Citation: Zhenzhong Xu, Xu Chen, Linchao Yang, Jiangtao Xu, Shenghan Zhou. Multi-modal adaptive feature extraction for early-stage weak fault diagnosis in bearings[J]. Electronic Research Archive, 2024, 32(6): 4074-4095. doi: 10.3934/era.2024183
[1] | Muhammad Asim, Ghada AlNemer . Boundedness on variable exponent Morrey-Herz space for fractional multilinear Hardy operators. AIMS Mathematics, 2025, 10(1): 117-136. doi: 10.3934/math.2025007 |
[2] | Jie Sun, Jiamei Chen . Weighted estimates for commutators associated to singular integral operator satisfying a variant of Hörmander's condition. AIMS Mathematics, 2023, 8(11): 25714-25728. doi: 10.3934/math.20231311 |
[3] | Kieu Huu Dung, Do Lu Cong Minh, Pham Thi Kim Thuy . Commutators of Hardy-Cesàro operators on Morrey-Herz spaces with variable exponents. AIMS Mathematics, 2022, 7(10): 19147-19166. doi: 10.3934/math.20221051 |
[4] | Yueping Zhu, Yan Tang, Lixin Jiang . Boundedness of multilinear Calderón-Zygmund singular operators on weighted Lebesgue spaces and Morrey-Herz spaces with variable exponents. AIMS Mathematics, 2021, 6(10): 11246-11262. doi: 10.3934/math.2021652 |
[5] | Wanjing Zhang, Suixin He, Jing Zhang . Boundedness of sublinear operators on weighted grand Herz-Morrey spaces. AIMS Mathematics, 2023, 8(8): 17381-17401. doi: 10.3934/math.2023888 |
[6] | Babar Sultan, Mehvish Sultan, Qian-Qian Zhang, Nabil Mlaiki . Boundedness of Hardy operators on grand variable weighted Herz spaces. AIMS Mathematics, 2023, 8(10): 24515-24527. doi: 10.3934/math.20231250 |
[7] | Javeria Younas, Amjad Hussain, Hadil Alhazmi, A. F. Aljohani, Ilyas Khan . BMO estimates for commutators of the rough fractional Hausdorff operator on grand-variable-Herz-Morrey spaces. AIMS Mathematics, 2024, 9(9): 23434-23448. doi: 10.3934/math.20241139 |
[8] | Ming Liu, Bin Zhang, Xiaobin Yao . Weighted variable Morrey-Herz space estimates for $ m $th order commutators of $ n- $dimensional fractional Hardy operators. AIMS Mathematics, 2023, 8(9): 20063-20079. doi: 10.3934/math.20231022 |
[9] | Shuhui Yang, Yan Lin . Multilinear strongly singular integral operators with generalized kernels and applications. AIMS Mathematics, 2021, 6(12): 13533-13551. doi: 10.3934/math.2021786 |
[10] | Naqash Sarfraz, Muhammad Aslam . Some weighted estimates for the commutators of $p$-adic Hardy operator on two weighted $p$-adic Herz-type spaces. AIMS Mathematics, 2021, 6(9): 9633-9646. doi: 10.3934/math.2021561 |
Let T be the Calderón-Zygmund singular integral operator and b be a locally integrable function on Rn. The commutator generated by b and T is defined by [b,T]f=bT(f)−T(bf). The investigation of the commutator begins with Coifman-Rochberg-Weiss pioneering study and classical result (see [6]). The classical result of Coifman, Rochberg and Weiss (see [6]) states that the commutator [b,T]f=T(bf)−bTf is bounded on Lp(Rn) for 1<p<∞ if and only if b∈BMO(Rn). The major reason for considering the problem of commutators is that the boundedness of commutator can produces some characterizations of function spaces (see [1,6]). Chanillo (see [1]) proves a similar result when T is replaced by the fractional integral operator. In [11], the boundedness properties of the commutators for the extreme values of p are obtained. In recent years, the theory of Herz space and Herz type Hardy space, as a local version of Lebesgue space and Hardy space, have been developed (see [8,9,12,13]). The main purpose of this paper is to establish the endpoint continuity properties of some multilinear operators related to certain non-convolution type fractional singular integral operators on Herz and Herz type Hardy spaces.
First, let us introduce some notations (see [8,9,10,12,13,15]). Throughout this paper, Q will denote a cube of Rn with sides parallel to the axes. For a cube Q and a locally integrable function f, let fQ=|Q|−1∫Qf(x)dx and f#(x)=supQ∋x|Q|−1∫Q|f(y)−fQ|dy. Moreover, f is said to belong to BMO(Rn) if f#∈L∞ and define ||f||BMO=||f#||L∞; We also define the central BMO space by CMO(Rn), which is the space of those functions f∈Lloc(Rn) such that
||f||CMO=supr>1|Q(0,r)|−1∫Q|f(y)−fQ|dy<∞. |
It is well-known that (see [9,10])
||f||CMO≈supr>1infc∈C|Q(0,r)|−1∫Q|f(x)−c|dx. |
For k∈Z, define Bk={x∈Rn:|x|≤2k} and Ck=Bk∖Bk−1. Denote by χk the characteristic function of Ck and ˜χk the characteristic function of Ck for k≥1 and ˜χ0 the characteristic function of B0.
Definition 1. Let 0<p<∞ and α∈R.
(1) The homogeneous Herz space ˙Kαp(Rn) is defined by
˙Kαp(Rn)={f∈Lploc(Rn∖{0}):||f||˙Kαp<∞}, |
where
||f||˙Kαp=∞∑k=−∞2kα||fχk||Lp; |
(2) The nonhomogeneous Herz space Kαp(Rn) is defined by
Kαp(Rn)={f∈Lploc(Rn):||f||Kαp<∞}, |
where
||f||Kαp=∞∑k=02kα||f˜χk||Lp. |
If α=n(1−1/p), we denote that ˙Kαp(Rn)=˙Kp(Rn), Kαp(Rn)=Kp(Rn).
Definition 2. Let 0<δ<n and 1<p<n/δ. We shall call Bδp(Rn) the space of those functions f on Rn such that
||f||Bδp=supd>1d−n(1/p−δ/n)||fχQ(0,d)||Lp<∞. |
Definition 3. Let 1<p<∞.
(1) The homogeneous Herz type Hardy space H˙Kp(Rn) is defined by
H˙Kp(Rn)={f∈S′(Rn):G(f)∈˙Kp(Rn)}, |
where
||f||H˙Kp=||G(f)||˙Kp. |
(2) The nonhomogeneous Herz type Hardy space HKp(Rn) is defined by
HKp(Rn)={f∈S′(Rn):G(f)∈Kp(Rn)}, |
where
||f||HKp=||G(f)||Kp. |
where G(f) is the grand maximal function of f.
The Herz type Hardy spaces have the atomic decomposition characterization.
Definition 4. Let 1<p<∞. A function a(x) on Rn is called a central (n(1−1/p),p)-atom (or a central (n(1−1/p),p)-atom of restrict type), if
1) Suppa⊂B(0,d) for some d>0 (or for some d≥1),
2) ||a||Lp≤|B(0,d)|1/p−1,
3) ∫a(x)dx=0.
Lemma 1. (see [9,13]) Let 1<p<∞. A temperate distribution f belongs to H˙Kp(Rn)(or HKp(Rn)) if and only if there exist central (n(1−1/p),p)-atoms(or central (n(1−1/p),p)-atoms of restrict type) aj supported on Bj=B(0,2j) and constants λj, ∑j|λj|<∞ such that f=∑∞j=−∞λjaj (or f=∑∞j=0λjaj)in the S′(Rn) sense, and
||f||H˙Kp( or ||f||HKp)≈∑j|λj|. |
In this paper, we will consider a class of multilinear operators related to some non-convolution type singular integral operators, whose definition are following.
Let m be a positive integer and A be a function on Rn. We denote that
Rm+1(A;x,y)=A(x)−∑|β|≤m1β!DβA(y)(x−y)β |
and
Qm+1(A;x,y)=Rm(A;x,y)−∑|β|=m1β!DβA(x)(x−y)β. |
Definition 5. Fixed ε>0 and 0<δ<n. Let Tδ:S→S′ be a linear operator. Tδ is called a fractional singular integral operator if there exists a locally integrable function K(x,y) on Rn×Rn such that
Tδ(f)(x)=∫RnK(x,y)f(y)dy |
for every bounded and compactly supported function f, where K satisfies:
|K(x,y)|≤C|x−y|−n+δ |
and
|K(y,x)−K(z,x)|+|K(x,y)−K(x,z)|≤C|y−z|ε|x−z|−n−ε+δ |
if 2|y−z|≤|x−z|. The multilinear operator related to the fractional singular integral operator Tδ is defined by
TAδ(f)(x)=∫RnRm+1(A;x,y)|x−y|mK(x,y)f(y)dy; |
We also consider the variant of TAδ, which is defined by
˜TAδ(f)(x)=∫RnQm+1(A;x,y)|x−y|mK(x,y)f(y)dy. |
Note that when m=0, TAδ is just the commutators of Tδ and A (see [1,6,11,14]). It is well known that multilinear operator, as a non-trivial extension of commutator, is of great interest in harmonic analysis and has been widely studied by many authors (see [3,4,5]). In [7], the weighted Lp(p>1)-boundedness of the multilinear operator related to some singular integral operator are obtained. In [2], the weak (H1, L1)-boundedness of the multilinear operator related to some singular integral operator are obtained. In this paper, we will study the endpoint continuity properties of the multilinear operators TAδ and ˜TAδ on Herz and Herz type Hardy spaces.
Now we state our results as following.
Theorem 1. Let 0<δ<n, 1<p<n/δ and DβA∈BMO(Rn) for all β with |β|=m. Suppose that TAδ is the same as in Definition 5 such that Tδ is bounded from Lp(Rn) to Lq(Rn) for any p,q∈(1,+∞] with 1/q=1/p−δ/n. Then TAδ is bounded from Bδp(Rn) to CMO(Rn).
Theorem 2. Let 0<δ<n, 1<p<n/δ, 1/q=1/p−δ/n and DβA∈BMO(Rn) for all β with |β|=m. Suppose that ˜TAδ is the same as in Definition 5 such that ˜TAδ is bounded from Lp(Rn) to Lq(Rn) for any p,q∈(1,+∞) with 1/q=1/p−δ/n. Then ˜TAδ is bounded from H˙Kp(Rn) to ˙Kαq(Rn) with α=n(1−1/p).
Theorem 3. Let 0<δ<n, 1<p<n/δ and DβA∈BMO(Rn) for all β with |β|=m. Suppose that ˜TAδ is the same as in Definition 5 such that ˜TAδ is bounded from Lp(Rn) to Lq(Rn) for any p,q∈(1,+∞) with 1/q=1/p−δ/n. Then the following two statements are equivalent:
(ⅰ) ˜TAδ is bounded from Bδp(Rn) to CMO(Rn);
(ⅱ) for any cube Q and z∈3Q∖2Q, there is
1|Q|∫Q|∑|β|=m1β!|DβA(x)−(DβA)Q|∫(4Q)cKβ(z,y)f(y)dy|dx≤C||f||Bδp, |
where Kβ(z,y)=(z−y)β|z−y|mK(z,y) for |β|=m.
Remark. Theorem 2 is also hold for nonhomogeneous Herz and Herz type Hardy space.
To prove the theorem, we need the following lemma.
Lemma 2. (see [5]) Let A be a function on Rn and DβA∈Lq(Rn) for |β|=m and some q>n. Then
|Rm(A;x,y)|≤C|x−y|m∑|β|=m(1|˜Q(x,y)|∫˜Q(x,y)|DβA(z)|qdz)1/q, |
where ˜Q(x,y) is the cube centered at x and having side length 5√n|x−y|.
Proof of Theorem 1. It suffices to prove that there exists a constant CQ such that
1|Q|∫Q|TAδ(f)(x)−CQ|dx≤C||f||Bδp |
holds for any cube Q=Q(0,d) with d>1. Fix a cube Q=Q(0,d) with d>1. Let ˜Q=5√nQ and ˜A(x)=A(x)−∑|β|=m1β!(DβA)˜Qxβ, then Rm+1(A;x,y)=Rm+1(˜A;x,y) and Dβ˜A=DβA−(DβA)˜Q for all β with |β|=m. We write, for f1=fχ˜Q and f2=fχRn∖˜Q,
TAδ(f)(x)=∫RnRm+1(˜A;x,y)|x−y|mK(x,y)f(y)dy=∫RnRm(˜A;x,y)|x−y|mK(x,y)f1(y)dy−∑|β|=m1β!∫RnK(x,y)(x−y)β|x−y|mDβ˜A(y)f1(y)dy+∫RnRm+1(˜A;x,y)|x−y|mK(x,y)f2(y)dy, |
then
1|Q|∫Q|TAδ(f)(x)−T˜Aδ(f2)(0)|dx≤1|Q|∫Q|Tδ(Rm(˜A;x,⋅)|x−⋅|mf1)(x)|dx+∑|β|=m1β!1|Q|∫Q|Tδ((x−⋅)β|x−⋅|mDβ˜Af1)(x)|dx+|T˜Aδ(f2)(x)−T˜Aδ(f2)(0)|dx:=I+II+III. |
For I, note that for x∈Q and y∈˜Q, using Lemma 2, we get
Rm(˜A;x,y)≤C|x−y|m∑|β|=m||DβA||BMO, |
thus, by the Lp(Rn) to Lq(Rn)-boundedness of TAδ for 1<p,q<∞ with 1/q=1/p−δ/n, we get
I≤C|Q|∫Q|Tδ(∑|β|=m||DβA||BMOf1)(x)|dx≤C∑|β|=m||DβA||BMO(1|Q|∫Q|Tδ(f1)(x)|qdx)1/q≤C∑|β|=m||DβA||BMO|Q|−1/q||f1||Lp≤C∑|β|=m||DβA||BMOr−n(1/p−δ/n)||fχ˜Q||Lp≤C∑|β|=m||DβA||BMO||f||Bδp. |
For II, taking 1<s<p such that 1/r=1/s−δ/n, by the (Ls,Lr)-boundedness of Tδ and Holder's inequality, we gain
II≤C|Q|∫Q|Tδ(∑|β|=m(DβA−(DβA)˜Q)f1)(x)|dx≤C∑|β|=m(1|Q|∫Q|Tδ((DβA−(DβA)˜Q)f1)(x)|rdx)1/r≤C|Q|−1/r∑|β|=m||(DβA−(DβA)˜Q)f1||Ls≤C|Q|−1/r||f1||Lp∑|β|=m(1|Q|∫˜Q|DβA(y)−(DβA)˜Q|ps/(p−s)dy)(p−s)/(ps)|Q|(p−s)/(ps)≤C∑|β|=m||DβA||BMOr−n/q||fχ˜Q||Lp≤C∑|β|=m||DβA||BMO||f||Bδp. |
To estimate III, we write
T˜Aδ(f2)(x)−T˜Aδ(f2)(0)=∫Rn[K(x,y)|x−y|m−K(0,y)|y|m]Rm(˜A;x,y)f2(y)dy+∫RnK(0,y)f2(y)|y|m[Rm(˜A;x,y)−Rm(˜A;0,y)]dy−∑|β|=m1β!∫Rn(K(x,y)(x−y)β|x−y|m−K(0,y)(−y)β|y|m)Dβ˜A(y)f2(y)dy:=III1+III2+III3. |
By Lemma 2 and the following inequality (see [15])
|bQ1−bQ2|≤Clog(|Q2|/|Q1|)||b||BMO for Q1⊂Q2, |
we know that, for x∈Q and y∈2k+1˜Q∖2k˜Q,
|Rm(˜A;x,y)|≤C|x−y|m∑|β|=m(||DβA||BMO+|(DβA)˜Q(x,y)−(DβA)˜Q|)≤Ck|x−y|m∑|β|=m||DβA||BMO. |
Note that |x−y|∼|y| for x∈Q and y∈Rn∖˜Q, we obtain, by the condition of K,
|III1|≤C∫Rn(|x||y|m+n+1−δ+|x|ε|y|m+n+ε−δ)|Rm(˜A;x,y)||f2(y)|dy≤C∑|β|=m||DβA||BMO∞∑k=0∫2k+1˜Q∖2k˜Qk(|x||y|n+1−δ+|x|ε|y|n+ε−δ)|f(y)|dy≤C∑|β|=m||DβA||BMO∞∑k=1k(2−k+2−εk)(2kr)−n(1/p−δ/n)||fχ2k˜Q||Lp≤C∑|β|=m||DβA||BMO∞∑k=1k(2−k+2−εk)||f||Bδp≤C∑|β|=m||DβA||BMO||f||Bδp. |
For III2, by the formula (see [5]):
Rm(˜A;x,y)−Rm(˜A;x0,y)=∑|γ|<m1γ!Rm−|γ|(Dγ˜A;x,x0)(x−y)γ |
and Lemma 2, we have
|Rm(˜A;x,y)−Rm(˜A;x0,y)|≤C∑|γ|<m∑|β|=m|x−x0|m−|γ||x−y||γ|||DβA||BMO, |
thus, similar to the estimates of III1, we get
|III2|≤C∑|β|=m||DβA||BMO∞∑k=0∫2k+1˜Q∖2k˜Q|x||y|n+1−δ|f(y)|dy≤C∑|β|=m||DβA||BMO||f||Bδp. |
For III3, by Holder's inequality, similar to the estimates of III1, we get
|III3|≤C∑|β|=m∞∑k=0∫2k+1˜Q∖2k˜Q(|x||y|n+1−δ+|x|ε|y|n+ε−δ)|Dβ˜A(y)||f(y)|dy≤C∑|β|=m∞∑k=1(2−k+2−εk)(2kr)−n(1/p−δ/n)(|2k˜Q|−1∫2k˜Q|DβA(y)−(DβA)˜Q|p′dy)1/p′||fχ2k˜Q||Lp≤C∑|β|=m||DβA||BMO∞∑k=1(2−k+2−εk)(2kr)−n(1/p−δ/n)||fχ2k˜Q||Lp≤C∑|β|=m||DβA||BMO||f||Bδp. |
Thus
III≤C∑|β|=m||DβA||BMO||f||Bδp, |
which together with the estimates for I and II yields the desired result. This finishes the proof of Theorem 1.
Proof of Theorem 2. Let f∈H˙Kp(Rn), by Lemma 1, f=∑∞j=−∞λjaj, where a′js are the central (n(1−1/p),p)-atom with suppaj⊂Bj=B(0,2j) and ||f||H˙Kp≈∑j|λj|. We write
||˜TAδ(f)||˙Kαq=∞∑k=−∞2kn(1−1/p)||χk˜TAδ(f)||Lq≤∞∑k=−∞2kn(1−1/p)k−1∑j=−∞|λj|||χk˜TAδ(aj)||Lq+∞∑k=−∞2kn(1−1/p)∞∑j=k|λj|||χk˜TAδ(aj)||Lq=J+JJ. |
For JJ, by the (Lp,Lq)-boundedness of ˜TAδ for 1/q=1/p−δ/n, we get
JJ≤C∞∑k=−∞2kn(1−1/p)∞∑j=k|λj|||aj||Lp≤C∞∑k=−∞2kn(1−1/p)∞∑j=k|λj|2jn(1/p−1)≤C∞∑j=−∞|λj|j∑k=−∞2(k−j)n(1−1/p)≤C∞∑j=−∞|λj|≤C||f||H˙Kp. |
To obtain the estimate of J, we denote that ˜A(x)=A(x)−∑|β|=m1β!(DβA)2Bjxβ. Then Qm(A;x,y)=Qm(˜A;x,y) and Qm+1(A;x,y)=Rm(A;x,y)−∑|β|=m1β!(x−y)βDβA(x). We write, by the vanishing moment of a and for x∈Ck with k≥j+1,
˜TAδ(aj)(x)=∫RnK(x,y)Rm(A;x,y)|x−y|maj(y)dy−∑|β|=m1β!∫RnK(x,y)Dβ˜A(x)(x−y)β|x−y|maj(y)dy=∫Rn[K(x,y)|x−y|m−K(x,0)|x|m]Rm(˜A;x,y)aj(y)dy+∫RnK(x,0)|x|m[Rm(˜A;x,y)−Rm(˜A;x,0)]aj(y)dy−∑|β|=m1β!∫Rn[K(x,y)(x−y)β|x−y|m−K(x,0)xβ|x|m]Dβ˜A(x)aj(y)dy. |
Similar to the proof of Theorem 1, we obtain
|˜TAδ(aj)(x)|≤C∫Rn[|y||x|m+n+1−δ+|y|ε|x|m+n+ε−δ]|Rm(˜A;x,y)||aj(y)|dy+C∑|β|=m∫Rn[|y||x|n+1−δ+|y|ε|x|n+ε−δ]|Dβ˜A(x)||aj(y)|dy≤C∑|β|=m||DβA||BMO[2j2k(n+1−δ)+2jε2k(n+ε−δ)]+C∑|β|=m[2j2k(n+1−δ)+2jε2k(n+ε−δ)]|Dβ˜A(x)|, |
thus
J≤C∑|β|=m||DβA||BMO∞∑k=−∞2kn(1−1/p)k−1∑j=−∞|λj|[2j2k(n+1−δ)+2jε2k(n+ε−δ)]2kn/q+C∑|β|=m∞∑k=−∞2kn(1−1/p)k−1∑j=−∞|λj|[2j2k(n+1−δ)+2jε2k(n+ε−δ)](∫Bk|Dβ˜A(x)|qdx)1/q≤C∑|β|=m||DβA||BMO∞∑k=−∞2kn(1−δ/n)k−1∑j=−∞|λj|[2j2k(n+1−δ)+2jε2k(n+ε−δ)]≤C∑|β|=m||DβA||BMO∞∑j=−∞|λj|∞∑k=j+1[2j−k+2(j−k)ε]≤C∑|β|=m||DβA||BMO∞∑j=−∞|λj|≤C∑|β|=m||DβA||BMO||f||H˙Kp. |
This completes the proof of Theorem 2.
Proof of Theorem 3. For any cube Q=Q(0,r) with r>1, let f∈Bδp and ˜A(x)=A(x)−∑|β|=m1β!(DβA)˜Qxβ. We write, for f=fχ4Q+fχ(4Q)c=f1+f2 and z∈3Q∖2Q,
˜TAδ(f)(x)=˜TAδ(f1)(x)+∫RnRm(˜A;x,y)|x−y|mK(x,y)f2(y)dy−∑|β|=m1β!(DβA(x)−(DβA)Q)(Tδ,β(f2)(x)−Tδ,β(f2)(z))−∑|β|=m1β!(DβA(x)−(DβA)Q)Tδ,β(f2)(z)=I1(x)+I2(x)+I3(x,z)+I4(x,z), |
where Tδ,β is the singular integral operator with the kernel (x−y)β|x−y|mK(x,y) for |β|=m. Note that (I4(⋅,z))Q=0, we have
˜TAδ(f)(x)−(˜TAδ(f))Q=I1(x)−(I1(⋅))Q+I2(x)−I2(z)−[I2(⋅)−I2(z)]Q−I3(x,z)+(I3(x,z))Q−I4(x,z). |
By the (Lp,Lq)-bounded of ˜TAδ, we get
1|Q|∫Q|I1(x)|dx≤(1|Q|∫Q|˜TAδ(f1)(x)|qdx)1/q≤C|Q|−1/q||f1||Lp≤C||f||Bδp. |
Similar to the proof of Theorem 1, we obtain
|I2(x)−I2(z)|≤C||f||Bδp |
and
1|Q|∫Q|I3(x,z)|dx≤C||f||Bδp. |
Then integrating in x on Q and using the above estimates, we obtain the equivalence of the estimate
1|Q|∫Q|˜TAδ(f)(x)−(˜TAδ(f))Q|dx≤C||f||Bδp |
and the estimate
1|Q|∫Q|I4(x,z)|dx≤C||f||Bδp. |
This completes the proof of Theorem 3.
In this section we shall apply the theorems of the paper to some particular operators such as the Calderón-Zygmund singular integral operator and fractional integral operator.
Application 1. Calderón-Zygmund singular integral operator.
Let T be the Calderón-Zygmund operator defined by (see [10,11,15])
T(f)(x)=∫RnK(x,y)f(y)dy, |
the multilinear operator related to T is defined by
TA(f)(x)=∫RnRm+1(A;x,y)|x−y|mK(x,y)f(y)dy. |
Then it is easily to see that T satisfies the conditions in Theorems 1–3, thus the conclusions of Theorems 1–3 hold for TA.
Application 2. Fractional integral operator with rough kernel.
For 0<δ<n, let Tδ be the fractional integral operator with rough kernel defined by (see [2,7])
Tδf(x)=∫RnΩ(x−y)|x−y|n−δf(y)dy, |
the multilinear operator related to Tδ is defined by
TAδf(x)=∫RnRm+1(A;x,y)|x−y|m+n−δΩ(x−y)f(y)dy, |
where Ω is homogeneous of degree zero on Rn, ∫Sn−1Ω(x′)dσ(x′)=0 and Ω∈Lipε(Sn−1) for some 0<ε≤1, that is there exists a constant M>0 such that for any x,y∈Sn−1, |Ω(x)−Ω(y)|≤M|x−y|ε. Then Tδ satisfies the conditions in Theorem 1. In fact, for suppf⊂(2Q)c and x∈Q=Q(x0,d), by the condition of Ω, we have (see [16])
|Ω(x−y)|x−y|n−δ−Ω(x0−y)|x0−y|n−δ|≤C(|x−x0|ε|x0−y|n+ε−δ+|x−x0||x0−y|n+1−δ), |
thus, the conclusions of Theorems 1–3 hold for TAδ.
The author would like to express his deep gratitude to the referee for his/her valuable comments and suggestions. This research was supported by the National Natural Science Foundation of China (Grant No. 11901126), the Scientific Research Funds of Hunan Provincial Education Department. (Grant No. 19B509).
The authors declare that they have no competing interests.
[1] |
F. Jia, Y. G. Lei, J. Lin, X. Zhou, N. Lu, Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data, Mech. Syst. Signal Process., 72 (2016), 303–315. https://doi.org/10.1016/j.ymssp.2015.10.025 doi: 10.1016/j.ymssp.2015.10.025
![]() |
[2] |
Y. J. Zhou, X. Y. Long, M. W. Sun, Z. Q. Chen, Bearing fault diagnosis based on Gramian angular field and DenseNet, Math. Biosci. Eng., 19 (2022), 14086–14101. https://doi.org/10.3934/mbe.2022656 doi: 10.3934/mbe.2022656
![]() |
[3] |
Z. W. Shang, C. L. Pan, Y. Yu, F. Liu, M. S. Gao, Weak local fault diagnosis of gearboxes based on adaptive inertia factor particle swarm independent component analysis, Insight Nondestr. Test. Cond. Monit., 65 (2023), 415–422. https://doi.org/10.1784/insi.2023.65.8.415 doi: 10.1784/insi.2023.65.8.415
![]() |
[4] |
W. Cui, G. Y. Meng, A. M. Wang, X. E. Zhang, J. Ding, Application of rotating machinery fault diagnosis based on deep learning, Shock Vib., 2021 (2021), 3083190. https://doi.org/10.1155/2021/3083190 doi: 10.1155/2021/3083190
![]() |
[5] |
Y. H. Zhang, T. T. Zhou, X. F. Huang, L. C. Cao, Q. Zhou, Fault diagnosis of rotating machinery based on recurrent neural networks, Measurement, 171 (2021), 108774. https://doi.org/10.1016/j.measurement.2020.108774 doi: 10.1016/j.measurement.2020.108774
![]() |
[6] |
Q. S. Wang, Z. C. Sun, Y. M. Zhu, C. H. Song, D. Li, Intelligent fault diagnosis algorithm of rolling bearing based on optimization algorithm fusion convolutional neural network, Math. Biosci. Eng., 20 (2023), 19963–19982. https://doi.org/10.3934/mbe.2023884 doi: 10.3934/mbe.2023884
![]() |
[7] |
Z. X. Wei, Y. X. Wang, S. L. He, J. D. Bao, A novel intelligent method for bearing fault diagnosis based on affinity propagation clustering and adaptive feature selection, Knowledge-Based Syst., 116 (2017), 1–12. https://doi.org/10.1016/j.knosys.2016.10.022 doi: 10.1016/j.knosys.2016.10.022
![]() |
[8] |
S. Q. Huang, J. D. Zheng, H. Y. Pan, J. Y. Tong, Order-statistic filtering fourier decomposition and its application to rolling bearing fault diagnosis, J. Vib. Control, 28 (2022), 1605–1620. https://doi.org/10.1177/1077546321997598 doi: 10.1177/1077546321997598
![]() |
[9] |
D. C. Zhu, G. Q. Liu, X. Y. Wu, B. L. Yin, An enhanced empirical Fourier decomposition method for bearing fault diagnosis, Struct. Health Monit., 23 (2024), 903–923. https://doi.org/10.1177/14759217231178653 doi: 10.1177/14759217231178653
![]() |
[10] |
W. L. Fu, X. H. Jiang, B. L. Li, C. Tan, B. J. Chen, X. Y. Chen, Rolling bearing fault diagnosis based on 2D time-frequency images and data augmentation technique, Meas. Sci. Technol., 34 (2023), 045005. https://doi.org/10.1088/1361-6501/acabdb doi: 10.1088/1361-6501/acabdb
![]() |
[11] |
Z. J. Xie, D. Yu, C. S. Zhan, Q. C. Zhao, J. X. Wang, J. Q. Liu, et al., Ball screw fault diagnosis based on continuous wavelet transform and two-dimensional convolution neural network, Meas. Control, 56 (2023), 518–528. https://doi.org/10.1177/00202940221107620 doi: 10.1177/00202940221107620
![]() |
[12] |
V. Sharma, A. Parey, Extraction of weak fault transients using variational mode decomposition for fault diagnosis of gearbox under varying speed, Eng. Fail. Anal., 107 (2020), 104204. https://doi.org/10.1016/j.engfailanal.2019.104204 doi: 10.1016/j.engfailanal.2019.104204
![]() |
[13] |
Q. B. Lu, X. Q. Shen, X. J. Wang, M. Li, J. Li, M. Z. Zhang, Fault diagnosis of rolling bearing based on improved VMD and KNN, Math. Probl. Eng., 2021 (2021), 2530315. https://doi.org/10.1155/2021/2530315 doi: 10.1155/2021/2530315
![]() |
[14] | T. Wu, Fault diagnosis method of rolling bearing based on EMD-Hilbert envelope spectrum and BPNN, in IOP Conference Series: Earth and Environmental Science, IOP Publishing, 632 (2021), 052084. https://doi.org/10.1088/1755-1315/632/5/052084 |
[15] |
P. K. Sahu, R. N. Rai, Fault diagnosis of rolling bearing based on an improved denoising technique using complete ensemble empirical mode decomposition and adaptive thresholding method, J. Vib. Eng. Technol., 11 (2023), 513–535. https://doi.org/10.1007/s42417-022-00591-z doi: 10.1007/s42417-022-00591-z
![]() |
[16] |
J. B. Hou, Y. X. Wu, H. Gong, A. S. Ahmad, L. Liu, A novel intelligent method for bearing fault diagnosis based on EEMD permutation entropy and gg clustering, Appl. Sci., 10 (2020), 386. https://doi.org/10.3390/app10010386 doi: 10.3390/app10010386
![]() |
[17] |
A. Kumar, Y. Berrouche, R. Zimroz, G. Vashishtha, S. Chauhan, C. P. Gandhi, et al., Non-parametric Ensemble Empirical Mode Decomposition for extracting weak features to identify bearing defects, Measurement, 211 (2023), 112615. https://doi.org/10.1016/j.measurement.2023.112615 doi: 10.1016/j.measurement.2023.112615
![]() |
[18] |
F. Z. Liu, J. W. Gao, H. B. Liu, The feature extraction and diagnosis of rolling bearing based on CEEMD and LDWPSO-PNN, IEEE Access, 8 (2020), 19810–19819. https://doi.org/10.1109/ACCESS.2020.2968843 doi: 10.1109/ACCESS.2020.2968843
![]() |
[19] |
Y. F. Yang, H. Chen, T. D. Jiang, Nonlinear response prediction of cracked rotor based on EMD, J. Franklin Inst., 352 (2015), 3378–3393. https://doi.org/10.1016/j.jfranklin.2014.12.015 doi: 10.1016/j.jfranklin.2014.12.015
![]() |
[20] |
A. B. Ming, W. Zhang, C. Fu, Y. F. Yang, F. L. Chu, Y. J. Liu, L-kurtosis-based optimal wavelet filtering and its application to fault diagnosis of rolling element bearings, J. Vib. Control, 30 (2024), 1594–1603. https://doi.org/10.1177/10775463231165816 doi: 10.1177/10775463231165816
![]() |
[21] |
J. C. Guo, Q. B. He, D. Zhen, F. S. Gu, A. D. Ball, An iterative morphological difference product wavelet for weak fault feature extraction in rolling bearing fault diagnosis, Struct. Health Monit., 22 (2023), 296–318. https://doi.org/10.1177/14759217221086314 doi: 10.1177/14759217221086314
![]() |
[22] |
S. Q. Zhou, L. P. Lin, C. Chen, W. B. Pan, X. C. Lou, Application of convolutional neural network in motor bearing fault diagnosis, Comput. Intell. Neurosci., 2022 (2022), 923130. https://doi.org/10.1155/2022/9231305 doi: 10.1155/2022/9231305
![]() |
[23] |
S. J. Hao, F. X. Ge, Y. M. Li, J. Y. Jiang, Multisensor bearing fault diagnosis based on one-dimensional convolutional long short-term memory networks, Measurement, 159 (2020), 107802. https://doi.org/10.1016/j.measurement.2020.107802 doi: 10.1016/j.measurement.2020.107802
![]() |
[24] |
Z. F. Xu, X. Mei, X. Y. Wang, M. N. Yue, J. T. Jin, Y. Yang, et al., Fault diagnosis of wind turbine bearing using a multi-scale convolutional neural network with bidirectional long short term memory and weighted majority voting for multi-sensors, Renewable Energy, 182 (2022), 615–626. https://doi.org/10.1016/j.renene.2021.10.024 doi: 10.1016/j.renene.2021.10.024
![]() |
[25] |
X. C. Li, J. C. Wang, B. Zhang, Fault diagnosis of rolling element bearing weak fault based on sparse decomposition and broad learning network, Trans. Inst. Meas. Control, 42 (2020), 169–179. https://doi.org/10.1177/0142331219864820 doi: 10.1177/0142331219864820
![]() |
[26] |
X. Zhou, H. X. Zhou, G. R. Wen, X. Huang, Z. H. Lei, Z. F. Zhang, et al., A hybrid denoising model using deep learning and sparse representation with application in bearing weak fault diagnosis, Measurement, 189 (2022), 110633. https://doi.org/10.1016/j.measurement.2021.110633 doi: 10.1016/j.measurement.2021.110633
![]() |
[27] |
Z. Z. Jin, D. Q. He, Z. X. Wei, Intelligent fault diagnosis of train axle box bearing based on parameter optimization VMD and improved DBN, Eng. Appl. Artif. Intell., 110 (2022), 104713. https://doi.org/10.1016/j.engappai.2022.104713 doi: 10.1016/j.engappai.2022.104713
![]() |
[28] |
B. H. Zhong, M. H. Zhao, S. S. Zhong, L. Lin, Y. J. Zhang, Deep exponential excitation networks: toward stronger attention mechanism for weak fault diagnosis, Struct. Health Monit., 2024. https://doi.org/10.1177/14759217231217936 doi: 10.1177/14759217231217936
![]() |
[29] |
X. Liu, R. Q. Wu, R. G. Wang, F. Zhou, Z. F. Chen, N. H. Guo, Bearing fault diagnosis based on particle swarm optimization fusion convolutional neural network, Front. Neurorob., 16 (2022), 1044965. https://doi.org/10.3389/fnbot.2022.1044965 doi: 10.3389/fnbot.2022.1044965
![]() |
[30] |
M. H. Xiao, Y. B. Liao, P. Bartos, M. Filip, G. S. Geng, Z. W. Jiang, Fault diagnosis of rolling bearing based on back propagation neural network optimized by cuckoo search algorithm, Multimedia Tools Appl., 81 (2022), 1567–1587. https://doi.org/10.1007/s11042-021-11556-x doi: 10.1007/s11042-021-11556-x
![]() |
[31] |
S. Z. Gao, Z. M. Pei, Y. M. Zhang, T. C. Li, Bearing fault diagnosis based on adaptive convolutional neural network with nesterov momentum, IEEE Sens. J., 21 (2021), 9268–9276. https://doi.org/10.1109/JSEN.2021.3050461 doi: 10.1109/JSEN.2021.3050461
![]() |
[32] |
Z. Li, Y. Wang, J. N. Ma, Fault diagnosis of motor bearings based on a convolutional long short-term memory network of bayesian optimization, IEEE Access, 9 (2021), 97546–97556. https://doi.org/10.1109/ACCESS.2021.3093363 doi: 10.1109/ACCESS.2021.3093363
![]() |
[33] |
D. Kalman, A singularly valuable decomposition: The SVD of a matrix, Coll. Math. J., 27 (1996), 2–23. https://doi.org/10.2307/2687269 doi: 10.2307/2687269
![]() |
[34] |
J. F. Huang, L. L. Cui, Tensor singular spectrum decomposition: Multisensor denoising algorithm and application, IEEE Trans. Instrum. Meas., 72 (2023), 1–15. https://doi.org/10.1109/TIM.2023.3249249 doi: 10.1109/TIM.2023.3249249
![]() |
[35] |
H. Li, T. Liu, X. Wu, Q. Chen, A bearing fault diagnosis method based on enhanced singular value decomposition, IEEE Trans. Ind. Inf., 17 (2021), 3220–3230. https://doi.org/10.1109/TⅡ.2020.3001376 doi: 10.1109/TⅡ.2020.3001376
![]() |
[36] |
D. Huang, S. Li, N. Qin, Y. Zhang, Fault diagnosis of high-speed train bogie based on the improved-CEEMDAN and 1-D CNN algorithms, IEEE Trans. Instrum. Meas., 70 (2021), 3508811. https://doi.org/10.1109/TIM.2021.3062104 doi: 10.1109/TIM.2021.3062104
![]() |
[37] |
S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Software, 69 (2014), 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007 doi: 10.1016/j.advengsoft.2013.12.007
![]() |
[38] |
T. Han, R. Y. Ma, J. G. Zheng, Combination bidirectional long short-term memory and capsule network for rotating machinery fault diagnosis, Measurement, 176 (2021), 109208. https://doi.org/10.1016/j.measurement.2021.109208 doi: 10.1016/j.measurement.2021.109208
![]() |
[39] |
Y. H. Miao, M. Zhao, J. Lin, Y. G. Lei, Application of an improved maximum correlated kurtosis deconvolution method for fault diagnosis of rolling element bearings, Mech. Syst. Signal Process., 92 (2017), 173–195. https://doi.org/10.1016/j.ymssp.2017.01.033 doi: 10.1016/j.ymssp.2017.01.033
![]() |
[40] |
P. K. Kankar, S. C. Sharma, S. P. Harsha, Fault diagnosis of ball bearings using machine learning methods, Expert Syst. Appl., 38 (2011), 1876–1886. https://doi.org/10.1016/j.eswa.2010.07.119 doi: 10.1016/j.eswa.2010.07.119
![]() |
[41] |
Z. Y. Wang, L. G. Yao, Y. W. Cai, Rolling bearing fault diagnosis using generalized refined composite multiscale sample entropy and optimized support vector machine, Measurement, 156 (2020), 107574. https://doi.org/10.1016/j.measurement.2020.107574 doi: 10.1016/j.measurement.2020.107574
![]() |
[42] |
S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput., 9 (1997), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735 doi: 10.1162/neco.1997.9.8.1735
![]() |
[43] |
F. Q. Zou, H. F. Zhang, S. T. Sang, X. M. Li, W. Y. He, X. W. Liu, Bearing fault diagnosis based on combined multi-scale weighted entropy morphological filtering and bi-LSTM, Appl. Intell., 51 (2021), 6647–6664. https://doi.org/10.1007/s10489-021-02229-1 doi: 10.1007/s10489-021-02229-1
![]() |
[44] | M. E. Torres, M. A. Colominas, G. Schlotthauer, P. Flandrin, A complete ensemble empirical mode decomposition with adaptive noise, in 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague Congress Ctr, Prague, (2011), 4144–4147. https://doi.org/10.1109/ICASSP.2011.5947265 |