A dynamical two-dimensional traffic model in an anisotropic network

  • Received: 01 August 2012 Revised: 01 July 2013
  • Primary: 35Q99, 35Q35; Secondary: 91F99.

  • The aim of this paper is to build a dynamical traffic model in a dense urban area. The main contribution of this article is to take into account the four possible directions of traffic flows with flow vectors of dimension $4$ and not $2$ as in fluid mechanic on a plan. Traffic flows are viewed as confrontation results between users demands and a travel supply of the network. The model gathers elements of intersection theory and two-dimensional continuum networks.

    Citation: Tibye Saumtally, Jean-Patrick Lebacque, Habib Haj-Salem. A dynamical two-dimensional traffic model in an anisotropic network[J]. Networks and Heterogeneous Media, 2013, 8(3): 663-684. doi: 10.3934/nhm.2013.8.663

    Related Papers:

    [1] Tibye Saumtally, Jean-Patrick Lebacque, Habib Haj-Salem . A dynamical two-dimensional traffic model in an anisotropic network. Networks and Heterogeneous Media, 2013, 8(3): 663-684. doi: 10.3934/nhm.2013.8.663
    [2] Ye Sun, Daniel B. Work . Error bounds for Kalman filters on traffic networks. Networks and Heterogeneous Media, 2018, 13(2): 261-295. doi: 10.3934/nhm.2018012
    [3] Dengfeng Sun, Issam S. Strub, Alexandre M. Bayen . Comparison of the performance of four Eulerian network flow models for strategic air traffic management. Networks and Heterogeneous Media, 2007, 2(4): 569-595. doi: 10.3934/nhm.2007.2.569
    [4] Fabio Della Rossa, Carlo D’Angelo, Alfio Quarteroni . A distributed model of traffic flows on extended regions. Networks and Heterogeneous Media, 2010, 5(3): 525-544. doi: 10.3934/nhm.2010.5.525
    [5] Caterina Balzotti, Maya Briani, Benedetto Piccoli . Emissions minimization on road networks via Generic Second Order Models. Networks and Heterogeneous Media, 2023, 18(2): 694-722. doi: 10.3934/nhm.2023030
    [6] Dirk Helbing, Jan Siegmeier, Stefan Lämmer . Self-organized network flows. Networks and Heterogeneous Media, 2007, 2(2): 193-210. doi: 10.3934/nhm.2007.2.193
    [7] D. Alderson, H. Chang, M. Roughan, S. Uhlig, W. Willinger . The many facets of internet topology and traffic. Networks and Heterogeneous Media, 2006, 1(4): 569-600. doi: 10.3934/nhm.2006.1.569
    [8] Mauro Garavello, Benedetto Piccoli . On fluido-dynamic models for urban traffic. Networks and Heterogeneous Media, 2009, 4(1): 107-126. doi: 10.3934/nhm.2009.4.107
    [9] Tong Li . Qualitative analysis of some PDE models of traffic flow. Networks and Heterogeneous Media, 2013, 8(3): 773-781. doi: 10.3934/nhm.2013.8.773
    [10] Michael Herty, Adrian Fazekas, Giuseppe Visconti . A two-dimensional data-driven model for traffic flow on highways. Networks and Heterogeneous Media, 2018, 13(2): 217-240. doi: 10.3934/nhm.2018010
  • The aim of this paper is to build a dynamical traffic model in a dense urban area. The main contribution of this article is to take into account the four possible directions of traffic flows with flow vectors of dimension $4$ and not $2$ as in fluid mechanic on a plan. Traffic flows are viewed as confrontation results between users demands and a travel supply of the network. The model gathers elements of intersection theory and two-dimensional continuum networks.


