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Abstract. This paper deals with coupling conditions between the classical
microscopic Follow The Leader model and a phase transition (PT) model. We

propose a solution at the interface between the two models. We describe the

solution to the Riemann problem.

1. Introduction. The present paper provides modeling techniques for the coupling
of a microscopic and a macroscopic model of vehicular traffic at interfaces.

We underline that a significant effort was devoted by applied mathematician
to the modeling of vehicular traffic via partial differential equations. Such effort
enriched the already wide spectrum of available mathematical models, therefore re-
searchers and practitioners face now an unprecedented opportunity in model choice.
In turn this poses the problem of identifying the “best” model, depending on the
specific application features. The solution may be found in combining different
models using coupling conditions at interfaces. The latter approach may be chosen
either to take advantage of different characteristics of models or to differentiate
geographically scale and grain level description.

Let us start revising briefly some of the most well known models of vehicular
traffic. At microscopic level, one of the most studied approach is the so called
Follow the Leader, where each driver adjusts its velocity to the one of the vehicle in
front. More precisely, the velocity change is proportional to difference in velocities
and inversely proportional to some positive power of the vehicles distance. The fluid
dynamic approach at macroscopic level was, in turn, initiated by the seminal work of
Lighthill-Whitham and Richards [16, 20]. This model well describes the evolution of
free traffic, but it is not accurate when the traffic is congested. Hence second order
models, i.e. system with two equations, were introduced. Among these we mention
the Payne-Whitham [18, 21] model, which was invalidated by Daganzo [8] in 1995.
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Aw and Rascle in [3] then proposed the conservation of a “modified” momentum.
The same model was independently suggested by Zhang in [23], thus we refer to it
as the Aw–Rascle–Zhang model. In 2002, Colombo proposed a second order model
with phase transitions [6], in order to describe the different behaviors of traffic in
free and congested regimes. It is based on two phases: the free and the congested
one. In free flow the model is a classical LWR model, whereas in the congested flow
it is a system of two equations: the first one is the conservation of the number of
vehicles, while the second one describes the evolution of a linearized momentum.
Various modifications of this model were considered, for instance combining LWR
and ARZ model [12] and the more recent refinement [5]; see also [7].

The relations among microscopic and (fluid dynamic) macroscopic were studied in
few papers. In [2], the authors showed how solutions to the Follow the Leader model,
with appropriate rescaling, in the limit tend to solutions of the ARZ model. In [17]
an hybrid model is built based on results from [2]. Coupling at boundaries has been
investigated first only under a numerical point of view (see, for instance, [13, 14]).
Then in [15] a coupling at boundaries of the Follow the Leader and ARZ model was
proposed.

The simulation of large networks and fitting of data from mobile sensors is mostly
performed using the classical LWR model or modifications of it; see [22]. The
combination of different scales thus requires the definition of coupling conditions
at boundaries between the Follow the Leader model and the LWR ones. The main
obstacle along this path is the fact that the Follow the Leader model is naturally
coupled with second order ones (that means two equations) as explained above. In
this paper we define coupling conditions for the Follow the Leader and the phase
transition (briefly PT) model of [5].

We assume that there is a fixed interface, located at x = 0, between the Follow
the Leader and the PT model. We give coupling conditions between these two
models, based on similar considerations as in [15]. We describe in details how
to solve the Riemann problem for such coupling. The solution of such Riemann
problem is based on the solution for an initial-boundary value problem for the PT
model. Therefore, for the latter problem, we also prove existence of solutions by
means of the wave-front tracking technique.

The paper is organized as follows. In Section 2, we recall the definition of the
Follow the Leader model, whereas in Section 3 the phase transition one, introduced
in [5], is presented. Moreover in Section 3.1, we prove existence of solutions for
an initial-boundary value problem for the PT model. Sections 4 and 5 deal with
coupling conditions and with the analysis for the Riemann problems respectively
for FTL-PT model and for PT-FTL model.

2. Description of the Follow the Leader model. The Follow The Leader
model [11, 19] is described by the system of ordinary differential equations{

ẋi = vi,

v̇i = Cγ
vi+1−vi

(xi+1−xi)γ+1 ,
(1)

where xi and vi denote respectively the position and the speed of the i-th vehicle

(i ∈ {1, . . . , I}). Here we suppose that x1 < x2 < · · · < xI , Cγ = (∆X)γ+1

τ , γ ≥ 0
and ∆X is the length of a single car and τ > 0 is a relaxation time. The dynamic
of the I-th car is assumed to be known. By recursion, one can find the position
and the velocity of each car, provided the initial position x̄1, . . . x̄I−1 and velocity
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v̄1, . . . , v̄I−1 are known. By (1), each driver adjusts its velocity accordingly to the
relative velocity with respect that of the next driver and to the distance from the
next car. More precisely, the velocity change is proportional to the difference in
velocities and inversely proportional to vehicles’ distance.

3. Description of the phase transition model. We describe the phase transi-
tion model, introduced in [5], with the Newell-Daganzo velocity function for conges-
tion. The model consists in two phases: the free and the congested. These phases
are described by the sets

Ωf =
{

(ρ, q) ∈ [0, R]× [−1,+∞[: q = R(ρ−σ)
σ(R−ρ) , 0 ≤ ρ ≤ σ+

}
Ωc =

{
(ρ, q) ∈ [0, R]× [−1,+∞[: vc(ρ, q) ≤ V, q

−

R ≤
q
ρ ≤

q+

R

} (2)

where V > 0 is the velocity in the free phase, R > 0 is the maximal density,
−1 < q− < 0 < q+ < 1, R

5 < σ < R and vc : [σ−, R] × [q−, q+] → [0,+∞[, defined
by

vc(ρ, q) = veqc (ρ)(1 + q) =
V σ

R− σ

(
R

ρ
− 1

)
(1 + q) , (3)

is the velocity in the congested phase; see Figure 1. Here the constants σ− > 0 and
σ+ > 0 are defined respectively by the ρ-component of the solutions in Ωc to the
systems  vc(ρ, q) = V,

q
ρ = q−

R ,
and

 vc(ρ, q) = V,

q
ρ = q+

R .

We denote with v(ρ, q) the extension of vc to ]0, R]× [−1,+∞). Note that v(ρ, q) =
V if (ρ, q) ∈ Ωf . Introduce the function

Φ(ρ, v) = (Φ1(ρ, v),Φ2(ρ, v)) =

(
ρ,
v (R− σ)

V σ

ρ

R− ρ
− 1

)
(4)

which maps admissible (ρ, v) to element in Ωf ∪ Ωc. More precisely, the function
Φ transforms the coordinates (ρ, v) into (ρ, q). For a later use, let us consider the

function d : (Ωf ∪ Ωc)
2 → R defined, for every (ρ1, q1) , (ρ2, q2) ∈ Ωf ∪ Ωc, by

d ((ρ1, q1) , (ρ2, q2)) = |v (ρ1, q1)− v (ρ2, q2)|+ |ω (ρ1, q1)− ω (ρ2, q2)| , (5)

where ω : Ωf ∪ Ωc → R is the continuous function defined by

ω(ρ, q) =

{
q
ρ if q

ρ ≥
q−

R ,

V ρ− σ−V + q−

R otherwise.
(6)

It is easy to see that d is a metric on Ωf ∪ Ωc and that it measures the distance of
two points along the Riemann invariants.

The model in the free phase Ωf reads

∂tρ+ ∂x(ρV ) = ∂tρ+ V ∂x(ρ) = 0, (7)

while in the congested phase Ωc reads{
∂tρ+ ∂x(ρvc(ρ, q)) = 0,
∂tq + ∂x(qvc(ρ, q)) = 0.

(8)

The eigenvalues for (8) are

λ1(ρ, q) = (1 + 2q)veqc (ρ) + ρ(1 + q)(veqc )′(ρ), λ2(ρ, q) = (1 + q)veqc (ρ), (9)
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Figure 1. The fundamental diagram for the phase transition
model in (ρ, q) and (ρ, ρvc) coordinates.
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Figure 2. Shape of Lax curves in (ρ, q) and (ρ, ρvc(ρ, q)) planes.

while the corresponding eigenvectors are

r1 =

(
ρ
q

)
, r2 =

(
veqc (ρ)

−(1 + q)(veqc )′(ρ)

)
. (10)

Moreover the first characteristic speed is genuinely nonlinear if q 6= 0 and it is
linearly degenerate if q = 0. Instead the second characteristic speed is linearly de-
generate. A deeper analysis of (8) is contained in [5]. We denote with L1(ρ; ρ0, q0)
and L2(ρ; ρ0, q0) respectively the Lax curves of the first and second family for sys-
tem (8); see Figure 2. We recall that (ρ, L1(ρ; ρ0, q0)) are lines in the (ρ, q) plane
passing through the origin and (ρ, L2(ρ; ρ0, q0)) are lines in the (ρ, ρv) plane passing
through the origin. Let us introduce the functions

ψ1 : Ωc → Ωc, ψ−2 : Ωc → Ωc, ψ+
2 : Ωc → Ωc, (11)

such that, for every (ρ0, q0) ∈ Ωc, ψ1(ρ0, q0), ψ−2 (ρ0, q0) and ψ+
2 (ρ0, q0) are defined

respectively by the solutions in Ωc to the systems{ q
ρ = q0

ρ0
,

vc(ρ, q) = V,

{
q
ρ = q−

R ,

vc(ρ, q) = vc(ρ0, q0),

{
q
ρ = q+

R ,

vc(ρ, q) = vc(ρ0, q0).

Moreover, define the flux function

ϕ : Ωf ∪ Ωc −→ R

(ρ, q) 7−→
{
ρV, if (ρ, q) ∈ Ωf ,
ρvc(ρ, q), if (ρ, q) ∈ Ωc.
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For (ρ, q) ∈ Ωf ∪ Ωc, define the following sets

Tl (ρ, q) =


{

(ρ̃, q̃) ∈ Ωc : q̃ = q
ρ ρ̃
}
, if (ρ, q) ∈ Ωc,

(ρ, q) ∪

{
(ρ̃, q̃) ∈ Ωc :

q̃ = q−

R ρ̃,

ρ̃vc(ρ̃, q̃) < V ρ

}
, if (ρ, q) ∈ Ωf \ Ωc,

(12)
and

Tr (ρ, q) =


Ωf , if (ρ, q) ∈ Ωf ,

{(ρ̃, q̃) ∈ Ωc : veqc (ρ̃)(1 + q̃) = veqc (ρ)(1 + q)}
∪
{

(ρ̃, q̃) ∈ Ωf : ρ̃V < ϕ(ψ−2 (ρ, q))
}
,

if (ρ, q) ∈ Ωc,

(13)
These sets contain all the possible states, which can be connected to (ρ, q) with
waves with negative and positive speed respectively, as the following proposition
underlines; for a proof see [10, Proposition 3.2].

Proposition 1. For (ρl, ql) ∈ Ωf ∪Ωc and (ρr, qr) ∈ Ωf ∪Ωc, consider the Riemann
problem 

∂tρ+ ∂x(ρvf (ρ, q)) = 0, if (ρ, q) ∈ Ωf , t > 0,{
∂tρ+ ∂x(ρvc(ρ, q)) = 0,
∂tq + ∂x(qvc(ρ, q)) = 0,

if (ρ, q) ∈ Ωc, t > 0,

(ρ, q)(0, x) =

{
(ρl, ql), if x < 0,
(ρr, qr), if x > 0.

(14)

1. The Riemann problem (14) is solved with waves with non positive speed if and
only if (ρr, qr) ∈ Tl (ρl, ql).

2. The Riemann problem (14) is solved with waves with non negative speed if and
only if (ρl, ql) ∈ Tr (ρr, qr).

Remark 1. Note that, if (ρ, q) ∈ Ωc, then the sets
{

(ρ̃, q̃) ∈ Ωc : q̃ = q
ρ ρ̃
}

and

{(ρ̃, q̃) ∈ Ωc : veqc (ρ̃)(1 + q̃) = veqc (ρ)(1 + q)}, appearing in (12) and in (13), are com-
posed by all the points in Ωc which can be connected to (ρ, q) by a Lax curve
respectively of the first family and by the second one.

Moreover the set
{

(ρ̃, q̃) ∈ Ωc : q̃ = q−

R ρ̃, ρ̃vc(ρ̃, q̃) < V ρ
}

in (12) contains all the

points in Ωc of the first Lax curve passing through (R, q−) with sufficiently small
flux. Finally, the set

{
(ρ̃, q̃) ∈ Ωf : ρ̃V < ϕ(ψ−2 (ρ, q))

}
consists in all the points of

Ωf with flux less than ϕ(ψ−2 (ρ, q)).

The following results hold. The proofs are contained in [10].

Lemma 3.1. We have that

ϕ (Tl (ρ, q)) =

{
[0, ϕ(ψ1(ρ, q))], if (ρ, q) ∈ Ωc,

[0, ρV ], if (ρ, q) ∈ Ωf \ Ωc,
(15)

and

ϕ (Tr (ρ, q)) =

{
[0, ϕ(ψ+

2 (ρ, q))], if (ρ, q) ∈ Ωc,

[0, σ+V ], if (ρ, q) ∈ Ωf .
(16)
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Lemma 3.2. The first eigenvalue λ1 is strictly negative in Ωc. The second eigen-
value λ2 is positive in Ωc.

Proposition 2. Since −1 < q− < 0 < q+ < 1, the Lax curves of the first family in
the (ρ, ρv) plane, parameterized by ρ, are uniformly bi-Lipschitz in Ωc. For every
0 < v̄ < V , the Lax curves of the second family in the (ρ, ρv) plane, parameterized
by ρ, are uniformly bi-Lipschitz in the set {(ρ, q) ∈ Ωc : vc(ρ, q) ≥ v̄}.

Definition 3.3. Let I be a real interval. We say that a function (ρ, q) : I → Ωf∪Ωc
satisfies the assumption (H-1) in I if there exists 0 < v̄ < V such that, for a.e.
x ∈ I, (ρ, q)(x) ∈ Ωf or (ρ, q)(x) ∈ Ωc and vc((ρ, q)(x)) ≥ v̄.

Definition 3.3 will be used together with Proposition 2 for controlling the varia-
tion of ρ and q by the metric d.

3.1. A special boundary value problem. In this part we focus the attention in
a special boundary value problem for the phase transition model. More precisely,
let us consider the following system

∂tρ+ ∂x(ρvf (ρ, q)) = 0, if (ρ, q) ∈ Ωf , t > 0, x < 0,{
∂tρ+ ∂x(ρvc(ρ, q)) = 0,
∂tq + ∂x(qvc(ρ, q)) = 0,

if (ρ, q) ∈ Ωc, t > 0, x < 0,

(ρ, q)(0, x) = (ρ̄, q̄), if x < 0,
(ρ, q)(t, 0) = (ρ̃(t), q̃(t)), if t > 0,

(17)

where (ρ̄, q̄) ∈ Ωf ∪ Ωc and (ρ̃, q̃) : [0,+∞) → Ωf ∪ Ωc is a bounded variation
function.

Definition 3.4. A function (ρ, q) ∈ C0
(
[0, T ];L1(−∞, 0)

)
is a solution to (17) if

1. (ρ, q) is a weak entropy solution to the phase transition model (7)-(8) for
(t, x) ∈ (0, T )× (−∞, 0);

2. limt→0+ (ρ(t, ·), q(t, ·)) = (ρ̄, q̄) in the L1-topology;
3. for a.e. t ∈ (0, T ), the function (ρ, q)(t, ·) admits a version with bounded

variation;
4. for a.e. t ∈ (0, T ), the Riemann problem for the phase transition model (7)-(8)

with initial condition {
(ρ, q)(t, 0−), if x < 0,
(ρ̃(t), q̃(t)), if x > 0,

is solved with waves with positive speed. Here (ρ, q)(t, 0−) denote the left
trace of the version with bounded variation of (ρ, q) at x = 0.

Remark that the point 4 of the previous definition does not impose that the
trace at x = 0 of the solution equals to the boundary condition. We require that
the classical Riemann problem connecting the trace with the boundary condition
is solved with waves with positive speed; see [1, 9]. In this situation, all the waves
we consider should be admissible waves also for the phase transition model on the
real line; in particular, for a phase transition wave, the left and right states belong
respectively to Ωf \ Ωc and to Ωc.

The following result holds.

Theorem 3.5. Fix (ρ̄, q̄) ∈ Ωf ∪ Ωc, T > 0 and (ρ̃, q̃) ∈ BV ([0, T ],Ωf ∪ Ωc).
Assume that ρ̄ < R and (ρ̃, q̃) satisfies the assumption (H-1), in the sense of
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Definition 3.3. There exists a solution (ρ, q) ∈ C0
(
[0, T ];L1(−∞, 0)

)
to (17) in the

sense of Definition 3.4.

Proof. We construct a wave-front tracking approximate solution (ρν , qν) to (17).
Consider a sequence (ρ̃ν , q̃ν) of piecewise constant functions, defined on [0, T ], hav-
ing a finite number of discontinuities, satisfying assumption (H-1) and such that
limν→+∞ (ρ̃ν , q̃ν) = (ρ̃, q̃) in L1 ([0, T ]; Ωf ∪ Ωc). For every ν ∈ N \ {0}, we apply
the following procedure. At time t = 0 we solve the Riemann problem for the phase
transition model with initial condition{

(ρ̄, q̄), if x < 0,
(ρ̃ν(0+), q̃ν(0+)), if x > 0.

Since we are interested only in the region x < 0, we neglect the waves of the
second family (they have strictly positive speed) and the phase transition waves
with positive speed. Therefore we consider only the wave of the first family (it has
strictly negative speed) and the phase transition wave with negative speed. The
wave of the first family can be a rarefaction wave; in this case we split it with a
rarefaction fan, formed by rarefaction shocks of strength less than 1

ν , traveling with
the Rankine-Hugoniot speed. We repeat a similar procedure at every time t ∈ (0, T )
such that the function (ρ̃ν , q̃ν) has a discontinuity at t. In this case we need to solve
the Riemann problem for the phase transition model with initial condition{

(ρν , qν)(t, 0−), if x < 0,
(ρ̃ν(t+), q̃ν(t+)), if x > 0,

where (ρν , qν)(t, 0−) denotes the left trace of the approximate solution (ρν , qν) at
time t. Moreover at every time at which two waves interact together we need to solve
the corresponding Riemann problem. As usual, by slightly modifying the speed of
waves, we may assume that at every positive time t at most one interaction happens
and that the formation of rarefaction fans happens only at x = 0. There exists a
positive constant K > 0 such that

d ((ρ1, q1) , (ρ2, q2)) ≤ K (|ρ1 − ρ2|+ |q1 − q2|) (18)

for every (ρi, qi) (i ∈ {1, 2}) produced by the wave-front technique.
As in [10], we introduce the functional W (t) measuring the strength of the waves

at time t

W (t) = W1(t) +W2(t) +WPT (t) (19)

where

W1(t) =
∑
x∈1(t)

d ((ρν(t, x−), qν(t, x−)) , (ρν(t, x+), qν(t, x+)))

=
∑
x∈1(t)

|v (ρν(t, x+), qν(t, x+))− v (ρν(t, x−), qν(t, x−))| (20)

W2(t) =
∑
x∈2(t)

d ((ρν(t, x−), qν(t, x−)) , (ρν(t, x+), qν(t, x+)))

=
∑
x∈2(t)

|ω (ρν(t, x+), qν(t, x+))− ω (ρν(t, x−), qν(t, x−))| (21)
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WPT (t) =
∑

x∈PT (t)

[
ω
(
σ−, q

−σ−/R
)
− ω ((ρν , qν) (t, x−))

]
+

∑
x∈PT (t)

[V − vc ((ρν , qν) (t, x+))] (22)

measure respectively the strength of the waves of the first family, of the second
family and of phase transition waves. The sets 1 (t), 2 (t) and PT (t) contain the
points of discontinuity for the different types of waves. Note that the previous
functionals may vary only at times t̄ when two waves interact or when a wave
reaches the boundary x = 0 or at the discontinuities for the functions (ρ̃ν , q̃ν).

Before studying how W varies, we make the following observations.

A. If the initial condition (ρ̄, q̄) belongs to Ωc, then every state, produced by
the previous construction, belongs to Ωc and to the Lax curve of the first
family through (ρ̄, q̄). Since phase transition waves have left state belonging
to Ωf \Ωc, it is clear that from the boundary only waves of the first family can
be generated. Interactions between these waves produce waves of the same
family, since in Ωc the system is Temple.

B. If the initial condition (ρ̄, q̄) belongs to Ωf \ Ωc, then the left most wave (if
any) is a phase transition wave or a wave of the second family (until it comes
back to x = 0). Moreover the state at the left of this wave is exactly (ρ̄, q̄),
while all the other possible states between this wave and the boundary belong

to Ωc and to q = q−

R ρ.

We need to estimate how the functional W varies at such times t̄. There are
several possibilities.

1. t̄ is a point of discontinuity of (ρ̃ν , q̃ν). Two different situations may happen.
The state (ρν(t̄−, 0−), qν(t̄−, 0−)) belongs to Ωf\Ωc. In this case, this state

is equal to (ρ̄, q̄). Moreover either no wave is produced or a phase transition
wave (possibly followed by a wave of the first family) is generated at x = 0.
Indicating with (ρ̂, q̂) the right state of the phase transition wave, we have
∆W2(t̄) = 0,

∆W1(t̄) = v (ρ̂, q̂)− v
(
ψ−2 (ρ̃ν(t̄+), q̃ν(t̄+))

)
≥ 0

∆WPT (t̄) = [V − v (ρ̂, q̂)] + V [σ− − ρν(t̄−, 0−)] > 0

∆W (t̄) =
[
V − v

(
ψ−2 (ρ̃ν(t̄+), q̃ν(t̄+))

)]
+ V [σ− − ρ̄] .

Hence we deduce that ∆W (t̄) ≤ d ((ρ̄, q̄) , (ρ̃ν(t̄+), q̃ν(t̄+))).
The state (ρν(t̄−, 0−), qν(t̄−, 0−)) belongs to Ωc. Either no wave is pro-

duced or a wave of the first family is generated at x = 0. We have ∆W2(t̄) =
∆WPT (t̄) = 0 and

∆W (t̄) = ∆W1(t̄) = |v (ρν(t̄−, 0−), qν(t̄−, 0−))− v (ρ̃ν(t̄+), q̃ν(t̄+))| .
Hence ∆W (t̄) ≤ d ((ρ̃ν(t̄−), q̃ν(t̄−)) , (ρ̃ν(t̄+), q̃ν(t̄+))).

2. t̄ is an interaction time between a phase transition wave and a wave of the
first family. In this situation, the left wave, connecting the states ul ∈ Ωf \Ωc
and um ∈ Ωc, is the phase transition one, while the right wave, connecting
the states um ∈ Ωc and ur ∈ Ωc, is of the first family. Note that ul = (ρ̄, q̄),
ψ−2 (um) = um and ψ−2 (ur) = ur.

This interaction can generate either a phase transition wave (possibly fol-
lowed by a wave of the first family) or a wave of the second family: in this
situation the number of waves does not increase. Moreover W (t̄+) ≤W (t̄−).
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3. t̄ is an interaction time between a wave of the second family and a wave of
the first family. The wave of the second family can only be generated by an
interaction between a phase transition wave with a wave of the first family.

Hence the left state is (ρ̄, q̄) and the right one is
(
σ−,

q−σ−
R

)
. This interaction

can generate either a phase transition wave followed by a wave of the first
family or a phase transition wave: in this situation the number of waves does
not increase. Moreover W (t̄+) = W (t̄−).

4. t̄ is an interaction time between two waves of the first family. This interaction
generates only a wave of the first family: in this situation the number of waves
strictly decreases. Moreover W (t̄+) ≤W (t̄−).

5. t̄ is an interaction time between a phase transition wave with the boundary. In
this situation no wave is produced. According to the previous observations,
in a right neighborhood of t̄, the solution is constantly equal to the initial
condition (ρ̄, q̄). Therefore the number of waves is 0 and W (t̄+) = 0.

6. t̄ is an interaction time between a wave of the second family with the boundary.
This case is entirely similar to the previous one.

This analysis proves that, for a.e. t ∈ [0, T ],

W (t) ≤ K1 (23)

with

K1 = d ((ρ̄, q̄) , (ρ̃(0+), q̃(0+))) +KTot.Var. (ρ̃, q̃) .

Moreover the number of waves can increase only at times t̄, points of discontinuity
for (ρ̃ν , q̃ν). For such times t̄ the worst situation is the production of a phase
transition wave followed by a rarefaction fan. In this case the number of waves
produced at time t̄ is bounded by 1 + ν |(ρ̃ν , q̃ν) (t̄+)− (ρ̃ν , q̃ν) (t̄−)|. Then the
total maximum number of new waves is bounded by Nν + ν ·Tot.Var. (ρ̃, q̃), where
Nν is the number of discontinuities of (ρ̃ν , q̃ν). This proves that the number of
waves is finite.

Let us now consider the number of interactions. Interactions at point 1 can
happen, by construction, at most a finite number of times. Since the number of
waves is bounded, then also interactions at points 4, 5 and 6 can happen at most a
finite number of times. Moreover interactions at point 2, producing a wave of the
second family or a single phase transition, strictly decrease the number of waves;
hence can happen at most a finite number of times. Consequently interactions at
point 3 can happen at most a finite number of times. It remains to consider only
interactions at point 2 producing both a phase transition and a wave of the first
family. There exists a unique point (ρ̌, q̌) ∈ Ωc such that the phase transition so
generated connects (ρ̄, q̄) to (ρ̌, q̌). Obviously (ρ̌, q̌) depends only on (ρ̄, q̄) and it is
determined in the (ρ, ρv) plane by the tangent point to the lower part of Ωc of a
line passing through (ρ̄, q̄). Moreover, since for every t ∈ [0, T ] there is at most one
phase transition (the leftmost wave), in order to reproduce such type of interaction,
both the phase transition and the wave of the first family must first interact with
other waves. Hence we conclude that the number of interactions is finite.

Therefore for a.e. t ∈ [0, T ], by (H-1), it is possible to obtain a uniform bound
to Tot.Var. (ρν , qν) (t, ·) and so to conclude as in [10].

Remark 2. In the proof of Theorem 3.5 an increment of the functional W , defined
in (19), can happen only when the boundary data change. In this case the variation
of W is proportional to the variation of the boundary data. Instead, in the case
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of an interaction of two waves, the functional W does not increase; see also [10,
Lemma 4.29].

4. The FTL-PT model. This section deals with the coupling between the FTL
model if x < 0 and the PT one if x > 0.

4.1. The Riemann problem. Here we describe how to solve the Riemann prob-
lem for the FTL-PT model. To this aim, we fix I ∈ N and the initial data x̄1 < x̄2 < · · · < x̄I ≤ 0

v̄1, . . . , v̄I ∈ [0, V ]
(ρ̄, q̄) ∈ Ωf ∪ Ωc.

(24)

For defining a solution to this system, it is sufficient to prescribe the dynamics of
the first vehicle at xI (or of the second one at xI−1 in case xI = 0) and to select a
boundary data

(
ρb, qb

)
∈ Tr (ρ̄, q̄) for the PT model. Clearly this solution is valid

until a car from the FTL model hits the boundary x = 0. However, the procedure
can be restarted at every time a car from the FTL model reaches the boundary
x = 0, providing in such a way a solution for all times.There are two different
situations: xI < 0 or xI = 0.

First case. x̄I < 0. The solution we propose here holds for all times t ∈ [0, t̄],
where t̄ is the first time such that xI(t̄) = 0. In this situation, the PT model is not
influenced by the FTL one. Hence, the solution for the PT model is given by

(ρ(t, x), q(t, x)) = (ρ̄, q̄)

for every x > 0 and t ∈ [0, t̄]; thus
(
ρb, qb

)
= (ρ̄, q̄). Moreover the car at xI moves

according to the ODE system
ẋI = vI
v̇I = Cγ ρ̄

γ v(ρ̄,q̄)−vI
(∆X−ρ̄xI)γ

xI(0) = x̄I
vI(0) = v̄I

for t ∈ [0, t̄]; i.e. it moves in the same way as if it sees a car in position ∆X
ρ̄ with

speed v(ρ̄, q̄).

Second case. x̄I = 0. Here the first car at xI = 0 exits from the FTL model and
the leader becomes the vehicle at xI−1. The solution proposed here is valid until
the new leading vehicle reaches the boundary x = 0. According to [15, Section 5.1],
we define ρ̃ = − ∆X

x̄I−1
as the presumed density at x = 0. The following possibilities,

about the choice of
(
ρb, qb

)
, occur.

1. Φ (ρ̃, v̄I) ∈ Ωf \ Ωc and Φ (ρ̃, v̄I) ∈ Tr (ρ̄, q̄). Define (ρb, qb) = Φ (ρ̃, v̄I).
2. Φ (ρ̃, v̄I) ∈ Ωf \Ωc and Φ (ρ̃, v̄I) 6∈ Tr (ρ̄, q̄). This means that (ρ̄, q̄) ∈ Ωc \Ωf ,

otherwise Tr (ρ̄, q̄) = Ωf . Define (ρb, qb) = ψ−2 (ρ̄, q̄).
3. Φ (ρ̃, v̄I) ∈ Ωc. Define (ρb, qb) ∈ Ωc ∩ Tr (ρ̄, q̄) as the unique state such that

L2

(
ρ̄;L1

(
ρb; Φ (ρ̃, v̄I)

))
= (ρ̄, q̄) .

4. Φ (ρ̃, v̄I) 6∈ Ωf ∪ Ωc and Φ2 (ρ̃, v̄I) >
q+

R Φ1 (ρ̃, v̄I). Define (ρb, qb) = ψ+
2 (ρ̄, q̄)

if (ρ̄, q̄) ∈ Ωc, and define (ρb, qb) = Φ(σ+, V σ+) if (ρ̄, q̄) ∈ Ωf .
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5. Φ (ρ̃, v̄I) 6∈ Ωf ∪ Ωc, Φ2 (ρ̃, v̄I) <
q−

R Φ1 (ρ̃, v̄I) and (ρ̄, q̄) ∈ Ωf . Define (ρb, qb)
as the unique solution to the system

qb

ρb
= Φ2(ρ̃,v̄I)

Φ1(ρ̃,v̄I)

(ρb, qb) ∈ Ωf .

6. Φ (ρ̃, v̄I) 6∈ Ωf ∪ Ωc, Φ2 (ρ̃, v̄I) <
q−

R Φ1 (ρ̃, v̄I) and (ρ̄, q̄) ∈ Ωc \ Ωf . Define

(ρb, qb) = ψ−2 (ρ̄, q̄).

Moreover, given the boundary term (ρb, qb) for the PT model, the car at xI−1,
according to the previous case, moves according to the ODE system

ẋI−1 = vI−1

v̇I−1 = Cγ
(
ρb
)γ v(ρb,qb)−vI−1

(∆X−ρbxI−1)γ

xI−1(0) = x̄I−1

vI−1(0) = v̄I−1

for t ∈ [0, t̄]; i.e. it moves in the same way as if it sees a car in position ∆X
ρb

with

speed v(ρb, qb).

Remark 3. The case x̄I = 0 presents various possibilities in the choice of the
boundary datum

(
ρb, qb

)
. The key point is that

(
ρb, qb

)
should belong to the set

Tr (ρ̄, q̄), in order to produce waves with positive speed. The choice of
(
ρb, qb

)
in

the first three possibilities is the natural one, since Φ (ρ̃, ṽI) ∈ Ωf ∪ Ωc. In the
last three cases, instead, we need to project the point Φ (ρ̃, ṽI) in the set Ωf ∪ Ωc
and some arbitrariness appears. A similar projection problem was considered in [4].
Our projection has some differences with respect to that in [4] and this is due to
the constraint

(
ρb, qb

)
∈ Tr (ρ̄, q̄). For example, if (ρ̄, q̄) ∈ Ωf , then the boundary

data belongs to Ωf and this explains the point 5 and the second part of 4. In point
6, we decide to project to Ωc, but also some projections on Ωf could be reasonable.

5. The PT-FTL model. This section deals with the coupling between the PT
model if x < 0 and the FTL one if x > 0.

5.1. The Riemann problem. Here we describe how to solve the Riemann prob-
lem for the PT-FTL model. To this aim, we fix I ∈ N and the initial data (ρ̄, q̄) ∈ Ωf ∪ Ωc

0 ≤ x̄1 < x̄2 < · · · < x̄I
v̄1, . . . , v̄I ∈ [0, V ].

(25)

Let Υ : [0, V ]→ [0, R] be the unique continuous function such that{
Φ(Υ(v), v) ∈ Ωc

Φ2(Υ(v), v) = q+

R Υ(v),

where Φ and Φ2 are defined in (4). First, we need to define the point (ρb, qb) ∈
Ωf ∪ Ωc. Consider the solution to the classical Riemann problem for the phase
transition model with initial condition (ρ̄, q̄) if x < 0 and Φ (Υ(v̄1), v̄1) if x > 0.
Define (ρb, qb) as the left trace at x = 0 and t = 1 of this solution.

We have two different situations.
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1. ρb ≥ ∆X
x̄1

. In this case we have an emission procedure at time t = 0; see [15].
For simplicity, we rearrange the index of cars for x > 0 with the map i 7→ i+1,
in such a way the leading car is at position x̄I+1. The new car in the FTL
model is now at position x̄1 = 0 with a initial speed v̄1 = v̄2. The dynamics
for the FTL is now completely determined, provided the dynamics of the first
car is known.

Define ρ̃(t) = Υ(v1(t)), q̃(t) = Φ2 (Υ(v1(t)), v1(t)). The solution for the
phase transition model is given by the solution to (17), which exists by Theo-
rem 3.5. This solution is valid for t ∈ [0, t̄], where t̄ > 0 (next emission time)
is the first time such that

1

t̄

∫ t̄

0

ρ(t, 0−)dt =
∆X

x1(t̄)
. (26)

2. ρb < ∆X
xI+1

. The dynamics for the FTL is now completely determined, provided

the dynamics of the first car is known.
Define ρ̃(t) = Υ(v1(t)), q̃(t) = Φ2 (Υ(v1(t)), v1(t)). The solution for the

phase transition model is given by the solution to (17), which exists by Theo-
rem 3.5. This solution is valid for t ∈ [0, t̄], where t̄ > 0 (next emission time)
is the first time such that (26) holds.

At times t̄ such that (26) holds, we perform an emission procedure (see [15]) in
this way. We rearrange the index of cars for x > 0 with the map i 7→ i+ 1, in such
a way the leading car is at position x̄I+1. The new car in the FTL model is now at
position x̄1 = 0 with a initial speed

v̄1 =

∫ t̄
0
ρ(s, 0−)vc (ρ(s, 0−), q(s, 0−)) ds∫ t̄

0
ρ(s, 0−)ds

The dynamics for the FTL is now completely determined, provided the dynamics
of the first car is known. The procedure restarts as in the point 2.
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