularizing effects arising from viscosity dissipation and magnetic diffusion with the dispersive effects caused by the rotation of the Earth, we obtain the global existence and uniqueness of solutions of the Cauchy problem of the three-dimensional rotating magnetohydrodynamic equations in Besov spaces. Moreover, the spatial analyticity of solutions is verified by means of the Gevrey class approach.

    Citation: Jinyi Sun, Weining Wang, Dandan Zhao. Global existence of 3D rotating magnetohydrodynamic equations arising from Earth's fluid core[J]. Networks and Heterogeneous Media, 2025, 20(1): 35-51. doi: 10.3934/nhm.2025003

    Related Papers:

  • The paper is concerned with the three-dimensional magnetohydrodynamic equations in the rotational framework concerning with fluid flow of Earth's core and the variation of the Earth's magnetic field. By establishing new balances between the regularizing effects arising from viscosity dissipation and magnetic diffusion with the dispersive effects caused by the rotation of the Earth, we obtain the global existence and uniqueness of solutions of the Cauchy problem of the three-dimensional rotating magnetohydrodynamic equations in Besov spaces. Moreover, the spatial analyticity of solutions is verified by means of the Gevrey class approach.



    加载中


    [1] W. M. Elsässer, Induction effects in terrestrial magnetism part Ⅰ. Theory, Phys. Rev., 69 (1946), 106–116. https://doi.org/10.1103/PhysRev.69.106 doi: 10.1103/PhysRev.69.106
    [2] W. M. Elsässer, Induction effects in terrestrial magnetism part Ⅱ. The secular variation, Phys. Rev., 70 (1946), 202–212. https://doi.org/10.1103/PhysRev.70.202 doi: 10.1103/PhysRev.70.202
    [3] R. T. Merrill, M. W. McElhinny, P. L. McFadden, The Magnetic Field of the Earth: Paleomagnetism, the Core, and the Deep Mantle, Academic Press, 1998.
    [4] J. Y. Chemin, B. Desjardins, I. Gallagher, E. Grenier, Mathematical Geophysics: An Introduction to Rotating Fluids and the Navier-Stokes Equations, The Clarendon Press Oxford University Press, Oxford, 2006.
    [5] G. Duvaut, J. L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique, Arch. Ration. Mech. Anal., 46 (1972), 241–279. https://doi.org/10.1007/BF00250512 doi: 10.1007/BF00250512
    [6] X. Zhai, Y. Li, W. Yan, Global well-posedness for the 3-D incompressible MHD equations in the critical Besov spaces, Commun. Pure Appl. Anal., 14 (2015), 1865–1884. https://doi.org/10.3934/cpaa.2015.14.1865 doi: 10.3934/cpaa.2015.14.1865
    [7] J. Chemin, D. McCormick, J. Robinson, J. Rodrigo, Local existence for the nonresistive MHD equations in Besov spaces, Adv. Math., 286 (2016), 1–31. https://doi.org/10.1016/j.aim.2015.09.004 doi: 10.1016/j.aim.2015.09.004
    [8] C. Fefferman, D. McCormick, J. Robinson, J. Rodrigo, Higher order commutator estimates and local existence for the non-resistive MHD equations and related models, J. Funct. Anal., 267 (2014), 1035–1056. https://doi.org/10.1016/j.jfa.2014.03.021 doi: 10.1016/j.jfa.2014.03.021
    [9] Q. Liu, J. Zhao, Global well-posedness for the generalized magneto-hydrodynamic equations in the critical Fourier-Herz spaces, J. Math. Anal. Appl., 420 (2014), 1301–1315. https://doi.org/10.1016/j.jmaa.2014.06.031 doi: 10.1016/j.jmaa.2014.06.031
    [10] X. Zhai, Stability for the 2D incompressible MHD equations with only magnetic diffusion, J. Differ. Equations, 374 (2023), 267–278. https://doi.org/https://doi.org/10.1016/j.jde.2023.07.033 doi: 10.1016/j.jde.2023.07.033
    [11] J. Y. Chemin, B. Desjardin, I. Gallagher, E. Grenier, Anisotropy and dispersion in rotating fluids, Stud. Math. Appl., 31 (2002), 171–192. https://doi.org/10.1016/S0168-2024(02)80010-8 doi: 10.1016/S0168-2024(02)80010-8
    [12] T. Iwabuchi, R. Takada, Global solutions for the Navier-Stokes equations in the rotational framework, Math. Ann., 357 (2013), 727–741. https://doi.org/10.1007/s00208-013-0923-4 doi: 10.1007/s00208-013-0923-4
    [13] Y. Koh, S. Lee, R. Takada, Dispersive estimates for the Navier-Stokes equations in the rotational framework, Adv. Differ. Equations, 19 (2014), 857–878. https://doi.org/10.57262/ade/1404230126 doi: 10.57262/ade/1404230126
    [14] J. Sun, M. Yang, S. Cui, Existence and analyticity of mild solutions for the 3D rotating Navier-Stokes equations, Ann. Mat. Pura Appl., 196 (2017), 1203–1229. https://doi.org/10.1007/s10231-016-0613-4 doi: 10.1007/s10231-016-0613-4
    [15] Y. Giga, K. Inui, A. Mahalov, J. Saal, Uniform global solvability of the rotating Navier-Stokes equations for nondecaying initial data, Indiana Univ. Math. J., 57 (2008), 2775–2791. https://doi.org/10.1512/iumj.2008.57.3795 doi: 10.1512/iumj.2008.57.3795
    [16] M. Hieber, Y. Shibata, The Fujita-Kato approach to the Navier-Stokes equations in the rotational framework, Math. Z., 265 (2010), 481–491. https://doi.org/10.1007/s00209-009-0525-8 doi: 10.1007/s00209-009-0525-8
    [17] T. Iwabuchi, R. Takada, Global well-posedness and ill-posedness for the Navier-Stokes equations with the Coriolis force in function spaces of Besov type, J. Funct. Anal., 267 (2014), 1321–1337. https://doi.org/10.1016/j.jfa.2014.05.022 doi: 10.1016/j.jfa.2014.05.022
    [18] P. Konieczny, T. Yoneda, On dispersive effect of the Coriolis force for the stationary Navier-Stokes equations, J. Differ. Equations, 250 (2011), 3859–3873. https://doi.org/10.1016/j.jde.2011.01.003 doi: 10.1016/j.jde.2011.01.003
    [19] F. Charve, Global well-posedness and asymptotics for a geophysical fluid system, Commun. Partial Differ. Equations, 29 (2004), 1919–1940. https://doi.org/10.1081/PDE-200043510 doi: 10.1081/PDE-200043510
    [20] J. Sun, S. Cui, Sharp well-posedness and ill-posedness of the three-dimensional primitive equations of geophysics in Fourier-Besov spaces, Nonlinear Anal. Real World Appl., 48 (2019), 445–465. https://doi.org/10.1016/j.nonrwa.2019.02.003 doi: 10.1016/j.nonrwa.2019.02.003
    [21] J. Sun, C. Liu, M. Yang, Global solutions to 3D rotating Boussinesq equations in Besov spaces, J. Dyn. Differ. Equations, 32 (2020), 589–603. https://doi.org/10.1007/s10884-019-09747-0 doi: 10.1007/s10884-019-09747-0
    [22] J. Sun, C. Liu, M. Yang, Global existence for three-dimensional time-fractional Boussinesq-Coriolis equations, Fract. Calc. Appl. Anal., 27 (2024), 1759–1778. https://doi.org/10.1007/s13540-024-00272-6 doi: 10.1007/s13540-024-00272-6
    [23] J. Sun, M. Yang, Global well-posedness for the viscous primitive equations of geophysics, Boundary Value Probl., 21 (2016), 16. https://doi.org/10.1186/s13661-016-0526-6 doi: 10.1186/s13661-016-0526-6
    [24] V. S. Ngo, A global existence result for the anisotropic rotating magnetohydrodynamical systems, Acta Appl. Math., 150 (2017), 1–42. https://doi.org/10.1007/s10440-016-0092-z doi: 10.1007/s10440-016-0092-z
    [25] J. Ahn, J. Kim, J. Lee, Global solutions to 3D incompressible rotational MHD system, J. Evol. Equations, 21 (2021), 235–246. https://doi.org/10.1007/s00028-020-00576-z doi: 10.1007/s00028-020-00576-z
    [26] J. Kim, Rotational effect on the asymptotic stability of the MHD system, J. Differ. Equations, 319 (2022), 288–311. https://doi.org/10.1016/j.jde.2022.02.033 doi: 10.1016/j.jde.2022.02.033
    [27] C. Foias, R. Temam, Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal., 87 (1989), 359–369. https://doi.org/10.1016/0022-1236(89)90015-3 doi: 10.1016/0022-1236(89)90015-3
    [28] H. Bae, A. Biswas, E. Tadmor, Analyticity and decay estimates of the Navier-Stokes equations in critical Besov spaces, Arch. Ration. Mech. Anal., 205 (2012), 963–991. https://doi.org/10.1007/s00205-012-0532-5 doi: 10.1007/s00205-012-0532-5
    [29] M. Oliver, E. S. Titi, Remark on the rate of decay of higher order derivatives for solutions to the Navier-Stokes equations in $\mathbb{R}^n$, J. Funct. Anal., 172 (2000), 1–18. https://doi.org/10.1006/jfan.1999.3550 doi: 10.1006/jfan.1999.3550
    [30] J. Y. Chemin, N. Lerner, Flow of non-Lipschitz vector fields and Navier-Stokes equations(French), J. Differ. Equations, 121 (1995), 314–328. https://doi.org/10.1006/jdeq.1995.1131 doi: 10.1006/jdeq.1995.1131
    [31] H. Bahouri, J. Y. Chemin, R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Springer-Verlag, Berlin, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-16830-7
    [32] H. Abidi, M. Paicu, Existence globale pour un fluide inhomogéne (French), Ann. Inst. Fourier, 57 (2007), 883–917. https://doi.org/10.5802/aif.2280 doi: 10.5802/aif.2280
    [33] H. Kozono, T. Ogawa, Y. Taniuchi, Navier-Stokes equations in the Besov space near $L^1$ and BMO, Kyushu J. Math., 57 (2003), 303–324. https://doi.org/10.2206/kyushujm.57.303 doi: 10.2206/kyushujm.57.303
    [34] R. Strichartz, Restriction of Fourier transform to quadratic surfaces and decay of solutions to the wave equation, Duke Math. J., 44 (1977), 705–714. https://doi.org/10.1215/S0012-7094-77-04430-1 doi: 10.1215/S0012-7094-77-04430-1
    [35] P. A Tomas, A restriction theorem for the Fourier transform, Bull. Am. Math. Soc., 81 (1975), 477–478. https://doi.org/10.1090/S0002-9904-1975-13790-6 doi: 10.1090/S0002-9904-1975-13790-6
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(324) PDF downloads(24) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog