Let $ b \geq 2 $ and $ n \geq 1 $ be integers. Then $ n $ is said to be a palindrome in base $ b $ (or $ b $-adic palindrome) if the representation of $ n $ in base $ b $ reads the same backward as forward. Let $ A_b (n) $ be the number of $ b $-adic palindromes less than or equal to $ n $. In this article, we obtain extremal orders of $ A_b (n) $. We also study the comparison between the number of palindromes in different bases and prove that if $ b \neq b_{1} $, then $ A_{b} (n) - A_{b_{1}} (n) $ changes signs infinitely often as $ n \rightarrow \infty $.
Citation: Phakhinkon Phunphayap, Prapanpong Pongsriiam. Extremal orders and races between palindromes in different bases[J]. AIMS Mathematics, 2022, 7(2): 2237-2254. doi: 10.3934/math.2022127
Let $ b \geq 2 $ and $ n \geq 1 $ be integers. Then $ n $ is said to be a palindrome in base $ b $ (or $ b $-adic palindrome) if the representation of $ n $ in base $ b $ reads the same backward as forward. Let $ A_b (n) $ be the number of $ b $-adic palindromes less than or equal to $ n $. In this article, we obtain extremal orders of $ A_b (n) $. We also study the comparison between the number of palindromes in different bases and prove that if $ b \neq b_{1} $, then $ A_{b} (n) - A_{b_{1}} (n) $ changes signs infinitely often as $ n \rightarrow \infty $.
[1] | B. Adamczewski, J.-P. Allouche, Reversal and palindromes in continued fractions, Theoret. Comput. Sci., 380 (2007), 220–237. doi: 10.1016/j.tcs.2007.03.017. doi: 10.1016/j.tcs.2007.03.017 |
[2] | B. Adamczewski, Y. Bugeaud, Palindromic continued fractions, Ann. Inst. Fourier, 57 (2007), 1557–1574. doi: 10.5802/aif.2306. doi: 10.5802/aif.2306 |
[3] | B. Adamczewski, Y. Bugeaud, Transcendence measure for continued fractions involving repetitive or symmetric patterns, J. Eur. Math. Soc., 12 (2010), 883–914. doi: 10.4171/JEMS/218. doi: 10.4171/JEMS/218 |
[4] | J.-P. Allouche, J. Shallit, Automatic Sequences: Theory, Applications, Generalizations, Cambridge University Press, 2003. |
[5] | M. Baake, A note on palindromicity, Lett. Math. Phys., 49 (1999), 217–227. doi: 10.1023/A:1007678316583. |
[6] | W. D. Banks, Every natural number is the sum of forty-nine palindromes, Integers, 16 (2016), Paper No. A3, 9 pp. |
[7] | W. D. Banks, D. N. Hart, M. Sakata, Almost all palindromes are composite, Math. Res. Lett., 11 (2004), 853–868. doi: 10.4310/MRL.2004.v11.n6.a10. doi: 10.4310/MRL.2004.v11.n6.a10 |
[8] | W. D. Banks, I. Shparlinski, Prime divisors of palindromes, Period. Math. Hungar., 51 (2005), 1–10. doi: 10.1007/s10998-005-0016-6. doi: 10.1007/s10998-005-0016-6 |
[9] | B. Bašić, On $d$-digit palindromes in different bases: the number of bases is unbounded, Int. J. Number Theory, 8 (2012), 1387–1390. doi: 10.1142/S1793042112500819. doi: 10.1142/S1793042112500819 |
[10] | B. Bašić, On "very palindromic" sequences, J. Korean Math. Soc., 52 (2015), 765–780. doi: 10.4134/jkms.2015.52.4.765. doi: 10.4134/jkms.2015.52.4.765 |
[11] | J. Cilleruelo, F. Luca, L. Baxter, Every positive integer is a sum of three palindromes, Math. Comp., 87 (2018), 3023–3055. doi: 10.1090/mcom/3221. doi: 10.1090/mcom/3221 |
[12] | J. Cilleruelo, F. Luca, R. Tesoro, Palindromes in linear recurrence sequences, Monatsh. Math., 171 (2013), 433–442. doi: 10.1007/s00605-013-0477-2. doi: 10.1007/s00605-013-0477-2 |
[13] | D. Damanik, L. Q. Zamboni, Combinatorial properties of Arnoux–Rauzy subshifts and applications to Schrödinger operators, Rev. Math. Phys., 15 (2003), 745–763. doi: 10.1142/S0129055X03001758. doi: 10.1142/S0129055X03001758 |
[14] | A. J. Di Scala, M. Sombra, Intrinsic palindromes, Fibonacci Quart., 42 (2004), 76–81. |
[15] | G. Fici, L. Q. Zamboni, On the least number of palindromes contained in an infinite word, Theoret. Comput. Sci., 481 (2013), 1–8. doi: 10.1016/j.tcs.2013.02.013. doi: 10.1016/j.tcs.2013.02.013 |
[16] | S. Fischler, Palindromic prefixes and diophantine approximation, Monatsh. Math., 151 (2007), 11–37. doi: 10.1007/s00605-006-0425-5. doi: 10.1007/s00605-006-0425-5 |
[17] | A. E. Frid, Sturmian numeration systems and decompositions to palindromes, Eur. J. Comb., 71 (2018), 202–212. doi: 10.1016/j.ejc.2018.04.003. doi: 10.1016/j.ejc.2018.04.003 |
[18] | A. E. Frid, S. Puzynina, L. Q. Zamboni, On palindromic factorization of words, Adv. Appl. Math., 50 (2013), 737–748. doi: 10.1016/j.aam.2013.01.002. doi: 10.1016/j.aam.2013.01.002 |
[19] | E. H. Goins, Palindromes in different bases: A conjecture of J. Ernest Wilkins, Integers, 9 (2009), 725–734. doi: 10.1515/INTEG.2009.059. doi: 10.1515/INTEG.2009.059 |
[20] | M. Harminc, R. Soták, Palindromic numbers in arithmetic progressions, Fibonacci Quart., 36 (1998), 259–262. |
[21] | A. Hof, O. Knill, B. Simon, Singular continuous spectrum for palindromic schrödinger operators, Comm. Math. Phys., 174 (1995), 149–159. doi: 10.1007/BF02099468. doi: 10.1007/BF02099468 |
[22] | S. Kawsumarng, T. Khemaratchatakumthorn, P. Noppakaew, P. Pongsriiam, Sumsets associated with Wythoff sequences and Fibonacci numbers, Period. Math. Hung., 82 (2021), 98–113. doi: 10.1007/s10998-020-00343-0. doi: 10.1007/s10998-020-00343-0 |
[23] | I. Korec, Palindromic squares for various number system bases, Math. Slovaca, 41 (1991), 261–276. |
[24] | L. Kuipers, H. Niederreiter, Uniform Distribution of Sequences, Dover Publications, 2006. |
[25] | F. Luca, Palindromes in various sequences, Gac. R. Soc. Mat. Esp., 20 (2017), 49–56. |
[26] | F. Luca, A. Togbé, On binary palindromes of the form $10n \pm1$, C. R. Math. Acad. Sci. Paris, 346 (2008), 487–489. doi: 10.1016/j.crma.2008.03.015. doi: 10.1016/j.crma.2008.03.015 |
[27] | I. Niven, Irrational Numbers, The Mathematical Association of America, 1985. |
[28] | P. Phunphayap, P. Pongsriiam, Reciprocal sum of palindromes, J. Integer Seq., 22 (2019), Article 19.8.6. |
[29] | P. Pongsriiam, Longest arithmetic progressions of palindromes, J. Number Theory, 222 (2021), 362–375. doi: 10.1016/j.jnt.2020.10.018. doi: 10.1016/j.jnt.2020.10.018 |
[30] | P. Pongsriiam, K. Subwattanachai, Exact formulas for the number of palindromes up to a given positive integer, Int. J. Math. Comput. Sci., 14 (2019), 27–46. |
[31] | A. Rajasekaran, J. Shallit, T. Smith, Sums of palindromes: an approach via automata, in 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018), Article no. 54, pp. 54: 1–54: 12. |
[32] | Vepir, Which number base contains the most palindromic numbers?, Mathematics Stack Exchange. Available from: https://math.stackexchange.com/questions/2232925/which-number-base-contains-the-most-palindromic-numbers. |