This paper provides a supplement to a recent study of (Appl. Math. Lett. 80 (2020) 106052). We further verify that the unique endemic equilibrium is globally asymptotically stable whenever it exists.
Citation: Yifei Pan, Siyao Zhu, Jinliang Wang. A note on a ZIKV epidemic model with spatial structure and vector-bias[J]. AIMS Mathematics, 2022, 7(2): 2255-2265. doi: 10.3934/math.2022128
This paper provides a supplement to a recent study of (Appl. Math. Lett. 80 (2020) 106052). We further verify that the unique endemic equilibrium is globally asymptotically stable whenever it exists.
[1] | H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered banach spaces, SIAM Rev., 18 (1976), 620–709. doi: 10.1137/1018114. |
[2] | I. I. Bogoch, O. J. Brady, M. U. Kraemer, M. German, M. I. Creatore, S. Brent, et al., Potential for Zika virus introduction and transmission in resource-limited countries in Africa and the Asia-Pacific region: a modelling study, Lancet Infect. Dis., 16 (2016), 1237–1245. doi: 10.1016/S1473-3099(16)30270-5. |
[3] | B. Buonomo, C. Vargas-De-León, Stability and bifurcation analysis of a vector-bias model of malaria transmission, Math. Biosci., 242 (2013), 59–67. doi: 10.1016/j.mbs.2012.12.001. |
[4] | F. Chamchod, N. F. Britton, Analysis of a vector-bias model on malaria transmission, Bull. Math. Biol., 73 (2011), 639–657. doi: 10.1007/s11538-010-9545-0. |
[5] | Y. Cai, Z. Ding, B. Yang, Z. Peng, W. M. Wang, Transmission dynamics of zika virus with spatial structure-A case study in Rio de Janeiro, Brazil, Physica A, 514 (2019), 729–740. doi: 10.1016/j.physa.2018.09.100. |
[6] | Y. Cai, K. Wang, W. Wang, Global transmission dynamics of a zika virus model, Appl. Math. Lett., 92 (2019), 190–195. doi: 10.1016/j.aml.2019.01.015. |
[7] | L. Duan, L. huang, Threshold dynamics of a vector-host epidemic model with spatial structure and nonlinear incidence rate, Proc. Amer. Math. Soc., 149 (2021), 4789–4797. doi.org/10.1090/proc/15561. |
[8] | W. E. Fitzgibbon, J. J. Morgan, G. F. Webb, An outbreak vector-host epidemic model with spatial structure: the 2015-2016 Zika outbreak in Rio De Janeiro, Theor. Biol. Med. Model., 14 (2017), 7. doi: 10.1186/s12976-017-0051-z. |
[9] | D. Gao, Y. Lou, D. He, T. C. Porco, Y. Kuang, G. Chowell, et al., Prevention and control of Zika as a mosquito-borne and sexually transmitted disease: A mathematical modeling analysis, Sci. Rep., 6 (2016), 28070. doi: 10.1038/srep28070. |
[10] | J. G. Kingsolver, Mosquito host choice and the epidemiology of malaria, Am. Nat., 130 (1987), 811–827. doi: 10.1086/284749. |
[11] | R. Lacroix, R. Mukabana, L. C. Gouagna, J. C. Koella, Malaria infection increases attractiveness of humans to mosquitoes, PLoS Biol., 3 (2005), e298. doi: 10.1371/journal.pbio.0030298. |
[12] | P. Magal, G. Webb, Y. Wu, On a vector-host epidemic model with spatial structure, Nonlinearity, 31 (2018), 5589–5614. doi: 10.1088/1361-6544/aae1e0. |
[13] | P. Magal, G. Webb, Y. Wu, On the basic reproduction number of reaction-diffusion epidemic models, SIAM J. Appl. Math., 79 (2019), 284–304. doi: 10.1137/18M1182243. |
[14] | K. Mischaikow, H. Smith, H. R. Thieme, Asymptotically autonomous semiflows: chain recurrence and Lyapunov functions, Trans. Am. Math. Soc., 347 (1995), 1669–1685. doi: 10.1090/S0002-9947-1995-1290727-7. |
[15] | H. L. Smith, Monotone Dynamical Systems: an Introduction to the Theory of Competitive and Cooperative Systems, Vol. 41, Providence RI, AMS, 1995. |
[16] | H. R. Thieme, Convergence results and a poincaré-bendixson trichotomy for asymptotically autonomous differential equation, J. Math. Biol., 30 (1992), 755–763. doi: 10.1007/BF00173267. |
[17] | H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188–211. doi: 10.1137/080732870. |
[18] | D. A. M. Villela, L. S. Bastos, L. M. de Carvalho, O. G. Cruz, M. F. C. Gomes, B. Durovni, et al., Zika in Rio de Janeiro: Assessment of basic reproduction number and comparison with dengue outbreaks, Epidemiol. Inf., 145 (2016), 1649–1657. doi: 10.1017/S0950268817000358. |
[19] | J. Wang, Y. Chen, Threshold dynamics of a vector-borne disease model with spatial structure and vector-bias, Appl. Math. Lett., 80 (2020), 106052. doi: 10.1016/j.aml.2019.106052. |