    [1] Jean-Bernard Baillon and Guillaume Carlier, From discrete to continuous Wardrop equilibria, Networks and Heterogeneous Media, 7 (2012), 219-241. doi: 10.3934/nhm.2012.7.219
    [2] Giuseppe Maria Coclite and Benedetto Piccoli, "Traffic Flow on a Road Network," Technical Report, SISSA, 2002.
    [3] Giuseppe Maria Coclite, Mauro Garavello and Benedetto Piccoli, Traffic flow on a road network, SIAM J. Math. Anal., 36 (2005), 1862-1886. doi: 10.1137/S0036141004402683
    [4] Nikolas Geroliminis and Carlos Daganzo, Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings, Transportation Research B, 42 (2008), 759-770. doi: 10.1016/j.trb.2008.02.002
    [5] Helge Holden and Nils Henrik Risebro, A mathematical model of traffic flow on a network of unidirectional roads, SIAM J. Math. Anal., 26 (1995), 999-1017. doi: 10.1137/S0036141093243289
    [6] Yangbeibei Ji, Winnie Daamen, Serge Hoogendoorn, Sascha Hoogendoorn-Lanser and Xiaoyu Qian, Investigating the shape of the macroscopic fundamental diagram using simulation data, Transportation Research Record: Journal of the Transportation Research Board, Transportation Research Board of the National Academies, Washington D. C., 2161 (2010), 40-48. doi: 10.3141/2161-05
    [7] Jean-Patrick Lebacque, The Godunov scheme and what it means for first order traffic flow models, Transportation and Traffic Theory. Proceedings of the 13th ISTTT (J. B. Lesort Editor), Elsevier (1996), 647-677.
    [8] Jean-Patrick Lebacque and Megan Khoshyaran, Macroscopic flow models: Intersection modeling, network modeling, Transportation planning: The state of the art. Kluwer Academic Press, 6th Meeting of the Euro Working Group on Transportation (2002), 119-139.
    [9] Jean-Patrick Lebacque and Megan Khoshyaran, First-order macroscopic traffic flow models: Intersection modeling, network modeling, Transportation and Traffic Theory. Flow, Dynamics and Human Interaction, 16th International Symposium on Transportation and Traffic Theory (2005), 365-386.
    [10] M. H. Lighthill and G. B. Whitham, On kinematic waves II: A theory of traffic flow on long crowded roads, Proceedings of the Royal Society, London, A, 229 (1955), 317-345.
    [11] Luis Miguel Romero Prez and Francisco García Benítez, Traffic flow continuum modeling by hypersingular boundary integral equations, International Journal for Numerical Methods in Engineering, 82 (2010), 47-63. doi: 10.1002/nme.2754
    [12] Paul I. Richards, Shock-waves on the highway, Operations Research, 4 (1956), 42-51.
    [13] Azuma Taguchi and Masao Iri, Continuum approximation to dense networks and its application to the analysis of urban road networks. Applications, Mathematical Programming Study, 20 (1982), 178-217.
    [14] John Glen Wardrop, Some theorical aspects of road traffic research, Proceedings of the Institute of Civil Engineers, II (1952), 328-378.
    [15] S. C. Wong, Multi-commodity traffic assignement by continuum approximation of network flow with variable demand, Transportation Research B, 32 (1998), 567-581.
    [16] Hai Yang, Sam Yagar and Yasunori Iida, Traffic assignment in congested discrete/ continuous transportation system, Transportation Research B, 28 (1994), 161-174. doi: 10.1016/0191-2615(94)90023-X
  • This article has been cited by:

    1. K.S. Sossoe, J.P. Lebacque, A. Mokrani, H. Haj-Salem, Traffic Flow within a Two-dimensional Continuum Anisotropic Network, 2015, 10, 23521465, 217, 10.1016/j.trpro.2015.09.071
    2. Rafegh Aghamohammadi, Jorge A. Laval, A continuum model for cities based on the macroscopic fundamental diagram: A semi-Lagrangian solution method, 2020, 132, 01912615, 101, 10.1016/j.trb.2019.04.011
    3. Leila Heni, Habib Haj-Salem, Jean-Patrick Lebacque, Khalifa Slimi, A very large-scale traffic network modeling based on the integration of the Bi-dimensional and the GSOM Traffic Flow models, 2022, 62, 23521465, 573, 10.1016/j.trpro.2022.02.071
    4. Kwami Seyram Sossoe, Jean-Patrick Lebacque, 2017, Chapter 17, 978-3-319-48943-8, 179, 10.1007/978-3-319-48944-5_17
    5. Rafegh Aghamohammadi, Jorge A. Laval, Dynamic traffic assignment using the macroscopic fundamental diagram: A Review of vehicular and pedestrian flow models, 2020, 137, 01912615, 99, 10.1016/j.trb.2018.10.017
    6. Megan M Khoshyaran, Jean-Patrick Lebacque, A Macroscopic Model for Very Large Multimodal Networks Combining the GSOM and the Bidimensional Approach, 2022, 62, 23521465, 589, 10.1016/j.trpro.2022.02.073
    7. Megan M. Khoshyaran, Jean-Patrick Lebacque, 2020, Chapter 62, 978-3-030-55972-4, 505, 10.1007/978-3-030-55973-1_62
    8. Yan-Qun Jiang, S.C. Wong, Peng Zhang, Keechoo Choi, Dynamic Continuum Model with Elastic Demand for a Polycentric Urban City, 2017, 51, 0041-1655, 931, 10.1287/trsc.2016.0680
    9. Yan-Qun Jiang, Pei-Jie Ma, Shu-Guang Zhou, Macroscopic modeling approach to estimate traffic-related emissions in urban areas, 2018, 60, 13619209, 41, 10.1016/j.trd.2015.10.022
    10. Leila Heni, Habib Haj-Salem, Jean-Patrick Lebacque, Khalifa Slimi, Integrating the Bi-dimensional-GSOM traffic flow interfaced models with a macroscopic emission model for very large-scale traffic networks, 2024, 78, 23521465, 254, 10.1016/j.trpro.2024.02.033
    11. Megan M. Khoshyaran, Jean-Patrick Lebacque, Dynamic traffic assignment in a bi-dimensional model, 2025, 13, 2168-0566, 10.1080/21680566.2025.2450501
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3985) PDF downloads(132) Cited by(11)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog