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Abstract: The paper is concerned with the three-dimensional magnetohydrodynamic equations in
the rotational framework concerning with fluid flow of Earth’s core and the variation of the Earth’s
magnetic field. By establishing new balances between the regularizing effects arising from viscosity
dissipation and magnetic diffusion with the dispersive effects caused by the rotation of the Earth, we
obtain the global existence and uniqueness of solutions of the Cauchy problem of the three-dimensional
rotating magnetohydrodynamic equations in Besov spaces. Moreover, the spatial analyticity of
solutions is verified by means of the Gevrey class approach.
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1. Introduction

Multiple pieces of evidence indicate that the Earth’s magnetic field existed at least 3.45 billion
years ago, and it is constantly changing, and the way in which it changes also changes. Especially,
the geomagnetic reversals happen every several hundred centuries. Shortly after fulfilling the theory of
general relativity, science master A. Einstein attributed the generation and maintenance of geomagnetic
field to one of the major unsolved problems in the field of physics.

From a numerical, experimental, physical, or mathematical point of view, much work has been
done trying to find the underlying mechanism and rules of operation of the geomagnetic field. Among
numerous theories, the self-excitation dynamo theory is universally accepted, which is to say that the
outer core of Earth is often thought of as a giant dynamo that generates the Earth’s magnetic field due to
the motion of the conductive fluid; see [1–3]. Specifically, the liquid metal circulation that constitutes
the Earth’s outer core moves under the weak magnetic field to generate electric current, and then the
additional magnetic field generated by the electric current will strengthen the original weak magnetic
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field. Under the action of electromagnetic coupling effect, the magnetic field is continuously enhanced
and amplified, and finally the Earth’s magnetic field is formed.

On the other hand, Coriolis forces, generated by the rotation of the Earth, cannot be ignored.
Physically, Coriolis forces deflect the upwelling fluid along corkscrewlike, or helical, paths, as though
it were following the spiraling wire of a loose spring. Mathematically, Coriolis forces give rise to the
so-called Poincaré waves, which are dispersive waves, see [4]. Based on a comprehensive
consideration, one possible model is the following one describing the magnetohydrodynamic
phenomena with a reasonable addition of the Coriolis forces:

∂tu − ∆u + Ωe3 × u + (u · ∇)u − (B · ∇)B + ∇p = 0, in R3 × (0,∞),
∂tB − ∆B + (u · ∇)B − (B · ∇)u = 0, in R3 × (0,∞),
divu = 0, divB = 0, in R3 × (0,∞),
u|t=0 = u0, B|t=0 = B0, in R3,

(1.1)

where u = (u1, u2, u3), B = (B1, B2, B3), and p are the fluid velocity field, the magnetic field, and the
fluid pressure, respectively. Ω ∈ R\{0} denotes the Coriolis parameter, and Ωe3 × u represents the
so-called Coriolis force with rotation axis e3 = (0, 0, 1). We refer readers to Section 10.2 of [4] for the
derivation of system (1.1).

When Ω = 0, Eq (1.1) becomes the 3D magnetohydrodynamic equations. Duvaut and Lions [5]
established local well-posedness results of the 3D magnetohydrodynamic equations in H s(Rn) with
s ≥ n and global well-posedness results for the small initial data. Zhai et al. [6] established the global
well-posedness of the 3D magnetohydrodynamic equations for initial data in critical Besov spaces
and relaxed the smallness condition in the third components of the initial velocity field and initial
magnetic field. For more relevant studies on the existence of solutions of the magnetohydrodynamic
equations, we refer to [7–10]. However, the global well-posedness or global regularity for the 3D
magnetohydrodynamic equations is still a challenging open problem.

When Ω , 0 but B ≡ 0, Eq (1.1) becomes the 3D rotating Navier-Stokes equations. Chemin
et al. [4, 11] showed that for any given L2(R2) + H

1
2 (R3)-initial data, there exists a positive constant

Ω0 such that the 3D rotating Navier-Stokes equations are globally well-posed provided that |Ω| ≥ Ω0.
Iwabuchi and Takada [12] proved that the 3D rotating Navier-Stokes equations is globally well-posed
for u0 ∈ Ḣ s(R3) with 1

2 < s < 3
4 satisfying

∥u0∥Ḣs ≤ C|Ω|
1
2 (s− 1

2 ).

Later on, Koh et al. [13] and Sun et al. [14] relaxed the range of s to 1
2 < s < 9

10 and 1
2 < s < 1,

respectively. We may refer to [15–18] for the global existence results on 3D rotating Navier-Stokes
equations with uniformly small initial data. We also refer to [19–23] and the references therein for the
global existence results on other models involving the Coriolis forces.

Recently, Ngo [24] studied Eq (1.1) with horizontal diffusion terms only and showed that the large
Coriolis parameter implies global solvability for large initial data provided that B0 is a perturbation of
e3. Ahn et al. [25] proved the existence and uniqueness of global solutions of Eq (1.1) for u0 ∈ H s(R3)
and B0 ∈ (L2⋂ Lq)(R3) with 1

2 < s < 3
4 and 3 < q < min{ 6

3−2s ,
27

6+2s }, when the Coriolis parameter is
sufficiently large. Kim [26] proved the global existence and uniqueness of smooth solutions in H s(R3)

Networks and Heterogeneous Media Volume 20, Issue 1, 35–51.



37

with 1
2 < s < 3

4 under large Coriolis parameter and further obtained the temporal decay estimates for
the solutions.

We would like to point out that there is a great difference between the 3D rotational
magnetohydrodynamic equations and the 3D magnetohydrodynamic equations or rotating
Navier-Stokes equations. More specifically, the 3D magnetohydrodynamic equations (i.e., Eq (1.1)
with Ω = 0) are a purely dissipative system, and the 3D rotating Navier-Stokes equations (i.e.,
Eq (1.1) with B ≡ 0) are a system of dissipative-dispersive jointly type, whereas in Eq (1.1), the
partition of flow field is of dissipative-dispersive jointly type and the partition of magnetic field is of
dissipative type. The structural asymmetry of Eq (1.1) makes the problem much harder than that for
the other ones.

The main aim of this paper is to investigate the global existence issue of the Cauchy problem of
the 3D rotational magnetohydrodynamic equations and further verify the spatial analyticity for the
obtained global solutions by adopting the famous Gevrey class approach (see [27–29]). Specifically,
by establishing new balances between the regularizing effects arising from viscosity dissipation and
magnetic diffusion with the dispersive effects caused by the rotation of the Earth, we shall show the
existence and uniqueness of global mild solutions to Eq (1.1) for large initial data in Besov spaces
under a large Coriolis parameter. Furthermore, let X be a Banach space and let Λ1 be the pseudo-
differential operator with symbol given by |ξ|1 :=

∑3
i=1 |ξi|; we will prove that the obtained solutions

(u, B) ∈ X of problem (1.1) hold ∥e
√

tΛ1u∥X < ∞, which implies the spatial analyticity of solutions. The
main results of this paper are as follows.

Theorem 1.1. Let p ∈ (3
2 , 2), r ∈ [1,∞], δ ∈ (2,∞) and ρ ∈ (2, 2δ) satisfy

0 <
1
δ
< min

{2
p
− 1, 2 −

3
p

}
and

1
ρ
< 2 −

3
p
.

Then there exist two positive constants, c and C, such that for (u0, B0) ∈ Ḃ
−1+ 3

p+
2
δ

p,r (R3) × Ḃ
−1+ 3

p
p,r (R3)

satisfying divu0 = 0, divB0 = 0 and

∥u0∥
Ḃ
−1+ 3

p +
2
δ

p,r

≤ C|Ω|
1
δ and ∥B0∥

Ḃ
−1+ 3

p
p,r

≤ c, (1.2)

Eq (1.1) has a unique global mild solution

(u, B) ∈ L̃δ(0,∞; eθ
√

tΛ1 Ḃ
−1+ 3

p′ +
2
δ

p′,r (R3)) × L̃ρ(0,∞; eθ
√

tΛ1 Ḃ
−1+ 3

p+
2
ρ

p,r (R3)),

with θ ∈ {0, 1} and 1
p +

1
p′ = 1.

The next result involves the case of p = 2.

Theorem 1.2. Let q ∈ (2, 3), r ∈ [1,∞], δ ∈ (2,∞) and ρ ∈ (2, 2δ) satisfy

0 <
1
δ
< min{

1
2
−

1
q
,

3
q
− 1} and

1
ρ
<

3
q
− 1.

Then there exist two positive constants, c and C, such that for (u0, B0) ∈ Ḃ
1
2+

2
δ

2,r (R3) × Ḃ
−1+ 3

q
q,r (R3)

satisfying divu0 = 0, divB0 = 0, and

∥u0∥
Ḃ

1
2 +

2
δ

2,r

≤ C|Ω|
1
δ and ∥B0∥

Ḃ
−1+ 3

q
q,r

≤ c, (1.3)
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Eq (1.1) has a unique global mild solution

(u, B) ∈ L̃δ(0,∞; eθ
√

tΛ1 Ḃ
−1+ 3

q+
2
δ

q,r (R3)) × L̃ρ(0,∞; eθ
√

tΛ1 Ḃ
−1+ 3

q+
2
ρ

q,r (R3)),

with θ ∈ {0, 1}.

Remark 1.3. Theorems 1.1 and 1.2 with θ = 0 indicate that for any given u0 ∈ Ḃ
−1+ 3

p+
2
δ

p,r (R3) and

sufficiently small B0 ∈ Ḃ
−1+ 3

q
q,r (R3) with specified p, r, δ, and q, Eq (1.1) admits a unique global mild

solution if the Coriolis parameter |Ω| is large enough. Moreover, Theorems 1.1 and 1.2 with θ = 1
imply these solutions possess Gevrey analyticity in the spatial variables. The main results in this paper
are seen as a generalization of the global existence results on the 3D rotating Navier-Stokes equations
to the 3D rotating magnetohydrodynamic equations.

Throughout the paper, we denote by c and C the constants, which may differ in each line. C =
C(·, · · · , ·) denotes the constant, which depends only on the quantities appearing in parentheses.

2. Preliminaries

Let S (R3) be the set of Schwartz functions, S ′(R3) be the set of tempered distributions, and {ψ j} j∈Z

be a dyadic partition of unity satisfying

supp ψ̂0 ⊂ {ξ ∈ R
3 :

3
4
≤ |ξ| ≤

8
3
}, 0 ≤ ψ̂0 ≤ 1, ψ̂ j(ξ) := ψ̂0(2− jξ),

and ∑
j∈Z

ψ̂ j(ξ) = 1 for ξ ∈ R3 \ {0}.

Here f̂ represents the Fourier transform of f . Define the Littlewood-Paley frequency localized
operator ∆ j in S ′(R3) by:

∆ j f := ψ j ∗ f for j ∈ Z and f ∈ S ′(R3).

Firstly, we give the definitions and product law of the homogeneous Besov spaces Ḃs
p,r(R

3) and
Chemin-Lerner spaces L̃δ(0,∞; Ḃs

p,r(R
3)). The Chemin-Lerner spaces were first introduced by [30].

Definition 2.1. (Besov Space, [31]) Let s ∈ R and 1 ≤ p, r ≤ ∞, we define

∥u∥Ḃs
p,r

:=
∥∥∥∥{2 js∥∆ ju∥Lp

}
j∈Z

∥∥∥∥
ℓr(Z)

.

• For s < 3
p (or s = 3

p , if r = 1), we define Ḃs
p,r(R

3) :=
{
u ∈ S ′(R3)/P[R3] | ∥u∥Ḃs

p,r
< ∞
}
, where

P[R3] is the set of all polynomials on R3;
• If k ∈ N, 3

p + k ≤ s < 3
p + k + 1 (or s = 3

p + k + 1, if r = 1), then Ḃs
p,r(R

3) is defined as the subset of
S ′(R3)/P[R3] such that ∂δu ∈ Ḃs−k

p,r (R3) with |δ| = k.
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Definition 2.2. (Chemin-Lerner Space, [30, 31]) For s ∈ R and 1 ≤ r, δ ≤ ∞, we define

∥u∥L̃δ(0,∞;Ḃs
p,r) :=

∥∥∥∥{2 js∥∆ ju∥Lδ(0,∞;Lp)

}
j∈Z

∥∥∥∥
ℓr(Z)

.

We then define L̃δ(0,∞; Ḃs
p,r(R

3)) as the set of temperate distributions u on (0,∞) × R3 with
lim

j→−∞
S ju = 0 in S ′((0,∞) × R3) and ∥u∥L̃δ(0,∞;Ḃs

p,r) < ∞.

Lemma 2.3. (Product Law, [14, 32]) Let θ ∈ {0, 1}, r ∈ [1,∞] and p0 ∈ (1,∞). Let (p1, p2, λ1, λ2) ∈
[1,∞]4 satisfy 1

p0
≤ 1

p1
+ 1

p2
, p1 ≤ λ2, p2 ≤ λ1, 1

p0
≤ 1

p1
+ 1

λ1
≤ 1 and 1

p0
≤ 1

p2
+ 1

λ2
≤ 1. If s1 + s2 +

3 inf{0, 1 − 1
p1
− 1

p2
} > 0, s1 +

3
λ2
< 3

p1
and s2 +

3
λ1
< 3

p2
, then there is C > 0 such that

∥uv∥
eθ
√

tΛ1 Ḃ
s1+s2−3( 1

p1
+ 1

p2
− 1

p0
)

p0 ,r

≤ C∥u∥eθ
√

tΛ1 Ḃs1
p1 ,r
∥v∥eθ

√
tΛ1 Ḃs2

p2 ,∞
.

Remark 2.4. We refer to [32] for Lemma 2.3 with the case of θ = 0 and to [14] for Lemma 2.3 with
the case of θ = 1. Moreover, Lemma 2.3 can be generalized to L̃δ(0,∞; Ḃs

p,r(R
3)) with s, p, r behaving

just as in Lemma 2.3 and index δ behaving as the rule of Hölder’s inequality, see [31].

Define Helmholtz projection P := (δi j + RiR j)1≤i, j≤3, where R j is the j-th Riesz transform in R3. By
the Duhamel principle, Eq (1.1) can be equivalently written asu(t) = TΩ(t)u0 −

∫ t

0
TΩ(t − τ)P∇ · (u(τ) ⊗ u(τ))dτ +

∫ t

0
TΩ(t − τ)P∇ · (B(τ) ⊗ B(τ))dτ,

B(t) = et∆B0 −
∫ t

0
e(t−τ)∆∇ · (u(τ) ⊗ B(τ))dτ +

∫ t

0
e(t−τ)∆∇ · (B(τ) ⊗ u(τ))dτ,

(2.1)

where {TΩ(t)}t≥0 is the so-called Stokes-Coriolis semigroup given specifically by

TΩ(t) f :=
1
2
G+(Ωt)[et(∆(I + R) f ] +

1
2
G−(Ωt)[et∆(I − R) f ]. (2.2)

Here I denotes the identity operator, and G±(t) represents the dispersive linear operator given
explicitly by

G±(t) f (x) := e±it D3
|D| f (x) :=

∫
R3

eix·ξ±it ξ3
|ξ| f̂ (ξ)dξ, x ∈ R3, t ∈ R, (2.3)

and R is the matrix of the Riesz transforms given explicitly by

R :=


0 R3 −R2

−R3 0 R1

R2 −R1 0

 .
We refer to [16] for the deduction of {TΩ(t)}t≥0.
The following temporal decay estimates of {et∆}t≥0 and {G±(Ωt)}t∈R are the keys to studying the

global existence of solutions of Eq (1.1).

Lemma 2.5. [33] For −∞ < s1 ≤ s2 < +∞, 1 ≤ p1 ≤ p2 ≤ ∞, and 1 ≤ r ≤ ∞, there is
C = C(s1, s2, p) > 0 such that

∥∆ je∆t f ∥Lp2 ≤ C2−(s2−s1) jt−
1
2 (s2−s1)− 3

2 ( 1
p1
− 1

p2
)
∥∆ j f ∥Lp1 ,
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for all t > 0 and j ∈ Z. Moreover, there holds

∥e∆t f ∥Ḃs2
p2 ,r
≤ Ct−

1
2 (s2−s1)− 3

2 ( 1
p1
− 1

p2
)
∥ f ∥Ḃs1

p1 ,r
,

for all t > 0.

Lemma 2.6. [13] For s ∈ R, 1 ≤ p ≤ 2, and 1 ≤ r ≤ ∞, there is C = C(p) > 0 such that

∥∆ jG±(t) f ∥Lp′ ≤ C(1 + |t|)−(1− 2
p′ )2 j( 3

p−
3
p′ )∥∆ j f ∥Lp ,

for all t ∈ R and j ∈ Z with 1
p +

1
p′ = 1. Moreover, there holds

∥G±(t) f ∥Ḃs
p′ ,r
≤ C(1 + |t|)−(1− 2

p′ )∥ f ∥
Ḃ

s+ 3
p −

3
p′

p,r

,

for all t ∈ R with 1
p′ +

1
p = 1.

The last two lemmas are the keys to studying the Gevrey analyticity of solutions.

Lemma 2.7. [28] For 1 < p < ∞ and a ≥ 0, E := e
1
2 a∆+

√
aΛ1 is a multiplier that is bounded on Lp,

and the norm of the operator is bounded uniformly in regard to a.

Lemma 2.8. [28] For 0 ≤ s ≤ t, E := e−[
√

t−s+
√

s−
√

t]Λ1 is either the identity operator or an L1 kernel
whose norm is bounded independently to s and t.

3. Linear estimates

Lemma 3.1. Let r ∈ [1,∞], p ∈ (1, 2), and δ ∈ [1,∞] satisfy

0 <
1
δ
<

2
p
− 1.

Then there is C = C(p, δ) > 0 such that

∥TΩ(t) f ∥
L̃δ(0,∞;eθ

√
tΛ1 Ḃ

−1+ 3
p′ +

2
δ

p′ ,r )
≤ C|Ω|−

1
δ ∥ f ∥

Ḃ
−1+ 3

p +
2
δ

p,r

, (3.1)

for θ ∈ {0, 1} and Ω ∈ R\{0}, where 1
p +

1
p′ = 1.

Proof. From Definition 2.2, we see

∥TΩ(t) f ∥
L̃δ(0,∞;eθ

√
tΛ1 Ḃ

−1+ 3
p′ +

2
δ

p′ ,r )
=
∥∥∥∥{2(−1+ 3

p′ +
2
δ ) j
∥∆ jeθ

√
tΛ1TΩ(t) f ∥Lδ(0,∞;Lp′ )

}
j∈Z

∥∥∥∥
ℓr(Z)

.

Since the matrix R is bounded on Lq(R3)(1 < q < ∞), by the expression of TΩ(t), we just need to
verify that

∥∆ jeθ
√

tΛ1G±(Ωt)et∆ f ∥Lδ(0,∞;Lp′ ) ≤ C|Ω|−
1
δ 2 j( 3

p−
3
p′ )∥∆ j f ∥Lp .

Networks and Heterogeneous Media Volume 20, Issue 1, 35–51.



41

In fact, applying Lemmas 2.5–2.7, we have

∥∆ jeθ
√

tΛ1G±(Ωt)et∆ f ∥Lp′ = ∥eθ
√

tΛ1+
t
2∆G±(Ωt)e

t
2∆∆ j f ∥Lp′

≤ C∥G±(Ωt)e
t
2∆∆ j f ∥Lp′

≤ C2 j( 3
p−

3
p′ )(1 + |Ω|t)−(1− 2

p′ )∥∆ j f ∥Lp .

Moreover, since 0 < 1
δ
< 2

p − 1, it is obvious that

( ∫ ∞

0
(1 + |Ω|t)−(1− 2

p′ )δdt
) 1
δ
≤ C|Ω|−

1
δ .

This completes the proof.

By employing TT⋆ argument, we have the following estimate involving the case of p = 2.

Lemma 3.2. Let r ∈ [1,∞], q ∈ (2,∞), and δ ∈ [2,∞] satisfy

0 <
1
δ
<

1
2
−

1
q
.

Then there is C = C(q, δ) > 0 such that

∥TΩ(t) f ∥
L̃δ(0,∞;eθ

√
tΛ1 Ḃ

−1+ 3
q +

2
δ

q,r )
≤ C|Ω|−

1
δ ∥ f ∥

Ḃ
1
2 +

2
δ

2,r

,

for θ ∈ {0, 1} and Ω ∈ R\{0}.

Proof. From Definition 2.2, we have

∥TΩ(t) f ∥
L̃δ(0,∞;eθ

√
tΛ1 Ḃ

−1+ 3
q +

2
δ

q,r )
=
∥∥∥∥{2(−1+ 3

q+
2
δ ) j
∥∆ jeθ

√
tΛ1TΩ(t) f ∥Lδ(0,∞;Lq)

}
j∈Z

∥∥∥∥
ℓr(Z)

.

Since the matrix R is bounded on Lq(R3) (1 < q < ∞), by the expression of TΩ(t), we just need to
verify that

∥∆ jeθ
√

tΛ1G±(Ωt)et∆ f ∥Lδ(0,∞;Lq) ≤ C|Ω|−
1
δ 2 j( 3

2−
3
q )
∥∆ j f ∥L2 , for each j ∈ Z.

In fact, from Lemma 2.7, we see

∥∆ jeθ
√

tΛ1G±(Ωt)et∆ f ∥Lq = ∥eθ
√

tΛ1+
t
2∆G±(Ωt)e

t
2∆∆ j f ∥Lq

≤ C∥G±(Ωt)e
t
2∆∆ j f ∥Lq .

We claim for q ∈ (2,∞) and 0 < 1
δ
< 1

2 −
1
q that there holds

∥G±(Ωt)e
t
2∆∆ j f ∥Lδ(0,∞;Lq) ≤ C|Ω|−

1
δ 2( 3

2−
3
q ) j
∥∆ j f ∥L2 . (3.2)

Furthermore, applying the TT⋆ argument (see [34, 35]), we just need to prove that∣∣∣∣∣ ∫ ∞

0

∫
R3
G±(Ωt)e

t
2∆∆ j f (x)ϕ(t, x)dxdt

∣∣∣∣∣ ≤ C|Ω|−
1
δ 2 j( 3

2−
3
q )
∥∆ j f ∥L2∥ϕ∥Lδ′ (0,∞;Lq′ ),
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for ϕ ∈ C∞0 ((0,∞) × R3) with 1
q′ +

1
q = 1 and 1

δ
+ 1

δ′
= 1.

In fact, we define a new operator ∆̃ j given specifically by

∆̃ j f := (ψ j−1 + ψ j + ψ j+1) ∗ f for each j ∈ Z.

It is obvious that ∆̃ j∆ j = ∆ j for all j ∈ Z.
It follows from the Hölder inequality that∣∣∣∣∣ ∫ ∞

0

∫
R3
G±(Ωt)e

t
2∆∆ j f (x)ϕ(t, x)dxdt

∣∣∣∣∣ = ∣∣∣∣∣ ∫ ∞

0

∫
R3
∆ j f (x)G∓(Ωt)e

t
2∆∆̃ jϕ(t, x)dxdt

∣∣∣∣∣
≤ ∥∆ j f ∥L2

∥∥∥∥∥ ∫ ∞

0
G∓(Ωt)e

t
2∆∆̃ jϕ(t)dt

∥∥∥∥∥
L2
,

(3.3)

and ∥∥∥∥∥ ∫ ∞

0
G∓(Ωt)e

t
2∆∆̃ jϕ(t)dt

∥∥∥∥∥2
L2

=

∫
R3

∫ ∞

0

∫ ∞

0
G∓(Ωt)e

t
2∆∆̃ jϕ(t, x)G∓(Ωτ)e

τ
2∆∆̃ jϕ(τ, x)dtdτdx

≤

∫ ∞

0

∫ ∞

0
∥ϕ(t)∥Lq′

∥∥∥∥∥G±(Ω(t − τ))e
t+τ
2 ∆∆̃ jϕ(τ)

∥∥∥∥∥
Lq

dτdt.

(3.4)

Moreover, applying Lemmas 2.5 and 2.6, we have∥∥∥∥∥G±(Ω(t − τ))e
t+τ
2 ∆∆̃ jϕ(τ)

∥∥∥∥∥
Lq
≤ C
(
1 + |Ω||t − τ|

)−(1− 2
q )23(1− 2

q ) j
∥∥∥∆̃ jϕ(τ)

∥∥∥
Lq′ . (3.5)

Substituting Eq (3.5) into Eq (3.4), applying the Hölder inequality and Young inequality yields that∥∥∥∥∥ ∫ ∞

0
G∓(Ωt)e

t
2∆∆̃ jϕ(t)dt

∥∥∥∥∥2
L2

≤ C23(1− 2
q ) j
∥ϕ∥Lδ′ (0,∞;Lq′ )

[ ∫ ∞

0

( ∫ ∞

0
(1 + |Ω||t − τ|

)−(1− 2
q )
∥ϕ(τ)∥Lq′dτ

)δ
dt
] 1
δ

≤ C23(1− 2
q ) j
∥ϕ∥2Lδ′ (0,∞;Lq′ )

( ∫ ∞

0
(1 + |Ω|t

)− δ2 (1− 2
q )dt
) 2
δ
.

Moreover, because of 0 < 1
δ
< 1

2 −
1
q , it is obvious that

( ∫ ∞

0
(1 + |Ω|t

)− δ2 (1− 2
q )dt
) 2
δ
≤ C|Ω|−

2
δ .

Therefore, we immediately obtain∥∥∥∥∥ ∫ ∞

0
G∓(Ωt)e

t
2∆∆̃ jϕ(t)dt

∥∥∥∥∥2
L2
≤ C|Ω|−

2
δ 23 j(1− 2

q )
∥ϕ∥2Lδ′ (0,∞;Lq′ ). (3.6)

Substituting Eq (3.6) into Eq (3.3) completes the proof.
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Lemma 3.3. Let r ∈ [1,∞], p ∈ (1, 2), and δ ∈ (2,∞). Then there is C = C(p, δ) > 0 such that∥∥∥∥∥ ∫ t

0
TΩ(t − τ)P∇ f (τ)dτ

∥∥∥∥∥
L̃δ(0,∞;eθ

√
tΛ1 Ḃ

−1+ 3
p′ +

2
δ

p′ ,r )
≤ C∥ f ∥

L̃
δ
2 (0,∞;eθ

√
tΛ1 Ḃ

−2+ 3
p +

4
δ

p,r )
,

for θ ∈ {0, 1} and Ω ∈ R\{0}, where 1
p′ +

1
p = 1.

Proof. From Definition 2.2, we have∥∥∥∥∥ ∫ t

0
TΩ(t − τ)P∇ f (τ)dτ

∥∥∥∥∥
L̃δ(0,∞;eθ

√
tΛ1 Ḃ

−1+ 3
p′ +

2
δ

p′ ,r )

=
∥∥∥∥{2(−1+ 3

p′ +
2
δ ) j
∥∥∥∥∆ jeθ

√
tΛ1

∫ t

0
TΩ(t − τ)P∇ f (τ)dτ

∥∥∥∥
Lδ(0,∞;Lp′ )

}
j∈Z

∥∥∥∥
ℓr(Z)

.

Since operator P and matrix R are bounded on Lq(R3)(1 < q < ∞), by the expression of TΩ(t), we
just need to verify that∥∥∥∥ ∫ t

0

∥∥∥eθ√tΛ1G±(Ω(t − τ))e(t−τ)∆∇∆ j f (τ)
∥∥∥

Lp′dτ
∥∥∥∥

Lδ(0,∞)
≤ C2 j(2− 6

p′ +
2
δ )
∥∥∥∆ j f
∥∥∥

L
δ
2 (0,∞;eθ

√
tΛ1 Lp)

.

First, applying Lemmas 2.7 and 2.8, we deduce that∥∥∥∥ ∫ t

0

∥∥∥eθ√tΛ1G±(Ω(t − τ))e(t−τ)∆∇∆ j f (τ)
∥∥∥

Lp′dτ
∥∥∥∥

Lδ(0,∞)

=
∥∥∥∥ ∫ t

0

∥∥∥eθ(√t−
√
τ−
√

t−τ)Λ1eθ
√

t−τΛ1+
t−τ
2 ∆G±(Ω(t − τ))e

t−τ
2 ∆∇eθ

√
τΛ1∆ j f (τ)

∥∥∥
Lp′dτ
∥∥∥∥

Lδ(0,∞)

≤ C
∥∥∥∥ ∫ t

0

∥∥∥G±(Ω(t − τ))e
t−τ
2 ∆∇eθ

√
τΛ1∆ j f (τ)

∥∥∥
Lp′dτ
∥∥∥∥

Lδ(0,∞)
.

(3.7)

Second, it follows from Lemmas 2.5 and 2.6 and the Bernstein inequality that∥∥∥∥ ∫ t

0

∥∥∥G±(Ω(t − τ))e
t−τ
2 ∆∇eθ

√
τΛ1∆ j f (τ)

∥∥∥
Lp′dτ
∥∥∥∥

Lδ(0,∞)

≤ C2 j(2− 6
p′ +

2
δ )
∥∥∥∥ ∫ t

0
(1 + |Ω|(t − τ))−(1− 2

p′ )(t − τ)−(1− 1
δ )
∥∥∥∆ jeθ

√
τΛ1 f (τ)

∥∥∥
Lpdτ
∥∥∥∥

Lδ(0,∞)

≤ C2 j(2− 6
p′ +

2
δ )
∥∥∥∥ ∫ t

0
(t − τ)−(1− 1

δ )
∥∥∥∆ jeθ

√
τΛ1 f (τ)

∥∥∥
Lpdτ
∥∥∥∥

Lδ(0,∞)
.

Furthermore, due to 1 < δ
2 < δ < ∞, 0 < 1 − 1

δ
< 1 and 1

δ
= 2

δ
− [1 − (1 − 1

δ
)], by the Hardy-

Littlewood-Sobolev inequality, we see that there is C = C(δ) > 0 such that∥∥∥∥ ∫ t

0
(t − τ)−(1− 1

δ )
∥∥∥∆ jeθ

√
τΛ1 f (τ)

∥∥∥
Lpdτ
∥∥∥∥

Lδ(0,∞)
≤ C
∥∥∥∆ j f
∥∥∥

L
δ
2 (0,∞;eθ

√
tΛ1 Lp)

.

This completes the proof.
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Lemma 3.4. Let r ∈ [1,∞], p ∈ (1, 2), δ ∈ (2,∞), and ρ ∈ (2, 2δ). Then there is C = C(p, δ) > 0
such that ∥∥∥∥∥ ∫ t

0
TΩ(t − τ)P∇ f (τ)dτ

∥∥∥∥∥
L̃δ(0,∞;eθ

√
tΛ1 Ḃ

−1+ 3
p′ +

2
δ

p′ ,r )
≤ C∥ f ∥

L̃
ρ
2 (0,∞;eθ

√
tΛ1 Ḃ

−2+ 3
p +

4
ρ

p,r )
,

for θ ∈ {0, 1} and Ω ∈ R\{0}, where 1
p +

1
p′ = 1.

Proof. From Definition 2.2, we have∥∥∥∥∥ ∫ t

0
TΩ(t − τ)P∇ f (τ)dτ

∥∥∥∥∥
L̃δ(0,∞;eθ

√
tΛ1 Ḃ

−1+ 3
p′ +

2
δ

p′ ,r )

=
∥∥∥∥{2 j(−1+ 3

p′ +
2
δ )
∥∥∥∥∆ jeθ

√
tΛ1

∫ t

0
TΩ(t − τ)P∇ f (τ)dτ

∥∥∥∥
Lδ(0,∞;Lp′ )

}
j∈Z

∥∥∥∥
lr(Z)

.

By the expression of TΩ(t), we just need to verify that∥∥∥∥ ∫ t

0

∥∥∥eθ√tΛ1G±(Ω(t − τ))e(t−τ)∆∆ j∇ f (τ)
∥∥∥

Lp′dτ
∥∥∥∥

Lδ(0,∞)

≤ C2 j(−1+ 3
p−

3
p′ −

2
δ+

4
ρ )
∥∥∥∆ j f
∥∥∥

L
ρ
2 (0,∞;eθ

√
tΛ1 Lp)

.

In fact, through the similar process of Eq (3.7), we have∥∥∥∥ ∫ t

0

∥∥∥eθ√tΛ1G±(Ω(t − τ))e(t−τ)∆∇∆ j f (τ)
∥∥∥

Lp′dτ
∥∥∥∥

Lδ(0,∞)

≤ C
∥∥∥∥ ∫ t

0

∥∥∥G±(Ω(t − τ))e
t−τ
2 ∆∇∆ jeθ

√
τΛ1 f (τ)

∥∥∥
Lp′dτ
∥∥∥∥

Lδ(0,∞)
.

Furthermore, from the Bernstein inequality and Lemmas 2.5 and 2.6, we have∥∥∥∥ ∫ t

0

∥∥∥G±(Ω(t − τ))e
t−τ
2 ∆∇∆ jeθ

√
τΛ1 f (τ)

∥∥∥
Lp′dτ
∥∥∥∥

Lδ(0,∞)

≤ C2 j(−1+ 3
p−

3
p′ −

2
δ+

4
ρ )
∥∥∥∥ ∫ t

0
(1 + |Ω|(t − τ))−(1− 2

p′ )(t − τ)−(1+ 1
δ−

2
ρ )
∥∥∥∆ jeθ

√
τΛ1 f (τ)

∥∥∥
Lpdτ
∥∥∥∥

Lδ(0,∞)

≤ C2 j(−1+ 3
p−

3
p′ −

2
δ+

4
ρ )
∥∥∥∥ ∫ t

0
(t − τ)−(1+ 1

δ−
2
ρ )
∥∥∥∆ jeθ

√
τΛ1 f (τ)

∥∥∥
Lpdτ
∥∥∥∥

Lδ(0,∞)
.

Moreover, due to 1 < ρ

2 < δ < ∞, 0 < 1 + 1
δ
− 2

ρ
< 1 and 1

δ
= 2

ρ
− [1 − (1 + 1

δ
− 2

ρ
)], by the

Hardy-Littlewood-Sobolev inequality, we see that there is C = C(δ) > 0 such that∥∥∥∥ ∫ t

0
(t − τ)−(1+ 1

δ−
2
ρ )
∥∥∥∆ jeθ

√
τΛ1 f (τ)

∥∥∥
Lpdτ
∥∥∥∥

Lδ(0,∞)
≤ C
∥∥∥∆ j f
∥∥∥

L
ρ
2 (0,∞;eθ

√
tΛ1 Lp)

.

This completes the proof.

Lemma 3.5. Let r ∈ [1,∞], p ∈ (1,∞), and ρ ∈ [1,∞]. Then there is C = C(p, ρ) > 0 such that

∥et∆ f ∥
L̃ρ(0,∞;eθ

√
tΛ1 Ḃ

−1+ 3
p +

2
ρ

p,r )
≤ C∥ f ∥

Ḃ
−1+ 3

p
p,r

,

for θ ∈ {0, 1}.
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Proof. From Definition 2.2, we have∥∥∥et∆ f
∥∥∥

L̃ρ(0,∞;eθ
√

tΛ1 Ḃ
−1+ 3

p +
2
ρ

p,r )
=
∥∥∥∥{2(−1+ 3

p+
2
ρ ) j
∥∥∥∆ jeθ

√
tΛ1et∆ f

∥∥∥
Lρ(0,∞;Lp)

}
j∈Z

∥∥∥∥
ℓr(Z)

. (3.8)

Applying Lemma 2.7 implies that∥∥∥∆ jeθ
√

tΛ1et∆ f
∥∥∥

Lρ(0,∞;Lp)
=
∥∥∥∆ jeθ

√
tΛ1+

t
2∆e

t
2∆ f
∥∥∥

Lρ(0,∞;Lp)

≤ C
∥∥∥∆ je

t
2∆ f
∥∥∥

Lρ(0,∞;Lp)
.

(3.9)

Moreover, it follows from Lemma 2.4 of [31] that there are c > 0 and C > 0 such that∥∥∥∥∆ je
t
2∆ f
∥∥∥∥

Lρ(0,∞;Lp)
≤ C∥e−ct22 j

∥Lρ(0,∞)

∥∥∥∆ j f
∥∥∥

Lp

≤ C2−
2
ρ j
∥∥∥∆ j f
∥∥∥

Lp .
(3.10)

Substituting Eqs (3.10) and (3.9) into Eq (3.8) completes the proof.

Lemma 3.6. Let r ∈ [1,∞], p ∈ (1,∞), ρ ∈ [1,∞], and γ ∈ [1, ρ]. Then there is C = C(p, ρ, γ) > 0
such that ∥∥∥∥∥ ∫ t

0
e(t−τ)∆∇ f (τ)dτ

∥∥∥∥∥
L̃ρ(0,∞;eθ

√
tΛ1 Ḃ

−1+ 3
p +

2
ρ

p,r )
≤ C∥ f ∥

L̃γ(0,∞;eθ
√

tΛ1 Ḃ
−2+ 3

p +
2
γ

p,r )
,

for θ ∈ {0, 1}.

Proof. From Definition 2.2, we see∥∥∥ ∫ t

0
e(t−τ)∆∇ f (τ)dτ

∥∥∥
L̃ρ(0,∞;eθ

√
tΛ1 Ḃ

−1+ 3
p +

2
ρ

p,r )

=
∥∥∥∥{2 j(−1+ 3

p+
2
ρ )
∥∥∥∥∆ jeθ

√
tΛ1

∫ t

0
e(t−τ)∆∇ f (τ)dτ

∥∥∥∥
Lρ(0,∞;Lp)

}
j∈Z

∥∥∥∥
ℓr(Z)

.

(3.11)

Through the similar process of Eq (3.7), we have∥∥∥∥∆ jeθ
√

tΛ1

∫ t

0
e(t−τ)∆∇ f (τ)dτ

∥∥∥∥
Lρ(0,∞;Lp)

≤

∥∥∥∥ ∫ t

0

∥∥∥eθ√tΛ1e(t−τ)∆∇∆ j f (τ)
∥∥∥

Lpdτ
∥∥∥∥

Lρ(0,∞)

≤ C
∥∥∥∥ ∫ t

0

∥∥∥e t−τ
2 ∆∇∆ jeθ

√
τΛ1 f (τ)

∥∥∥
Lpdτ
∥∥∥∥

Lρ(0,∞)
.

(3.12)

Moreover, it follows from Lemma 2.4 of [31], Bernstein’s inequality, and Young’s inequality that∥∥∥∥ ∫ t

0

∥∥∥e t−τ
2 ∆∇∆ jeθ

√
τΛ1 f (τ)

∥∥∥
Lpdτ
∥∥∥∥

Lρ(0,∞)
≤ C2 j

∥∥∥∥ ∫ t

0
e−C(t−τ)22 j∥∥∥∆ jeθ

√
τΛ1 f (τ)

∥∥∥
Lpdτ
∥∥∥∥

Lρ(0,∞)

≤ C2 j∥e−Ct22 j
∥Lm(0,∞)

∥∥∥∆ j f
∥∥∥

Lγ(0,∞;eθ
√

tΛ1 Lp)

≤ C2 j2−2 j(1+ 1
ρ−

1
γ )
∥∥∥∆ j f
∥∥∥

Lγ(0,∞;eθ
√

tΛ1 Lp)
,

(3.13)

where 1
m = 1 + 1

ρ
− 1

γ
. Substituting Eqs (3.12) and (3.13) into Eq (3.11) completes the proof.
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4. Proofs of main results

Proof of Theorem 1.1. Because of 0 < 1
δ
< 2

p − 1, by Lemmas 3.1 and 3.5, we see that there has C0 > 0
and C1 > 0 such that

∥TΩ(t)u0∥
L̃δ(0,∞;eθ

√
tΛ1 Ḃ

−1+ 3
p′ +

2
δ

p′ ,r )
≤ C0|Ω|

− 1
δ ∥u0∥

Ḃ
−1+ 3

p +
2
δ

p,r

, (4.1)

and

∥et∆B0∥
L̃ρ(0,∞;eθ

√
tΛ1 Ḃ

−1+ 3
p +

2
ρ

p,r )
≤ C1∥B0∥

Ḃ
−1+ 3

p
p,r

. (4.2)

Let

N1(w, v) :=
∫ t

0
TΩ(t − τ)P∇ · [w(τ) ⊗ v(τ)]dτ,

and

N2(w, v) :=
∫ t

0
e(t−τ)∆∇ · [w(τ) ⊗ v(τ)]dτ.

Now, we define the mapping B by

B(u, B)(t) :=
(
B1(u, B)(t),B2(u, B)(t)

)
,

where
B1(u, B)(t) := TΩ(t)u0 − N1(u, u)(t) + N1(B, B)(t),

and
B2(u, B)(t) := et∆B0 − N2(u, B)(t) + N2(B, u)(t).

And we define the solution space Z by

Z :=
{
(u, B) ∈ X × Y := L̃δ(0,∞; eθ

√
tΛ1 Ḃ

−1+ 3
p′ +

2
δ

p′,r (R3)) × L̃ρ(0,∞; eθ
√

tΛ1 Ḃ
−1+ 3

p+
2
ρ

p,r (R3)) :

∥u∥X ≤ 2C0|Ω|
− 1
δ ∥u0∥

Ḃ
−1+ 3

p +
2
δ

p,r

, ∥B∥Y ≤ 2C1∥B0∥
Ḃ
−1+ 3

p
p,r

}
,

with ∥(u, B)∥Z := ∥u∥X + ∥B∥Y ,
Since δ ∈ (2,∞) and ρ ∈ (δ, 2δ), employing Lemmas 3.3, 3.4, and 3.6, we see that there are

Ci > 0 (i = 2, 3, 4) such that

∥N1(u, u)∥X ≤ C2∥u ⊗ u∥
L̃
δ
2 (0,∞;eθ

√
tΛ1 Ḃ

−2+ 3
p +

4
δ

p,r )
, (4.3)

∥N1(B, B)∥X ≤ C3∥B ⊗ B∥
L̃
ρ
2 (0,∞;eθ

√
tΛ1 Ḃ

−2+ 3
p +

4
ρ

p,r )
, (4.4)

and

∥N2(u, B)∥Y + ∥N2(B, u)∥Y ≤ C4∥u ⊗ B∥
L̃γ(0,∞;eθ

√
tΛ1 Ḃ

−2+ 3
p +

2
δ +

2
ρ

p,r )
, (4.5)

Networks and Heterogeneous Media Volume 20, Issue 1, 35–51.



47

with 1
γ
= 1

δ
+ 1

ρ
.

Moreover, because of 3
2 < p < 2 and 1

δ
< 2− 3

p , by taking s1 = s2 = −1+ 3
p′ +

2
δ
, p0 = p, p1 = p2 = p′

and λ1 = λ2 =
p′

p′−2 , from Lemma 2.3 and Remark 2.4, we see that there is C5 > 0 such that

∥u ⊗ u∥
L̃
δ
2 (0,∞;eθ

√
tΛ1 Ḃ

−2+ 3
p +

4
δ

p,r )
≤ C5∥u∥2X. (4.6)

Because of ρ > 2 and p < 2, by taking s1 = s2 = −1 + 3
p +

2
ρ
, p0 = p2 = p1 = p, λ1 = λ2 = ∞, from

Lemma 2.3 and Remark 2.4, we see that there is C6 > 0 such that

∥B ⊗ B∥
L̃
ρ
2 (0,∞;eθ

√
tΛ1 Ḃ

−2+ 3
p +

4
ρ

p,r )
≤ C6∥B∥2Y . (4.7)

Due to p < 2, δ > 2, 1
ρ
< 2 − 3

p and 1
γ

:= 1
ρ
+ 1

δ
, by taking s1 = −1 + 3

p′ +
2
δ
, s2 = −1 + 3

p +
2
ρ
,

p0 = p2 = p, p1 = p′, λ1 =
p′

p′−2 and λ2 = ∞, from Lemma 2.3 and Remark 2.4, we see that there has
C7 > 0 such that

∥u ⊗ B∥
L̃γ(0,∞;eθ

√
tΛ1 Ḃ

−2+ 3
p +

2
δ +

2
ρ

p,r )
≤ C7∥u∥X∥B∥Y . (4.8)

Therefore, combining Eqs (4.1)–(4.8) implies

∥B1(u, B)∥X ≤ C0|Ω|
− 1
δ ∥u0∥

Ḃ
−1+ 3

p +
2
δ

p,r

+C2C5∥u∥2X +C3C6∥B∥2Y

≤ C0|Ω|
− 1
δ ∥u0∥

Ḃ
−1+ 3

p +
2
δ

p,r

{
1 + 4C0C2C5|Ω|

− 1
δ ∥u0∥

Ḃ
−1+ 3

p +
2
δ

p,r

+ 4C−1
0 C2

1C3C6|Ω|
1
δ ∥u0∥

−1

Ḃ
−1+ 3

p +
2
δ

p,r

∥B0∥
2

Ḃ
−1+ 3

p
p,r

}
,

(4.9)

and
∥B2(u, B)∥Y ≤ C1∥B0∥

Ḃ
−1+ 3

p
p,r

+C4C7∥u∥X∥B∥Y

≤ C1∥B0∥
Ḃ
−1+ 3

p
p,r

{
1 + 4C0C4C7|Ω|

− 1
δ ∥u0∥

Ḃ
−1+ 3

p +
2
δ

p,r

}
,

(4.10)

for every (u, B) ∈ Z.
Moreover, it follows from the similar argument that

∥B(u1, B1) −B(u2, B2)∥Z

≤

∥∥∥∥∥ ∫ t

0
TΩ(t − τ)P∇ ·

[
u1(τ) ⊗ (u1(τ) − u2(τ)) + (u1(τ) − u2(τ)) ⊗ u2(τ)

]
dτ
∥∥∥∥∥

X

+

∥∥∥∥∥ ∫ t

0
TΩ(t − τ)P∇ ·

[
B1(τ) ⊗ (B1(τ) − B2(τ)) + (B1(τ) − B2(τ)) ⊗ B2(τ)

]
dτ
∥∥∥∥∥

X

+

∥∥∥∥∥ ∫ t

0
e(t−τ)∆∇ ·

[
u1(τ) ⊗ (B1(τ) − B2(τ)) + (u1(τ) − u2(τ)) ⊗ B2(τ)

]
dτ
∥∥∥∥∥

Y

+

∥∥∥∥∥ ∫ t

0
e(t−τ)∆∇ ·

[
B1(τ) ⊗ (u1(τ) − u2(τ)) + (B1(τ) − B2(τ)) ⊗ u2(τ)

]
dτ
∥∥∥∥∥

Y

≤

{
4C0C2C5|Ω|

− 1
δ ∥u0∥

Ḃ
−1+ 3

p +
2
δ

p,r

+ 4C1C4C7∥B0∥
Ḃ
−1+ 3

p
p,r

}
∥u1 − u2∥X

+

{
4C1C3C6∥B0∥

Ḃ
−1+ 3

p
p,r

+ 4C0C4C7|Ω|
− 1
δ ∥u0∥

Ḃ
−1+ 3

p +
2
δ

p,r

}
∥B1 − B2∥Y ,

(4.11)
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for every (u1, B1) and (u2, B2) in Z.

Hence, if (u0, B0) ∈ Ḃ
−1+ 3

p+
2
δ

p,r (R3) × Ḃ
−1+ 3

p
p,r (R3) satisfies

∥u0∥
Ḃ
−1+ 3

p +
2
δ

p,r

≤ min
{ 1

16C0C2C5
|Ω|

1
δ ,

1
16C0C4C7

|Ω|
1
δ

}
,

and

∥B0∥
Ḃ
−1+ 3

p
p,r

≤ min
{ C

1
2
0

16C1C
1
2
3 C

1
2
6

|Ω|−
1
2δ ∥u0∥

1
2

Ḃ
−1+ 3

p +
2
δ

p,r

,
1

16C1C3C6
,

1
16C1C4C7

}
,

Eqs (4.9)–(4.11) imply that

∥B1(u, B)∥X ≤ 2C0|Ω|
− 1
δ ∥u0∥

Ḃ
−1+ 3

p +
2
δ

p,r

, ∥B2(u, B)∥Y ≤ 2C1∥B0∥
Ḃ
−1+ 3

p
p,r

,

and
∥B(u1, B1) −B(u2, B2)∥Z <

1
2
∥(u1, B1) − (u2, B2)∥Z,

for all (u1, B1) and (u2, B2) in Z. Then, applying the contraction mapping principle implies that there is
a unique global mild solution (u, B) ∈ Z to problem (1.1).
Proof of Theorem 1.2. The proof of Theorem 1.2 is identical to that of Theorem 1.1. We omit the proof.
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