Citation: Zhenzhong Xu, Xu Chen, Linchao Yang, Jiangtao Xu, Shenghan Zhou. Multi-modal adaptive feature extraction for early-stage weak fault diagnosis in bearings[J]. Electronic Research Archive, 2024, 32(6): 4074-4095. doi: 10.3934/era.2024183
[1] | F. Jia, Y. G. Lei, J. Lin, X. Zhou, N. Lu, Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data, Mech. Syst. Signal Process., 72 (2016), 303–315. https://doi.org/10.1016/j.ymssp.2015.10.025 doi: 10.1016/j.ymssp.2015.10.025 |
[2] | Y. J. Zhou, X. Y. Long, M. W. Sun, Z. Q. Chen, Bearing fault diagnosis based on Gramian angular field and DenseNet, Math. Biosci. Eng., 19 (2022), 14086–14101. https://doi.org/10.3934/mbe.2022656 doi: 10.3934/mbe.2022656 |
[3] | Z. W. Shang, C. L. Pan, Y. Yu, F. Liu, M. S. Gao, Weak local fault diagnosis of gearboxes based on adaptive inertia factor particle swarm independent component analysis, Insight Nondestr. Test. Cond. Monit., 65 (2023), 415–422. https://doi.org/10.1784/insi.2023.65.8.415 doi: 10.1784/insi.2023.65.8.415 |
[4] | W. Cui, G. Y. Meng, A. M. Wang, X. E. Zhang, J. Ding, Application of rotating machinery fault diagnosis based on deep learning, Shock Vib., 2021 (2021), 3083190. https://doi.org/10.1155/2021/3083190 doi: 10.1155/2021/3083190 |
[5] | Y. H. Zhang, T. T. Zhou, X. F. Huang, L. C. Cao, Q. Zhou, Fault diagnosis of rotating machinery based on recurrent neural networks, Measurement, 171 (2021), 108774. https://doi.org/10.1016/j.measurement.2020.108774 doi: 10.1016/j.measurement.2020.108774 |
[6] | Q. S. Wang, Z. C. Sun, Y. M. Zhu, C. H. Song, D. Li, Intelligent fault diagnosis algorithm of rolling bearing based on optimization algorithm fusion convolutional neural network, Math. Biosci. Eng., 20 (2023), 19963–19982. https://doi.org/10.3934/mbe.2023884 doi: 10.3934/mbe.2023884 |
[7] | Z. X. Wei, Y. X. Wang, S. L. He, J. D. Bao, A novel intelligent method for bearing fault diagnosis based on affinity propagation clustering and adaptive feature selection, Knowledge-Based Syst., 116 (2017), 1–12. https://doi.org/10.1016/j.knosys.2016.10.022 doi: 10.1016/j.knosys.2016.10.022 |
[8] | S. Q. Huang, J. D. Zheng, H. Y. Pan, J. Y. Tong, Order-statistic filtering fourier decomposition and its application to rolling bearing fault diagnosis, J. Vib. Control, 28 (2022), 1605–1620. https://doi.org/10.1177/1077546321997598 doi: 10.1177/1077546321997598 |
[9] | D. C. Zhu, G. Q. Liu, X. Y. Wu, B. L. Yin, An enhanced empirical Fourier decomposition method for bearing fault diagnosis, Struct. Health Monit., 23 (2024), 903–923. https://doi.org/10.1177/14759217231178653 doi: 10.1177/14759217231178653 |
[10] | W. L. Fu, X. H. Jiang, B. L. Li, C. Tan, B. J. Chen, X. Y. Chen, Rolling bearing fault diagnosis based on 2D time-frequency images and data augmentation technique, Meas. Sci. Technol., 34 (2023), 045005. https://doi.org/10.1088/1361-6501/acabdb doi: 10.1088/1361-6501/acabdb |
[11] | Z. J. Xie, D. Yu, C. S. Zhan, Q. C. Zhao, J. X. Wang, J. Q. Liu, et al., Ball screw fault diagnosis based on continuous wavelet transform and two-dimensional convolution neural network, Meas. Control, 56 (2023), 518–528. https://doi.org/10.1177/00202940221107620 doi: 10.1177/00202940221107620 |
[12] | V. Sharma, A. Parey, Extraction of weak fault transients using variational mode decomposition for fault diagnosis of gearbox under varying speed, Eng. Fail. Anal., 107 (2020), 104204. https://doi.org/10.1016/j.engfailanal.2019.104204 doi: 10.1016/j.engfailanal.2019.104204 |
[13] | Q. B. Lu, X. Q. Shen, X. J. Wang, M. Li, J. Li, M. Z. Zhang, Fault diagnosis of rolling bearing based on improved VMD and KNN, Math. Probl. Eng., 2021 (2021), 2530315. https://doi.org/10.1155/2021/2530315 doi: 10.1155/2021/2530315 |
[14] | T. Wu, Fault diagnosis method of rolling bearing based on EMD-Hilbert envelope spectrum and BPNN, in IOP Conference Series: Earth and Environmental Science, IOP Publishing, 632 (2021), 052084. https://doi.org/10.1088/1755-1315/632/5/052084 |
[15] | P. K. Sahu, R. N. Rai, Fault diagnosis of rolling bearing based on an improved denoising technique using complete ensemble empirical mode decomposition and adaptive thresholding method, J. Vib. Eng. Technol., 11 (2023), 513–535. https://doi.org/10.1007/s42417-022-00591-z doi: 10.1007/s42417-022-00591-z |
[16] | J. B. Hou, Y. X. Wu, H. Gong, A. S. Ahmad, L. Liu, A novel intelligent method for bearing fault diagnosis based on EEMD permutation entropy and gg clustering, Appl. Sci., 10 (2020), 386. https://doi.org/10.3390/app10010386 doi: 10.3390/app10010386 |
[17] | A. Kumar, Y. Berrouche, R. Zimroz, G. Vashishtha, S. Chauhan, C. P. Gandhi, et al., Non-parametric Ensemble Empirical Mode Decomposition for extracting weak features to identify bearing defects, Measurement, 211 (2023), 112615. https://doi.org/10.1016/j.measurement.2023.112615 doi: 10.1016/j.measurement.2023.112615 |
[18] | F. Z. Liu, J. W. Gao, H. B. Liu, The feature extraction and diagnosis of rolling bearing based on CEEMD and LDWPSO-PNN, IEEE Access, 8 (2020), 19810–19819. https://doi.org/10.1109/ACCESS.2020.2968843 doi: 10.1109/ACCESS.2020.2968843 |
[19] | Y. F. Yang, H. Chen, T. D. Jiang, Nonlinear response prediction of cracked rotor based on EMD, J. Franklin Inst., 352 (2015), 3378–3393. https://doi.org/10.1016/j.jfranklin.2014.12.015 doi: 10.1016/j.jfranklin.2014.12.015 |
[20] | A. B. Ming, W. Zhang, C. Fu, Y. F. Yang, F. L. Chu, Y. J. Liu, L-kurtosis-based optimal wavelet filtering and its application to fault diagnosis of rolling element bearings, J. Vib. Control, 30 (2024), 1594–1603. https://doi.org/10.1177/10775463231165816 doi: 10.1177/10775463231165816 |
[21] | J. C. Guo, Q. B. He, D. Zhen, F. S. Gu, A. D. Ball, An iterative morphological difference product wavelet for weak fault feature extraction in rolling bearing fault diagnosis, Struct. Health Monit., 22 (2023), 296–318. https://doi.org/10.1177/14759217221086314 doi: 10.1177/14759217221086314 |
[22] | S. Q. Zhou, L. P. Lin, C. Chen, W. B. Pan, X. C. Lou, Application of convolutional neural network in motor bearing fault diagnosis, Comput. Intell. Neurosci., 2022 (2022), 923130. https://doi.org/10.1155/2022/9231305 doi: 10.1155/2022/9231305 |
[23] | S. J. Hao, F. X. Ge, Y. M. Li, J. Y. Jiang, Multisensor bearing fault diagnosis based on one-dimensional convolutional long short-term memory networks, Measurement, 159 (2020), 107802. https://doi.org/10.1016/j.measurement.2020.107802 doi: 10.1016/j.measurement.2020.107802 |
[24] | Z. F. Xu, X. Mei, X. Y. Wang, M. N. Yue, J. T. Jin, Y. Yang, et al., Fault diagnosis of wind turbine bearing using a multi-scale convolutional neural network with bidirectional long short term memory and weighted majority voting for multi-sensors, Renewable Energy, 182 (2022), 615–626. https://doi.org/10.1016/j.renene.2021.10.024 doi: 10.1016/j.renene.2021.10.024 |
[25] | X. C. Li, J. C. Wang, B. Zhang, Fault diagnosis of rolling element bearing weak fault based on sparse decomposition and broad learning network, Trans. Inst. Meas. Control, 42 (2020), 169–179. https://doi.org/10.1177/0142331219864820 doi: 10.1177/0142331219864820 |
[26] | X. Zhou, H. X. Zhou, G. R. Wen, X. Huang, Z. H. Lei, Z. F. Zhang, et al., A hybrid denoising model using deep learning and sparse representation with application in bearing weak fault diagnosis, Measurement, 189 (2022), 110633. https://doi.org/10.1016/j.measurement.2021.110633 doi: 10.1016/j.measurement.2021.110633 |
[27] | Z. Z. Jin, D. Q. He, Z. X. Wei, Intelligent fault diagnosis of train axle box bearing based on parameter optimization VMD and improved DBN, Eng. Appl. Artif. Intell., 110 (2022), 104713. https://doi.org/10.1016/j.engappai.2022.104713 doi: 10.1016/j.engappai.2022.104713 |
[28] | B. H. Zhong, M. H. Zhao, S. S. Zhong, L. Lin, Y. J. Zhang, Deep exponential excitation networks: toward stronger attention mechanism for weak fault diagnosis, Struct. Health Monit., 2024. https://doi.org/10.1177/14759217231217936 doi: 10.1177/14759217231217936 |
[29] | X. Liu, R. Q. Wu, R. G. Wang, F. Zhou, Z. F. Chen, N. H. Guo, Bearing fault diagnosis based on particle swarm optimization fusion convolutional neural network, Front. Neurorob., 16 (2022), 1044965. https://doi.org/10.3389/fnbot.2022.1044965 doi: 10.3389/fnbot.2022.1044965 |
[30] | M. H. Xiao, Y. B. Liao, P. Bartos, M. Filip, G. S. Geng, Z. W. Jiang, Fault diagnosis of rolling bearing based on back propagation neural network optimized by cuckoo search algorithm, Multimedia Tools Appl., 81 (2022), 1567–1587. https://doi.org/10.1007/s11042-021-11556-x doi: 10.1007/s11042-021-11556-x |
[31] | S. Z. Gao, Z. M. Pei, Y. M. Zhang, T. C. Li, Bearing fault diagnosis based on adaptive convolutional neural network with nesterov momentum, IEEE Sens. J., 21 (2021), 9268–9276. https://doi.org/10.1109/JSEN.2021.3050461 doi: 10.1109/JSEN.2021.3050461 |
[32] | Z. Li, Y. Wang, J. N. Ma, Fault diagnosis of motor bearings based on a convolutional long short-term memory network of bayesian optimization, IEEE Access, 9 (2021), 97546–97556. https://doi.org/10.1109/ACCESS.2021.3093363 doi: 10.1109/ACCESS.2021.3093363 |
[33] | D. Kalman, A singularly valuable decomposition: The SVD of a matrix, Coll. Math. J., 27 (1996), 2–23. https://doi.org/10.2307/2687269 doi: 10.2307/2687269 |
[34] | J. F. Huang, L. L. Cui, Tensor singular spectrum decomposition: Multisensor denoising algorithm and application, IEEE Trans. Instrum. Meas., 72 (2023), 1–15. https://doi.org/10.1109/TIM.2023.3249249 doi: 10.1109/TIM.2023.3249249 |
[35] | H. Li, T. Liu, X. Wu, Q. Chen, A bearing fault diagnosis method based on enhanced singular value decomposition, IEEE Trans. Ind. Inf., 17 (2021), 3220–3230. https://doi.org/10.1109/TⅡ.2020.3001376 doi: 10.1109/TⅡ.2020.3001376 |
[36] | D. Huang, S. Li, N. Qin, Y. Zhang, Fault diagnosis of high-speed train bogie based on the improved-CEEMDAN and 1-D CNN algorithms, IEEE Trans. Instrum. Meas., 70 (2021), 3508811. https://doi.org/10.1109/TIM.2021.3062104 doi: 10.1109/TIM.2021.3062104 |
[37] | S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Software, 69 (2014), 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007 doi: 10.1016/j.advengsoft.2013.12.007 |
[38] | T. Han, R. Y. Ma, J. G. Zheng, Combination bidirectional long short-term memory and capsule network for rotating machinery fault diagnosis, Measurement, 176 (2021), 109208. https://doi.org/10.1016/j.measurement.2021.109208 doi: 10.1016/j.measurement.2021.109208 |
[39] | Y. H. Miao, M. Zhao, J. Lin, Y. G. Lei, Application of an improved maximum correlated kurtosis deconvolution method for fault diagnosis of rolling element bearings, Mech. Syst. Signal Process., 92 (2017), 173–195. https://doi.org/10.1016/j.ymssp.2017.01.033 doi: 10.1016/j.ymssp.2017.01.033 |
[40] | P. K. Kankar, S. C. Sharma, S. P. Harsha, Fault diagnosis of ball bearings using machine learning methods, Expert Syst. Appl., 38 (2011), 1876–1886. https://doi.org/10.1016/j.eswa.2010.07.119 doi: 10.1016/j.eswa.2010.07.119 |
[41] | Z. Y. Wang, L. G. Yao, Y. W. Cai, Rolling bearing fault diagnosis using generalized refined composite multiscale sample entropy and optimized support vector machine, Measurement, 156 (2020), 107574. https://doi.org/10.1016/j.measurement.2020.107574 doi: 10.1016/j.measurement.2020.107574 |
[42] | S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput., 9 (1997), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735 doi: 10.1162/neco.1997.9.8.1735 |
[43] | F. Q. Zou, H. F. Zhang, S. T. Sang, X. M. Li, W. Y. He, X. W. Liu, Bearing fault diagnosis based on combined multi-scale weighted entropy morphological filtering and bi-LSTM, Appl. Intell., 51 (2021), 6647–6664. https://doi.org/10.1007/s10489-021-02229-1 doi: 10.1007/s10489-021-02229-1 |
[44] | M. E. Torres, M. A. Colominas, G. Schlotthauer, P. Flandrin, A complete ensemble empirical mode decomposition with adaptive noise, in 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague Congress Ctr, Prague, (2011), 4144–4147. https://doi.org/10.1109/ICASSP.2011.5947265 |