Citation: Shuanglin Fei, Guangyan Zhu, Rongjun Wu. On a conjecture concerning the exponential Diophantine equation $ (an^{2}+1)^{x}+(bn^{2}-1)^{y} = (cn)^{z} $[J]. Electronic Research Archive, 2024, 32(6): 4096-4107. doi: 10.3934/era.2024184
[1] | Y. Fujita, M. H. Le, A parametric family of ternary purely exponential Diophantine equation $A^{x}+B^{y} = C^{z}$, Turk. J. Math., 46 (2022), 1224–1232. https://doi.org/10.55730/1300-0098.3153 doi: 10.55730/1300-0098.3153 |
[2] | N. Terai, Y. Shinsh, On the exponential Diophantine equation $(3m^{2}+1)^{x}+(qm^{2}-1)^{y} = (rm)^{z}$, SUT J. Math., 56 (2020), 147–158. https://doi.org/10.55937/sut/1611009430 doi: 10.55937/sut/1611009430 |
[3] | N. Terai, On the exponential Diophantine equation $(4m^{2}+1)^{x}+(5m^{2}-1)^{y} = (3m)^{z}$, Int. J. Algebra, 6 (2012), 1135–1146. |
[4] | Y. Bugeaud, T. N. Shorey, On the number of solutions of the generalized Ramanujan-Nagell equation, J. Reine Angew. Math., 539 (2001), 55–74. https://doi.org/10.1515/crll.2001.079 doi: 10.1515/crll.2001.079 |
[5] | M. H. Le, Some exponential Diophantine equations I: The equation $D_{1}x^{2}-D_{2}y^{2} = \lambda k^{z}$, J. Number Theory, 55 (1995), 209–221. https://doi.org/10.1006/jnth.1995.1138 doi: 10.1006/jnth.1995.1138 |
[6] | Y. Bilu, G. Hanrot, P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers, with an appendix by M. Mignotte, J. Reine Angew. Math., 539 (2001), 75–122. https://doi.org/10.1515/crll.2001.080 doi: 10.1515/crll.2001.080 |
[7] | J. L. Su, X. X. Li, The Diophantine equation $(4m^{2}+1)^{x}+(5m^{2}-1)^{y} = (3m)^{z}$, Abstr. Appl. Anal., 2014 (2014), 670175. https://doi.org/10.1155/2014/670175 doi: 10.1155/2014/670175 |
[8] | C. Bertók, The complete solution of Diophantine equation $(4m^{2}+1)^{x}+(5m^{2}-1)^{y} = (3m)^{z}$, Period. Math. Hung., 72 (2016), 37–42. https://doi.org/10.1007/s10998-016-0111-x doi: 10.1007/s10998-016-0111-x |
[9] | C. Bertók, L. Hajdu, A Hasse-type principle for exponential Diophantine equations and its applications, Math. Comp., 85 (2016), 849–860. http://doi.org/10.1090/mcom/3002 doi: 10.1090/mcom/3002 |
[10] | T. Miyazaki, N. Terai, On the exponential Diophantine equation $(m^{2}+1)^{x}+(cm^{2}-1)^{y} = (am)^{z}$, Bull. Aust. Math. Soc., 90 (2014), 9–19. https://doi.org/10.1017/S0004972713000956 doi: 10.1017/S0004972713000956 |
[11] | X. W. Pan, A note on the exponential Diophantine equation $(am^{2}+1)^{x}+(bm^{2}-1)^{y} = (cm)^{z}$, Colloq. Math., 149 (2017), 265–273. https://doi.org/10.4064/cm6878-10-2016 doi: 10.4064/cm6878-10-2016 |
[12] | R. Q. Fu, H. Yang, On the exponential Diophantine equation $(am^{2}+1)^{x}+(bm^{2}-1)^{y} = (cm)^{z}$ with $c\mid m$, Period. Math. Hung., 75 (2017), 143–149. https://doi.org/10.1007/s10998-016-0170-z doi: 10.1007/s10998-016-0170-z |
[13] | E. Kizildere, T. Miyazaki, G. Soydan, On the Diophantine equation $((c+1)m^{2}+1)^{x}+(cm^{2}-1)^{y} = (am)^{z}$, Turk. J. Math., 42 (2018), 2690–2698. https://doi.org/10.3906/mat-1803-14 doi: 10.3906/mat-1803-14 |
[14] | Y. Bugeaud, Linear forms in two $m$-adic logarithms and applications to Diophantine problems, Compos. Math., 132 (2002), 137–158. https://doi.org/10.1023/A:1015825809661 doi: 10.1023/A:1015825809661 |
[15] | N. Terai, T. Hibino, On the exponential Diophantine equation $(12m^{2}+1)^{x}+(13m^{2}-1)^{y} = (5m)^{z}$, Int. J. Algebra, 9 (2015), 261–272. http://doi.org/10.12988/ija.2015.5529 |
[16] | M. Alan, On the exponential Diophantine equation $(18m^{2}+1)^{x}+(7m^{2}-1)^{y} = (5m)^{z}$, Turk. J. Math., 42 (2018), 1990–1999. https://doi.org/10.3906/mat-1801-76 doi: 10.3906/mat-1801-76 |
[17] | E. Hasanalizade, A note on the exponential Diophantine equation $(44m^{2}+1)^{x}+(5m^{2}-1)^{y} = (7m)^{z}$, Integers, 23 (2023), 1–12. https://doi.org/10.5281/zenodo.8399672 doi: 10.5281/zenodo.8399672 |
[18] | N. Terai, T. Hibino, On the exponential Diophantine equation $(3pm^{2}-1)^{x}+(p(p-3)m^{2}+1)^{y} = (pm)^{z}$, Period. Math. Hung., 74 (2017), 227–234. https://doi.org/10.1007/s10998-016-0162-z doi: 10.1007/s10998-016-0162-z |
[19] | Y. F. Bilu, Y. Bugeaud, M. Mignotte, The Problem of Catalan, Springer-Verlag, New York, 2014. https://doi.org/10.1007/978-3-319-10094-4 |
[20] | M. Alan, On the exponential Diophantine equation $(m^{2}+m+1)^{x}+m^{y} = (m+1)^{z}$, Mediterr. J. Math., 17 (2020). https://doi.org/10.1007/s00009-020-01613-4 |
[21] | M. A. Bennett, Y. Bugeaud, Perfect powers with three digits, Mathematika, 60 (2014), 66–84. https://doi.org/10.1112/S0025579313000107 doi: 10.1112/S0025579313000107 |
[22] | M. A. Bennett, Y. Bugeaud, M. Mignotte, Perfect powers with few binary digits and related Diophantine problems, Ann. Sc. Norm. Super. Pisa Cl. Sci., XII (2013), 941–953. https://doi.org/10.2422/2036-2145.201110_006 doi: 10.2422/2036-2145.201110_006 |
[23] | Y. Bugeaud, T. N. Shorey, On the Diophantine equation $\frac{x^{m}-1}{x-1} = \frac{y^{m}-1}{y-1}$, Pacific J. Math., 207 (2002), 61–75. http://doi.org/10.2140/pjm.2002.207.61 doi: 10.2140/pjm.2002.207.61 |
[24] | T. Miyazaki, M. Sudo, N. Terai, A purely exponential Diophantine equation in three unknowns, Period. Math. Hung., 84 (2022), 287–298. https://doi.org/10.1007/s10998-021-00405-x doi: 10.1007/s10998-021-00405-x |