Coupling of microscopic and phase transition models at boundary

  • Received: 01 March 2013 Revised: 01 July 2013
  • Primary: 90B20; Secondary: 35L65.

  • This paper deals with coupling conditions between the classical microscopic Follow The Leader model and a phase transition (PT) model. We propose a solution at the interface between the two models. We describe the solution to the Riemann problem.

    Citation: Mauro Garavello, Benedetto Piccoli. Coupling of microscopic and phase transition models at boundary[J]. Networks and Heterogeneous Media, 2013, 8(3): 649-661. doi: 10.3934/nhm.2013.8.649

    Related Papers:

  • This paper deals with coupling conditions between the classical microscopic Follow The Leader model and a phase transition (PT) model. We propose a solution at the interface between the two models. We describe the solution to the Riemann problem.


    加载中
    [1] D. Amadori, Initial-boundary value problems for nonlinear systems of conservation laws, NoDEA Nonlinear Differential Equations Appl., 4 (1997), 1-42. doi: 10.1007/PL00001406
    [2] A. Aw, A. Klar, T. Materne and M. Rascle, Derivation of continuum traffic flow models from microscopic follow-the-leader models, SIAM J. Appl. Math., 63 (2002), 259-278. doi: 10.1137/S0036139900380955
    [3] A. Aw and M. Rascle, Resurrection of "second order'' models of traffic flow, SIAM J. Appl. Math., 60 (2000), 916-938. doi: 10.1137/S0036139997332099
    [4] S. Blandin, J. Argote, A. M. Bayen and D. B. Work, Phase transition model of non-stationary traffic flow: Definition, properties and solution method, Transportation Research Part B: Methodological, 52 (2013), 31-55.
    [5] S. Blandin, D. Work, P. Goatin, B. Piccoli and A. Bayen, A general phase transition model for vehicular traffic, SIAM J. Appl. Math., 71 (2011), 107-127. doi: 10.1137/090754467
    [6] R. M. Colombo, Hyperbolic phase transitions in traffic flow, SIAM J. Appl. Math., 63 (2002), 708-721. doi: 10.1137/S0036139901393184
    [7] R. M. Colombo, F. Marcellini and M. Rascle, A 2-phase traffic model based on a speed bound, SIAM J. Appl. Math., 70 (2010), 2652-2666. doi: 10.1137/090752468
    [8] C. F. Daganzo, Requiem for second-order fluid approximations of traffic flow, Transportation Research Part B, 29 (1995), 277-286. doi: 10.1016/0191-2615(95)00007-Z
    [9] F. Dubois and P. LeFloch, Boundary conditions for nonlinear hyperbolic systems of conservation laws, J. Differential Equations, 71 (1988), 93-122. doi: 10.1016/0022-0396(88)90040-X
    [10] M. Garavello and B. Piccoli, Coupling of lwr and phase transition models at boundary, Journal of Hyperbolic Differential Equations, 10 (2013), 577-636.
    [11] D. C. Gazis, R. Herman and R. W. Rothery, Nonlinear follow-the-leader models of traffic flow, Operations Res., 9 (1961), 545-567. doi: 10.1287/opre.9.4.545
    [12] P. Goatin, The Aw-Rascle vehicular traffic flow model with phase transitions, Math. Comput. Modelling, 44 (2006), 287-303. doi: 10.1016/j.mcm.2006.01.016
    [13] D. Helbing, From microscopic to macroscopic traffic models, in "A perspective look at nonlinear media,'' Lecture Notes in Phys., Springer, (1998), 122-139. doi: 10.1007/BFb0104959
    [14] D. Helbing, A. Hennecke, V. Shvetsov and M. Treiber, Micro- and macro-simulation of freeway traffic, Traffic flow-modelling and simulation, Math. Comput. Modelling, 35 (2002), 517-547. doi: 10.1016/S0895-7177(02)80019-X
    [15] C. Lattanzio and B. Piccoli, Coupling of microscopic and macroscopic traffic models at boundaries, Math. Models Methods Appl. Sci., 20 (2010), 2349-2370. doi: 10.1142/S0218202510004945
    [16] M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317-345. doi: 10.1098/rspa.1955.0089
    [17] S. Moutari and M. Rascle, A hybrid Lagrangian model based on the Aw-Rascle traffic flow model, SIAM J. Appl. Math., 68 (2007), 413-436. doi: 10.1137/060678415
    [18] H. J. Payne, Models of freeway traffic and control, in mathematical models of public systems, Simul. Counc. Proc., 1 (1971).
    [19] I. Prigogine and R. Herman, Kinetic theory of vehicular traffic, American Elsevier Pub. Co., 1971.
    [20] P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42-51. doi: 10.1287/opre.4.1.42
    [21] G. B. Whitham, "Linear and Nonlinear Waves,'' Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974.
    [22] D. B. Work, S. Blandin, O.-P. Tossavainen, B. Piccoli and A. M. Bayen, A traffic model for velocity data assimilation, Appl. Math. Res. Express. AMRX, 1 (2010), 1-35.
    [23] H. M. Zhang, A non-equilibrium traffic model devoid of gas-like behavior, Transportation Research Part B: Methodological, 36 (2002), 275-290. doi: 10.1016/S0191-2615(00)00050-3
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3331) PDF downloads(72) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog