Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Multi-modal adaptive feature extraction for early-stage weak fault diagnosis in bearings

  • † These two authors contributed equally to this work
  • Received: 01 April 2024 Revised: 04 June 2024 Accepted: 18 June 2024 Published: 25 June 2024
  • We present a novel multi-modal adaptive feature extraction algorithm considering both time-domain and frequency-domain modalities (AFETF), coupled with a Bidirectional Long Short-Term Memory (Bi-LSTM) network based on the Grey Wolf Optimizer (GWO) for early-stage weak fault diagnosis in bearings. Singular Value Decomposition (SVD) was employed for noise reduction, while Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) was utilized for signal decomposition, facilitating further signal processing. AFETF algorithm proposed in this paper was employed to extract weak fault features. The adaptive diagnostic process was further enhanced using Bi-LSTM network optimized with GWO, ensuring objectivity in the hyperparameter optimization. The proposed method was validated for datasets containing weak faults with a 0.2 mm crack and strong faults with a 0.4 mm crack, demonstrating its effectiveness in early-stage fault detection.

    Citation: Zhenzhong Xu, Xu Chen, Linchao Yang, Jiangtao Xu, Shenghan Zhou. Multi-modal adaptive feature extraction for early-stage weak fault diagnosis in bearings[J]. Electronic Research Archive, 2024, 32(6): 4074-4095. doi: 10.3934/era.2024183

    Related Papers:

    [1] Muhammad Asim, Ghada AlNemer . Boundedness on variable exponent Morrey-Herz space for fractional multilinear Hardy operators. AIMS Mathematics, 2025, 10(1): 117-136. doi: 10.3934/math.2025007
    [2] Jie Sun, Jiamei Chen . Weighted estimates for commutators associated to singular integral operator satisfying a variant of Hörmander's condition. AIMS Mathematics, 2023, 8(11): 25714-25728. doi: 10.3934/math.20231311
    [3] Kieu Huu Dung, Do Lu Cong Minh, Pham Thi Kim Thuy . Commutators of Hardy-Cesàro operators on Morrey-Herz spaces with variable exponents. AIMS Mathematics, 2022, 7(10): 19147-19166. doi: 10.3934/math.20221051
    [4] Yueping Zhu, Yan Tang, Lixin Jiang . Boundedness of multilinear Calderón-Zygmund singular operators on weighted Lebesgue spaces and Morrey-Herz spaces with variable exponents. AIMS Mathematics, 2021, 6(10): 11246-11262. doi: 10.3934/math.2021652
    [5] Wanjing Zhang, Suixin He, Jing Zhang . Boundedness of sublinear operators on weighted grand Herz-Morrey spaces. AIMS Mathematics, 2023, 8(8): 17381-17401. doi: 10.3934/math.2023888
    [6] Babar Sultan, Mehvish Sultan, Qian-Qian Zhang, Nabil Mlaiki . Boundedness of Hardy operators on grand variable weighted Herz spaces. AIMS Mathematics, 2023, 8(10): 24515-24527. doi: 10.3934/math.20231250
    [7] Javeria Younas, Amjad Hussain, Hadil Alhazmi, A. F. Aljohani, Ilyas Khan . BMO estimates for commutators of the rough fractional Hausdorff operator on grand-variable-Herz-Morrey spaces. AIMS Mathematics, 2024, 9(9): 23434-23448. doi: 10.3934/math.20241139
    [8] Ming Liu, Bin Zhang, Xiaobin Yao . Weighted variable Morrey-Herz space estimates for $ m $th order commutators of $ n- $dimensional fractional Hardy operators. AIMS Mathematics, 2023, 8(9): 20063-20079. doi: 10.3934/math.20231022
    [9] Shuhui Yang, Yan Lin . Multilinear strongly singular integral operators with generalized kernels and applications. AIMS Mathematics, 2021, 6(12): 13533-13551. doi: 10.3934/math.2021786
    [10] Naqash Sarfraz, Muhammad Aslam . Some weighted estimates for the commutators of $p$-adic Hardy operator on two weighted $p$-adic Herz-type spaces. AIMS Mathematics, 2021, 6(9): 9633-9646. doi: 10.3934/math.2021561
  • We present a novel multi-modal adaptive feature extraction algorithm considering both time-domain and frequency-domain modalities (AFETF), coupled with a Bidirectional Long Short-Term Memory (Bi-LSTM) network based on the Grey Wolf Optimizer (GWO) for early-stage weak fault diagnosis in bearings. Singular Value Decomposition (SVD) was employed for noise reduction, while Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) was utilized for signal decomposition, facilitating further signal processing. AFETF algorithm proposed in this paper was employed to extract weak fault features. The adaptive diagnostic process was further enhanced using Bi-LSTM network optimized with GWO, ensuring objectivity in the hyperparameter optimization. The proposed method was validated for datasets containing weak faults with a 0.2 mm crack and strong faults with a 0.4 mm crack, demonstrating its effectiveness in early-stage fault detection.


    Let T be the Calderón-Zygmund singular integral operator and b be a locally integrable function on Rn. The commutator generated by b and T is defined by [b,T]f=bT(f)T(bf). The investigation of the commutator begins with Coifman-Rochberg-Weiss pioneering study and classical result (see [6]). The classical result of Coifman, Rochberg and Weiss (see [6]) states that the commutator [b,T]f=T(bf)bTf is bounded on Lp(Rn) for 1<p< if and only if bBMO(Rn). The major reason for considering the problem of commutators is that the boundedness of commutator can produces some characterizations of function spaces (see [1,6]). Chanillo (see [1]) proves a similar result when T is replaced by the fractional integral operator. In [11], the boundedness properties of the commutators for the extreme values of p are obtained. In recent years, the theory of Herz space and Herz type Hardy space, as a local version of Lebesgue space and Hardy space, have been developed (see [8,9,12,13]). The main purpose of this paper is to establish the endpoint continuity properties of some multilinear operators related to certain non-convolution type fractional singular integral operators on Herz and Herz type Hardy spaces.

    First, let us introduce some notations (see [8,9,10,12,13,15]). Throughout this paper, Q will denote a cube of Rn with sides parallel to the axes. For a cube Q and a locally integrable function f, let fQ=|Q|1Qf(x)dx and f#(x)=supQx|Q|1Q|f(y)fQ|dy. Moreover, f is said to belong to BMO(Rn) if f#L and define ||f||BMO=||f#||L; We also define the central BMO space by CMO(Rn), which is the space of those functions fLloc(Rn) such that

    ||f||CMO=supr>1|Q(0,r)|1Q|f(y)fQ|dy<.

    It is well-known that (see [9,10])

    ||f||CMOsupr>1infcC|Q(0,r)|1Q|f(x)c|dx.

    For kZ, define Bk={xRn:|x|2k} and Ck=BkBk1. Denote by χk the characteristic function of Ck and ˜χk the characteristic function of Ck for k1 and ˜χ0 the characteristic function of B0.

    Definition 1. Let 0<p< and αR.

    (1) The homogeneous Herz space ˙Kαp(Rn) is defined by

    ˙Kαp(Rn)={fLploc(Rn{0}):||f||˙Kαp<},

    where

    ||f||˙Kαp=k=2kα||fχk||Lp;

    (2) The nonhomogeneous Herz space Kαp(Rn) is defined by

    Kαp(Rn)={fLploc(Rn):||f||Kαp<},

    where

    ||f||Kαp=k=02kα||f˜χk||Lp.

    If α=n(11/p), we denote that ˙Kαp(Rn)=˙Kp(Rn), Kαp(Rn)=Kp(Rn).

    Definition 2. Let 0<δ<n and 1<p<n/δ. We shall call Bδp(Rn) the space of those functions f on Rn such that

    ||f||Bδp=supd>1dn(1/pδ/n)||fχQ(0,d)||Lp<.

    Definition 3. Let 1<p<.

    (1) The homogeneous Herz type Hardy space H˙Kp(Rn) is defined by

    H˙Kp(Rn)={fS(Rn):G(f)˙Kp(Rn)},

    where

    ||f||H˙Kp=||G(f)||˙Kp.

    (2) The nonhomogeneous Herz type Hardy space HKp(Rn) is defined by

    HKp(Rn)={fS(Rn):G(f)Kp(Rn)},

    where

    ||f||HKp=||G(f)||Kp.

    where G(f) is the grand maximal function of f.

    The Herz type Hardy spaces have the atomic decomposition characterization.

    Definition 4. Let 1<p<. A function a(x) on Rn is called a central (n(11/p),p)-atom (or a central (n(11/p),p)-atom of restrict type), if

    1) SuppaB(0,d) for some d>0 (or for some d1),

    2) ||a||Lp|B(0,d)|1/p1,

    3) a(x)dx=0.

    Lemma 1. (see [9,13]) Let 1<p<. A temperate distribution f belongs to H˙Kp(Rn)(or HKp(Rn)) if and only if there exist central (n(11/p),p)-atoms(or central (n(11/p),p)-atoms of restrict type) aj supported on Bj=B(0,2j) and constants λj, j|λj|< such that f=j=λjaj (or f=j=0λjaj)in the S(Rn) sense, and

    ||f||H˙Kp( or ||f||HKp)j|λj|.

    In this paper, we will consider a class of multilinear operators related to some non-convolution type singular integral operators, whose definition are following.

    Let m be a positive integer and A be a function on Rn. We denote that

    Rm+1(A;x,y)=A(x)|β|m1β!DβA(y)(xy)β

    and

    Qm+1(A;x,y)=Rm(A;x,y)|β|=m1β!DβA(x)(xy)β.

    Definition 5. Fixed ε>0 and 0<δ<n. Let Tδ:SS be a linear operator. Tδ is called a fractional singular integral operator if there exists a locally integrable function K(x,y) on Rn×Rn such that

    Tδ(f)(x)=RnK(x,y)f(y)dy

    for every bounded and compactly supported function f, where K satisfies:

    |K(x,y)|C|xy|n+δ

    and

    |K(y,x)K(z,x)|+|K(x,y)K(x,z)|C|yz|ε|xz|nε+δ

    if 2|yz||xz|. The multilinear operator related to the fractional singular integral operator Tδ is defined by

    TAδ(f)(x)=RnRm+1(A;x,y)|xy|mK(x,y)f(y)dy;

    We also consider the variant of TAδ, which is defined by

    ˜TAδ(f)(x)=RnQm+1(A;x,y)|xy|mK(x,y)f(y)dy.

    Note that when m=0, TAδ is just the commutators of Tδ and A (see [1,6,11,14]). It is well known that multilinear operator, as a non-trivial extension of commutator, is of great interest in harmonic analysis and has been widely studied by many authors (see [3,4,5]). In [7], the weighted Lp(p>1)-boundedness of the multilinear operator related to some singular integral operator are obtained. In [2], the weak (H1, L1)-boundedness of the multilinear operator related to some singular integral operator are obtained. In this paper, we will study the endpoint continuity properties of the multilinear operators TAδ and ˜TAδ on Herz and Herz type Hardy spaces.

    Now we state our results as following.

    Theorem 1. Let 0<δ<n, 1<p<n/δ and DβABMO(Rn) for all β with |β|=m. Suppose that TAδ is the same as in Definition 5 such that Tδ is bounded from Lp(Rn) to Lq(Rn) for any p,q(1,+] with 1/q=1/pδ/n. Then TAδ is bounded from Bδp(Rn) to CMO(Rn).

    Theorem 2. Let 0<δ<n, 1<p<n/δ, 1/q=1/pδ/n and DβABMO(Rn) for all β with |β|=m. Suppose that ˜TAδ is the same as in Definition 5 such that ˜TAδ is bounded from Lp(Rn) to Lq(Rn) for any p,q(1,+) with 1/q=1/pδ/n. Then ˜TAδ is bounded from H˙Kp(Rn) to ˙Kαq(Rn) with α=n(11/p).

    Theorem 3. Let 0<δ<n, 1<p<n/δ and DβABMO(Rn) for all β with |β|=m. Suppose that ˜TAδ is the same as in Definition 5 such that ˜TAδ is bounded from Lp(Rn) to Lq(Rn) for any p,q(1,+) with 1/q=1/pδ/n. Then the following two statements are equivalent:

    (ⅰ) ˜TAδ is bounded from Bδp(Rn) to CMO(Rn);

    (ⅱ) for any cube Q and z3Q2Q, there is

    1|Q|Q||β|=m1β!|DβA(x)(DβA)Q|(4Q)cKβ(z,y)f(y)dy|dxC||f||Bδp,

    where Kβ(z,y)=(zy)β|zy|mK(z,y) for |β|=m.

    Remark. Theorem 2 is also hold for nonhomogeneous Herz and Herz type Hardy space.

    To prove the theorem, we need the following lemma.

    Lemma 2. (see [5]) Let A be a function on Rn and DβALq(Rn) for |β|=m and some q>n. Then

    |Rm(A;x,y)|C|xy|m|β|=m(1|˜Q(x,y)|˜Q(x,y)|DβA(z)|qdz)1/q,

    where ˜Q(x,y) is the cube centered at x and having side length 5n|xy|.

    Proof of Theorem 1. It suffices to prove that there exists a constant CQ such that

    1|Q|Q|TAδ(f)(x)CQ|dxC||f||Bδp

    holds for any cube Q=Q(0,d) with d>1. Fix a cube Q=Q(0,d) with d>1. Let ˜Q=5nQ and ˜A(x)=A(x)|β|=m1β!(DβA)˜Qxβ, then Rm+1(A;x,y)=Rm+1(˜A;x,y) and Dβ˜A=DβA(DβA)˜Q for all β with |β|=m. We write, for f1=fχ˜Q and f2=fχRn˜Q,

    TAδ(f)(x)=RnRm+1(˜A;x,y)|xy|mK(x,y)f(y)dy=RnRm(˜A;x,y)|xy|mK(x,y)f1(y)dy|β|=m1β!RnK(x,y)(xy)β|xy|mDβ˜A(y)f1(y)dy+RnRm+1(˜A;x,y)|xy|mK(x,y)f2(y)dy,

    then

    1|Q|Q|TAδ(f)(x)T˜Aδ(f2)(0)|dx1|Q|Q|Tδ(Rm(˜A;x,)|x|mf1)(x)|dx+|β|=m1β!1|Q|Q|Tδ((x)β|x|mDβ˜Af1)(x)|dx+|T˜Aδ(f2)(x)T˜Aδ(f2)(0)|dx:=I+II+III.

    For I, note that for xQ and y˜Q, using Lemma 2, we get

    Rm(˜A;x,y)C|xy|m|β|=m||DβA||BMO,

    thus, by the Lp(Rn) to Lq(Rn)-boundedness of TAδ for 1<p,q< with 1/q=1/pδ/n, we get

    IC|Q|Q|Tδ(|β|=m||DβA||BMOf1)(x)|dxC|β|=m||DβA||BMO(1|Q|Q|Tδ(f1)(x)|qdx)1/qC|β|=m||DβA||BMO|Q|1/q||f1||LpC|β|=m||DβA||BMOrn(1/pδ/n)||fχ˜Q||LpC|β|=m||DβA||BMO||f||Bδp.

    For II, taking 1<s<p such that 1/r=1/sδ/n, by the (Ls,Lr)-boundedness of Tδ and Holder's inequality, we gain

    IIC|Q|Q|Tδ(|β|=m(DβA(DβA)˜Q)f1)(x)|dxC|β|=m(1|Q|Q|Tδ((DβA(DβA)˜Q)f1)(x)|rdx)1/rC|Q|1/r|β|=m||(DβA(DβA)˜Q)f1||LsC|Q|1/r||f1||Lp|β|=m(1|Q|˜Q|DβA(y)(DβA)˜Q|ps/(ps)dy)(ps)/(ps)|Q|(ps)/(ps)C|β|=m||DβA||BMOrn/q||fχ˜Q||LpC|β|=m||DβA||BMO||f||Bδp.

    To estimate III, we write

    T˜Aδ(f2)(x)T˜Aδ(f2)(0)=Rn[K(x,y)|xy|mK(0,y)|y|m]Rm(˜A;x,y)f2(y)dy+RnK(0,y)f2(y)|y|m[Rm(˜A;x,y)Rm(˜A;0,y)]dy|β|=m1β!Rn(K(x,y)(xy)β|xy|mK(0,y)(y)β|y|m)Dβ˜A(y)f2(y)dy:=III1+III2+III3.

    By Lemma 2 and the following inequality (see [15])

    |bQ1bQ2|Clog(|Q2|/|Q1|)||b||BMO for Q1Q2,

    we know that, for xQ and y2k+1˜Q2k˜Q,

    |Rm(˜A;x,y)|C|xy|m|β|=m(||DβA||BMO+|(DβA)˜Q(x,y)(DβA)˜Q|)Ck|xy|m|β|=m||DβA||BMO.

    Note that |xy||y| for xQ and yRn˜Q, we obtain, by the condition of K,

    |III1|CRn(|x||y|m+n+1δ+|x|ε|y|m+n+εδ)|Rm(˜A;x,y)||f2(y)|dyC|β|=m||DβA||BMOk=02k+1˜Q2k˜Qk(|x||y|n+1δ+|x|ε|y|n+εδ)|f(y)|dyC|β|=m||DβA||BMOk=1k(2k+2εk)(2kr)n(1/pδ/n)||fχ2k˜Q||LpC|β|=m||DβA||BMOk=1k(2k+2εk)||f||BδpC|β|=m||DβA||BMO||f||Bδp.

    For III2, by the formula (see [5]):

    Rm(˜A;x,y)Rm(˜A;x0,y)=|γ|<m1γ!Rm|γ|(Dγ˜A;x,x0)(xy)γ

    and Lemma 2, we have

    |Rm(˜A;x,y)Rm(˜A;x0,y)|C|γ|<m|β|=m|xx0|m|γ||xy||γ|||DβA||BMO,

    thus, similar to the estimates of III1, we get

    |III2|C|β|=m||DβA||BMOk=02k+1˜Q2k˜Q|x||y|n+1δ|f(y)|dyC|β|=m||DβA||BMO||f||Bδp.

    For III3, by Holder's inequality, similar to the estimates of III1, we get

    |III3|C|β|=mk=02k+1˜Q2k˜Q(|x||y|n+1δ+|x|ε|y|n+εδ)|Dβ˜A(y)||f(y)|dyC|β|=mk=1(2k+2εk)(2kr)n(1/pδ/n)(|2k˜Q|12k˜Q|DβA(y)(DβA)˜Q|pdy)1/p||fχ2k˜Q||LpC|β|=m||DβA||BMOk=1(2k+2εk)(2kr)n(1/pδ/n)||fχ2k˜Q||LpC|β|=m||DβA||BMO||f||Bδp.

    Thus

    IIIC|β|=m||DβA||BMO||f||Bδp,

    which together with the estimates for I and II yields the desired result. This finishes the proof of Theorem 1.

    Proof of Theorem 2. Let fH˙Kp(Rn), by Lemma 1, f=j=λjaj, where ajs are the central (n(11/p),p)-atom with suppajBj=B(0,2j) and ||f||H˙Kpj|λj|. We write

    ||˜TAδ(f)||˙Kαq=k=2kn(11/p)||χk˜TAδ(f)||Lqk=2kn(11/p)k1j=|λj|||χk˜TAδ(aj)||Lq+k=2kn(11/p)j=k|λj|||χk˜TAδ(aj)||Lq=J+JJ.

    For JJ, by the (Lp,Lq)-boundedness of ˜TAδ for 1/q=1/pδ/n, we get

    JJCk=2kn(11/p)j=k|λj|||aj||LpCk=2kn(11/p)j=k|λj|2jn(1/p1)Cj=|λj|jk=2(kj)n(11/p)Cj=|λj|C||f||H˙Kp.

    To obtain the estimate of J, we denote that ˜A(x)=A(x)|β|=m1β!(DβA)2Bjxβ. Then Qm(A;x,y)=Qm(˜A;x,y) and Qm+1(A;x,y)=Rm(A;x,y)|β|=m1β!(xy)βDβA(x). We write, by the vanishing moment of a and for xCk with kj+1,

    ˜TAδ(aj)(x)=RnK(x,y)Rm(A;x,y)|xy|maj(y)dy|β|=m1β!RnK(x,y)Dβ˜A(x)(xy)β|xy|maj(y)dy=Rn[K(x,y)|xy|mK(x,0)|x|m]Rm(˜A;x,y)aj(y)dy+RnK(x,0)|x|m[Rm(˜A;x,y)Rm(˜A;x,0)]aj(y)dy|β|=m1β!Rn[K(x,y)(xy)β|xy|mK(x,0)xβ|x|m]Dβ˜A(x)aj(y)dy.

    Similar to the proof of Theorem 1, we obtain

    |˜TAδ(aj)(x)|CRn[|y||x|m+n+1δ+|y|ε|x|m+n+εδ]|Rm(˜A;x,y)||aj(y)|dy+C|β|=mRn[|y||x|n+1δ+|y|ε|x|n+εδ]|Dβ˜A(x)||aj(y)|dyC|β|=m||DβA||BMO[2j2k(n+1δ)+2jε2k(n+εδ)]+C|β|=m[2j2k(n+1δ)+2jε2k(n+εδ)]|Dβ˜A(x)|,

    thus

    JC|β|=m||DβA||BMOk=2kn(11/p)k1j=|λj|[2j2k(n+1δ)+2jε2k(n+εδ)]2kn/q+C|β|=mk=2kn(11/p)k1j=|λj|[2j2k(n+1δ)+2jε2k(n+εδ)](Bk|Dβ˜A(x)|qdx)1/qC|β|=m||DβA||BMOk=2kn(1δ/n)k1j=|λj|[2j2k(n+1δ)+2jε2k(n+εδ)]C|β|=m||DβA||BMOj=|λj|k=j+1[2jk+2(jk)ε]C|β|=m||DβA||BMOj=|λj|C|β|=m||DβA||BMO||f||H˙Kp.

    This completes the proof of Theorem 2.

    Proof of Theorem 3. For any cube Q=Q(0,r) with r>1, let fBδp and ˜A(x)=A(x)|β|=m1β!(DβA)˜Qxβ. We write, for f=fχ4Q+fχ(4Q)c=f1+f2 and z3Q2Q,

    ˜TAδ(f)(x)=˜TAδ(f1)(x)+RnRm(˜A;x,y)|xy|mK(x,y)f2(y)dy|β|=m1β!(DβA(x)(DβA)Q)(Tδ,β(f2)(x)Tδ,β(f2)(z))|β|=m1β!(DβA(x)(DβA)Q)Tδ,β(f2)(z)=I1(x)+I2(x)+I3(x,z)+I4(x,z),

    where Tδ,β is the singular integral operator with the kernel (xy)β|xy|mK(x,y) for |β|=m. Note that (I4(,z))Q=0, we have

    ˜TAδ(f)(x)(˜TAδ(f))Q=I1(x)(I1())Q+I2(x)I2(z)[I2()I2(z)]QI3(x,z)+(I3(x,z))QI4(x,z).

    By the (Lp,Lq)-bounded of ˜TAδ, we get

    1|Q|Q|I1(x)|dx(1|Q|Q|˜TAδ(f1)(x)|qdx)1/qC|Q|1/q||f1||LpC||f||Bδp.

    Similar to the proof of Theorem 1, we obtain

    |I2(x)I2(z)|C||f||Bδp

    and

    1|Q|Q|I3(x,z)|dxC||f||Bδp.

    Then integrating in x on Q and using the above estimates, we obtain the equivalence of the estimate

    1|Q|Q|˜TAδ(f)(x)(˜TAδ(f))Q|dxC||f||Bδp

    and the estimate

    1|Q|Q|I4(x,z)|dxC||f||Bδp.

    This completes the proof of Theorem 3.

    In this section we shall apply the theorems of the paper to some particular operators such as the Calderón-Zygmund singular integral operator and fractional integral operator.

    Application 1. Calderón-Zygmund singular integral operator.

    Let T be the Calderón-Zygmund operator defined by (see [10,11,15])

    T(f)(x)=RnK(x,y)f(y)dy,

    the multilinear operator related to T is defined by

    TA(f)(x)=RnRm+1(A;x,y)|xy|mK(x,y)f(y)dy.

    Then it is easily to see that T satisfies the conditions in Theorems 1–3, thus the conclusions of Theorems 1–3 hold for TA.

    Application 2. Fractional integral operator with rough kernel.

    For 0<δ<n, let Tδ be the fractional integral operator with rough kernel defined by (see [2,7])

    Tδf(x)=RnΩ(xy)|xy|nδf(y)dy,

    the multilinear operator related to Tδ is defined by

    TAδf(x)=RnRm+1(A;x,y)|xy|m+nδΩ(xy)f(y)dy,

    where Ω is homogeneous of degree zero on Rn, Sn1Ω(x)dσ(x)=0 and ΩLipε(Sn1) for some 0<ε1, that is there exists a constant M>0 such that for any x,ySn1, |Ω(x)Ω(y)|M|xy|ε. Then Tδ satisfies the conditions in Theorem 1. In fact, for suppf(2Q)c and xQ=Q(x0,d), by the condition of Ω, we have (see [16])

    |Ω(xy)|xy|nδΩ(x0y)|x0y|nδ|C(|xx0|ε|x0y|n+εδ+|xx0||x0y|n+1δ),

    thus, the conclusions of Theorems 1–3 hold for TAδ.

    The author would like to express his deep gratitude to the referee for his/her valuable comments and suggestions. This research was supported by the National Natural Science Foundation of China (Grant No. 11901126), the Scientific Research Funds of Hunan Provincial Education Department. (Grant No. 19B509).

    The authors declare that they have no competing interests.



    [1] F. Jia, Y. G. Lei, J. Lin, X. Zhou, N. Lu, Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data, Mech. Syst. Signal Process., 72 (2016), 303–315. https://doi.org/10.1016/j.ymssp.2015.10.025 doi: 10.1016/j.ymssp.2015.10.025
    [2] Y. J. Zhou, X. Y. Long, M. W. Sun, Z. Q. Chen, Bearing fault diagnosis based on Gramian angular field and DenseNet, Math. Biosci. Eng., 19 (2022), 14086–14101. https://doi.org/10.3934/mbe.2022656 doi: 10.3934/mbe.2022656
    [3] Z. W. Shang, C. L. Pan, Y. Yu, F. Liu, M. S. Gao, Weak local fault diagnosis of gearboxes based on adaptive inertia factor particle swarm independent component analysis, Insight Nondestr. Test. Cond. Monit., 65 (2023), 415–422. https://doi.org/10.1784/insi.2023.65.8.415 doi: 10.1784/insi.2023.65.8.415
    [4] W. Cui, G. Y. Meng, A. M. Wang, X. E. Zhang, J. Ding, Application of rotating machinery fault diagnosis based on deep learning, Shock Vib., 2021 (2021), 3083190. https://doi.org/10.1155/2021/3083190 doi: 10.1155/2021/3083190
    [5] Y. H. Zhang, T. T. Zhou, X. F. Huang, L. C. Cao, Q. Zhou, Fault diagnosis of rotating machinery based on recurrent neural networks, Measurement, 171 (2021), 108774. https://doi.org/10.1016/j.measurement.2020.108774 doi: 10.1016/j.measurement.2020.108774
    [6] Q. S. Wang, Z. C. Sun, Y. M. Zhu, C. H. Song, D. Li, Intelligent fault diagnosis algorithm of rolling bearing based on optimization algorithm fusion convolutional neural network, Math. Biosci. Eng., 20 (2023), 19963–19982. https://doi.org/10.3934/mbe.2023884 doi: 10.3934/mbe.2023884
    [7] Z. X. Wei, Y. X. Wang, S. L. He, J. D. Bao, A novel intelligent method for bearing fault diagnosis based on affinity propagation clustering and adaptive feature selection, Knowledge-Based Syst., 116 (2017), 1–12. https://doi.org/10.1016/j.knosys.2016.10.022 doi: 10.1016/j.knosys.2016.10.022
    [8] S. Q. Huang, J. D. Zheng, H. Y. Pan, J. Y. Tong, Order-statistic filtering fourier decomposition and its application to rolling bearing fault diagnosis, J. Vib. Control, 28 (2022), 1605–1620. https://doi.org/10.1177/1077546321997598 doi: 10.1177/1077546321997598
    [9] D. C. Zhu, G. Q. Liu, X. Y. Wu, B. L. Yin, An enhanced empirical Fourier decomposition method for bearing fault diagnosis, Struct. Health Monit., 23 (2024), 903–923. https://doi.org/10.1177/14759217231178653 doi: 10.1177/14759217231178653
    [10] W. L. Fu, X. H. Jiang, B. L. Li, C. Tan, B. J. Chen, X. Y. Chen, Rolling bearing fault diagnosis based on 2D time-frequency images and data augmentation technique, Meas. Sci. Technol., 34 (2023), 045005. https://doi.org/10.1088/1361-6501/acabdb doi: 10.1088/1361-6501/acabdb
    [11] Z. J. Xie, D. Yu, C. S. Zhan, Q. C. Zhao, J. X. Wang, J. Q. Liu, et al., Ball screw fault diagnosis based on continuous wavelet transform and two-dimensional convolution neural network, Meas. Control, 56 (2023), 518–528. https://doi.org/10.1177/00202940221107620 doi: 10.1177/00202940221107620
    [12] V. Sharma, A. Parey, Extraction of weak fault transients using variational mode decomposition for fault diagnosis of gearbox under varying speed, Eng. Fail. Anal., 107 (2020), 104204. https://doi.org/10.1016/j.engfailanal.2019.104204 doi: 10.1016/j.engfailanal.2019.104204
    [13] Q. B. Lu, X. Q. Shen, X. J. Wang, M. Li, J. Li, M. Z. Zhang, Fault diagnosis of rolling bearing based on improved VMD and KNN, Math. Probl. Eng., 2021 (2021), 2530315. https://doi.org/10.1155/2021/2530315 doi: 10.1155/2021/2530315
    [14] T. Wu, Fault diagnosis method of rolling bearing based on EMD-Hilbert envelope spectrum and BPNN, in IOP Conference Series: Earth and Environmental Science, IOP Publishing, 632 (2021), 052084. https://doi.org/10.1088/1755-1315/632/5/052084
    [15] P. K. Sahu, R. N. Rai, Fault diagnosis of rolling bearing based on an improved denoising technique using complete ensemble empirical mode decomposition and adaptive thresholding method, J. Vib. Eng. Technol., 11 (2023), 513–535. https://doi.org/10.1007/s42417-022-00591-z doi: 10.1007/s42417-022-00591-z
    [16] J. B. Hou, Y. X. Wu, H. Gong, A. S. Ahmad, L. Liu, A novel intelligent method for bearing fault diagnosis based on EEMD permutation entropy and gg clustering, Appl. Sci., 10 (2020), 386. https://doi.org/10.3390/app10010386 doi: 10.3390/app10010386
    [17] A. Kumar, Y. Berrouche, R. Zimroz, G. Vashishtha, S. Chauhan, C. P. Gandhi, et al., Non-parametric Ensemble Empirical Mode Decomposition for extracting weak features to identify bearing defects, Measurement, 211 (2023), 112615. https://doi.org/10.1016/j.measurement.2023.112615 doi: 10.1016/j.measurement.2023.112615
    [18] F. Z. Liu, J. W. Gao, H. B. Liu, The feature extraction and diagnosis of rolling bearing based on CEEMD and LDWPSO-PNN, IEEE Access, 8 (2020), 19810–19819. https://doi.org/10.1109/ACCESS.2020.2968843 doi: 10.1109/ACCESS.2020.2968843
    [19] Y. F. Yang, H. Chen, T. D. Jiang, Nonlinear response prediction of cracked rotor based on EMD, J. Franklin Inst., 352 (2015), 3378–3393. https://doi.org/10.1016/j.jfranklin.2014.12.015 doi: 10.1016/j.jfranklin.2014.12.015
    [20] A. B. Ming, W. Zhang, C. Fu, Y. F. Yang, F. L. Chu, Y. J. Liu, L-kurtosis-based optimal wavelet filtering and its application to fault diagnosis of rolling element bearings, J. Vib. Control, 30 (2024), 1594–1603. https://doi.org/10.1177/10775463231165816 doi: 10.1177/10775463231165816
    [21] J. C. Guo, Q. B. He, D. Zhen, F. S. Gu, A. D. Ball, An iterative morphological difference product wavelet for weak fault feature extraction in rolling bearing fault diagnosis, Struct. Health Monit., 22 (2023), 296–318. https://doi.org/10.1177/14759217221086314 doi: 10.1177/14759217221086314
    [22] S. Q. Zhou, L. P. Lin, C. Chen, W. B. Pan, X. C. Lou, Application of convolutional neural network in motor bearing fault diagnosis, Comput. Intell. Neurosci., 2022 (2022), 923130. https://doi.org/10.1155/2022/9231305 doi: 10.1155/2022/9231305
    [23] S. J. Hao, F. X. Ge, Y. M. Li, J. Y. Jiang, Multisensor bearing fault diagnosis based on one-dimensional convolutional long short-term memory networks, Measurement, 159 (2020), 107802. https://doi.org/10.1016/j.measurement.2020.107802 doi: 10.1016/j.measurement.2020.107802
    [24] Z. F. Xu, X. Mei, X. Y. Wang, M. N. Yue, J. T. Jin, Y. Yang, et al., Fault diagnosis of wind turbine bearing using a multi-scale convolutional neural network with bidirectional long short term memory and weighted majority voting for multi-sensors, Renewable Energy, 182 (2022), 615–626. https://doi.org/10.1016/j.renene.2021.10.024 doi: 10.1016/j.renene.2021.10.024
    [25] X. C. Li, J. C. Wang, B. Zhang, Fault diagnosis of rolling element bearing weak fault based on sparse decomposition and broad learning network, Trans. Inst. Meas. Control, 42 (2020), 169–179. https://doi.org/10.1177/0142331219864820 doi: 10.1177/0142331219864820
    [26] X. Zhou, H. X. Zhou, G. R. Wen, X. Huang, Z. H. Lei, Z. F. Zhang, et al., A hybrid denoising model using deep learning and sparse representation with application in bearing weak fault diagnosis, Measurement, 189 (2022), 110633. https://doi.org/10.1016/j.measurement.2021.110633 doi: 10.1016/j.measurement.2021.110633
    [27] Z. Z. Jin, D. Q. He, Z. X. Wei, Intelligent fault diagnosis of train axle box bearing based on parameter optimization VMD and improved DBN, Eng. Appl. Artif. Intell., 110 (2022), 104713. https://doi.org/10.1016/j.engappai.2022.104713 doi: 10.1016/j.engappai.2022.104713
    [28] B. H. Zhong, M. H. Zhao, S. S. Zhong, L. Lin, Y. J. Zhang, Deep exponential excitation networks: toward stronger attention mechanism for weak fault diagnosis, Struct. Health Monit., 2024. https://doi.org/10.1177/14759217231217936 doi: 10.1177/14759217231217936
    [29] X. Liu, R. Q. Wu, R. G. Wang, F. Zhou, Z. F. Chen, N. H. Guo, Bearing fault diagnosis based on particle swarm optimization fusion convolutional neural network, Front. Neurorob., 16 (2022), 1044965. https://doi.org/10.3389/fnbot.2022.1044965 doi: 10.3389/fnbot.2022.1044965
    [30] M. H. Xiao, Y. B. Liao, P. Bartos, M. Filip, G. S. Geng, Z. W. Jiang, Fault diagnosis of rolling bearing based on back propagation neural network optimized by cuckoo search algorithm, Multimedia Tools Appl., 81 (2022), 1567–1587. https://doi.org/10.1007/s11042-021-11556-x doi: 10.1007/s11042-021-11556-x
    [31] S. Z. Gao, Z. M. Pei, Y. M. Zhang, T. C. Li, Bearing fault diagnosis based on adaptive convolutional neural network with nesterov momentum, IEEE Sens. J., 21 (2021), 9268–9276. https://doi.org/10.1109/JSEN.2021.3050461 doi: 10.1109/JSEN.2021.3050461
    [32] Z. Li, Y. Wang, J. N. Ma, Fault diagnosis of motor bearings based on a convolutional long short-term memory network of bayesian optimization, IEEE Access, 9 (2021), 97546–97556. https://doi.org/10.1109/ACCESS.2021.3093363 doi: 10.1109/ACCESS.2021.3093363
    [33] D. Kalman, A singularly valuable decomposition: The SVD of a matrix, Coll. Math. J., 27 (1996), 2–23. https://doi.org/10.2307/2687269 doi: 10.2307/2687269
    [34] J. F. Huang, L. L. Cui, Tensor singular spectrum decomposition: Multisensor denoising algorithm and application, IEEE Trans. Instrum. Meas., 72 (2023), 1–15. https://doi.org/10.1109/TIM.2023.3249249 doi: 10.1109/TIM.2023.3249249
    [35] H. Li, T. Liu, X. Wu, Q. Chen, A bearing fault diagnosis method based on enhanced singular value decomposition, IEEE Trans. Ind. Inf., 17 (2021), 3220–3230. https://doi.org/10.1109/TⅡ.2020.3001376 doi: 10.1109/TⅡ.2020.3001376
    [36] D. Huang, S. Li, N. Qin, Y. Zhang, Fault diagnosis of high-speed train bogie based on the improved-CEEMDAN and 1-D CNN algorithms, IEEE Trans. Instrum. Meas., 70 (2021), 3508811. https://doi.org/10.1109/TIM.2021.3062104 doi: 10.1109/TIM.2021.3062104
    [37] S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Software, 69 (2014), 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007 doi: 10.1016/j.advengsoft.2013.12.007
    [38] T. Han, R. Y. Ma, J. G. Zheng, Combination bidirectional long short-term memory and capsule network for rotating machinery fault diagnosis, Measurement, 176 (2021), 109208. https://doi.org/10.1016/j.measurement.2021.109208 doi: 10.1016/j.measurement.2021.109208
    [39] Y. H. Miao, M. Zhao, J. Lin, Y. G. Lei, Application of an improved maximum correlated kurtosis deconvolution method for fault diagnosis of rolling element bearings, Mech. Syst. Signal Process., 92 (2017), 173–195. https://doi.org/10.1016/j.ymssp.2017.01.033 doi: 10.1016/j.ymssp.2017.01.033
    [40] P. K. Kankar, S. C. Sharma, S. P. Harsha, Fault diagnosis of ball bearings using machine learning methods, Expert Syst. Appl., 38 (2011), 1876–1886. https://doi.org/10.1016/j.eswa.2010.07.119 doi: 10.1016/j.eswa.2010.07.119
    [41] Z. Y. Wang, L. G. Yao, Y. W. Cai, Rolling bearing fault diagnosis using generalized refined composite multiscale sample entropy and optimized support vector machine, Measurement, 156 (2020), 107574. https://doi.org/10.1016/j.measurement.2020.107574 doi: 10.1016/j.measurement.2020.107574
    [42] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput., 9 (1997), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735 doi: 10.1162/neco.1997.9.8.1735
    [43] F. Q. Zou, H. F. Zhang, S. T. Sang, X. M. Li, W. Y. He, X. W. Liu, Bearing fault diagnosis based on combined multi-scale weighted entropy morphological filtering and bi-LSTM, Appl. Intell., 51 (2021), 6647–6664. https://doi.org/10.1007/s10489-021-02229-1 doi: 10.1007/s10489-021-02229-1
    [44] M. E. Torres, M. A. Colominas, G. Schlotthauer, P. Flandrin, A complete ensemble empirical mode decomposition with adaptive noise, in 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague Congress Ctr, Prague, (2011), 4144–4147. https://doi.org/10.1109/ICASSP.2011.5947265
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1029) PDF downloads(35) Cited by(0)

Figures and Tables

Figures(19)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog