Research article

Note on an integral by Anatolii Prudnikov

  • Received: 17 November 2020 Accepted: 30 December 2020 Published: 04 January 2021
  • MSC : 01A55, 11M06, 11M35, 30-02, 30D10, 30D30, 30E20

  • Closed expressions for the integral

    $ \begin{equation*} \int_{0}^{\infty}\frac{x^{m-1} \log ^k(a x)}{\left(x^{2 u}+1\right) \left(x^{3 u}+1\right)}dx \end{equation*} $

    are given where the variables $ a $, $ k $, $ m $ and $ u $ are general complex numbers. Some of these closed expressions are given in [4]. Some special cases of the integral are derived and discussed.

    Citation: Robert Reynolds, Allan Stauffer. Note on an integral by Anatolii Prudnikov[J]. AIMS Mathematics, 2021, 6(3): 2680-2689. doi: 10.3934/math.2021162

    Related Papers:

  • Closed expressions for the integral

    $ \begin{equation*} \int_{0}^{\infty}\frac{x^{m-1} \log ^k(a x)}{\left(x^{2 u}+1\right) \left(x^{3 u}+1\right)}dx \end{equation*} $

    are given where the variables $ a $, $ k $, $ m $ and $ u $ are general complex numbers. Some of these closed expressions are given in [4]. Some special cases of the integral are derived and discussed.



    加载中


    [1] Yu. A. Brychkov, O. I. Marichev, N. V. Savischenko, Handbook of Mellin Transforms, CRC Press, Taylor & Francis Group, Boca Raton, Fl, 2019.
    [2] M. Abramowitz, I. A. Stegun, (Eds), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing, New York, Dover, 1982.
    [3] I. S. Gradshteyn, I. M. Ryzhik, Tables of Integrals, Series and Products, 6 Ed, Academic Press, USA, 2000.
    [4] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integrals and Series, More Special Functions, USSR Academy of Sciences, Vol. 1, Moscow, 1990.
    [5] R. Reynolds, A. Stauffer, Definite Integral of Arctangent and Polylogarithmic Functions Expressed as a Series, Mathematics, 7 (2019), 1099. doi: 10.3390/math7111099
    [6] R. Reynolds, A. Stauffer, A Definite Integral Involving the Logarithmic Function in Terms of the Lerch Function, Mathematics, 7 (2019), 1148. doi: 10.3390/math7121148
    [7] R. Reynolds, A. Stauffer, Derivation of Logarithmic and Logarithmic Hyperbolic Tangent Integrals Expressed in Terms of Special Functions, Mathematics, 8 (2020), 687. doi: 10.3390/math8050687
    [8] R. Reynolds, A. Stauffer, Definite integrals involving product of logarithmic functions and logarithm of square root functions expressed in terms of special functions, AIMS Mathematics, 5 (2020), 5724–5733. doi: 10.3934/math.2020367
    [9] R. Reynolds, A. Stauffer, A Method for Evaluating Definite Integrals in Terms of Special Functions with Examples, International Mathematical Forum, 15 (2020), 235–244. doi: 10.12988/imf.2020.91272
    [10] R. Reynolds, A. Stauffer, Integrals in Gradshteyn and Ryzhik: hyperbolic and algebraic functions, International Mathematical Forum, 15 (2020), 255–263. doi: 10.12988/imf.2020.91279
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1141) PDF downloads(31) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog