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Abstract: We present a novel multi-modal adaptive feature extraction algorithm considering both 

time-domain and frequency-domain modalities (AFETF), coupled with a Bidirectional Long Short-

Term Memory (Bi-LSTM) network based on the Grey Wolf Optimizer (GWO) for early-stage weak 

fault diagnosis in bearings. Singular Value Decomposition (SVD) was employed for noise reduction, 

while Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) was 

utilized for signal decomposition, facilitating further signal processing. AFETF algorithm proposed in 

this paper was employed to extract weak fault features. The adaptive diagnostic process was further 

enhanced using Bi-LSTM network optimized with GWO, ensuring objectivity in the hyperparameter 

optimization. The proposed method was validated for datasets containing weak faults with a 0.2 mm 

crack and strong faults with a 0.4 mm crack, demonstrating its effectiveness in early-stage fault detection. 

Keywords: bearings; weak fault; time domain; frequency domain; AFETF 

 

1. Introduction 

Bearings are critical components in rotating machinery and are the primary cause of system 

faults. In the field of machine health monitoring, diagnosing faults in bearings is crucial. It is 

estimated that 45–55% of equipment faults are due to issues with bearings [1]. For example, bearings 
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are critical components whose reliable operation is essential for wind turbines. In severe cases, bearing 

faults can result in downtime, damage, injuries, and significant economic losses [2]. The early 

detection of weak faults in bearings is paramount for ensuring continuous energy production and 

preventing potential disruptions or hazards. However, diagnosing faults in bearings poses formidable 

challenges due to the complexity of operating environments and the subtlety of fault symptoms [3]. 

Traditional fault diagnosis methods based on signal analysis often fall short in accurately capturing 

weak fault signatures amidst intricate vibration patterns and environmental noise [4]. Therefore, to 

guarantee the steady functioning of rotating machinery, the development of efficient fault diagnosis 

models and the use of advanced intelligent algorithms are crucial [5]. 

Signal-based methods, a common approach for fault diagnosis [6], are extensively employed in 

bearing fault diagnosis. Sensors collect time-domain signals, representing vibration signals as data 

waveforms evolving over time. Time-domain analysis assesses rolling bearing vibration signals using 

various indexes like mean square value, variance, and kurtosis [7] to determine the occurrence of faults. 

Nevertheless, the operating environment of the bearing is frequently complicated, and external 

vibration sources affect the precision of time-domain index computations, causing it difficult to 

pinpoint the exact location or kind of bearing fault and resulting in potential misjudgments. 

Consequently, researchers frequently employ Fourier Transform (FT) [8,9] to convert the original 

signal into the frequency domain, providing a better representation of the bearing’s periodic and 

frequency characteristics. Nevertheless, in real-world situations, the vibration signals produced by 

spindle equipment operations are not smooth, rendering it difficult to resolve the problem with 

straightforward time or frequency domain analyses. Consequently, time-frequency analysis techniques 

for non-linear and non-smooth data decomposition have gained prominence in recent fault diagnosis 

research. Traditional methods for handling non-linear and non-smooth sequences, such as Wavelet 

Transform (WT) [10,11], Variational Mode Decomposition (VMD) [12,13], Empirical Mode 

Decomposition (EMD) [14,15], Ensemble Empirical Mode Decomposition (EEMD) [16,17], and 

Complementary Ensemble Empirical Mode Decomposition (CEEMD) [18], are widely employed for 

denoising and feature extraction in bearing fault diagnosis. Yang et al. [19] proposed an IMF prediction 

method which added all the prediction results of IMF decomposed by EMD, the nonlinear response of 

cracked rotor can be predicted. The IMF prediction is more advantageous than the Lyapunov prediction 

method through validation. Ming et al. [20] proposed an optimal wavelet filtering method which is 

developed by maximizing the L-kurtosis through the genetic algorithm to extract the bearing weak 

repetitive transients and validated the feasibility of this method. Guo et al. [21] proposed an iterative 

morphological difference product wavelet and achieved higher diagnosis accuracy. However, when it 

comes to selecting the Intrinsic Mode Functions (IMF) post-decomposition, the majority of approaches 

rely on human experience or consider only one aspect, either from the time or frequency domain 

perspective. This process is often insufficiently comprehensive, making it challenging to accurately 

identify the IMF that encapsulates the most informative details about early-stage weak faults. 

In the realm of deep learning, bearing fault diagnosis methods based on models such as 

Convolutional Neural Networks (CNN) [22], Long Short-Term Memory (LSTM) [23], Bi-LSTM [24], 

and Deep Belief Networks (DBN) have gained widespread adoption. Li et al. [25] proposed a 

connection network constructed by resonance-based sparse signal decomposition and broad learning 

system without the need for deep architecture for rolling element bearing weak fault and verified the 

effectiveness of this method. Zhou et al. [26] proposed a novel end-to-end deep network-based sparse 

denoising framework based on a model-data-collaborative linkage framework for bearing weak fault 
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diagnosis. Jin et al. [27] proposed a weak fault diagnosis method for train axle box bearing based on 

parameter optimization VMD and improved Deep Belief Network (DBN) for train axle box bearing. 

Zhong et al. [28] proposed exponential excitation networks, which improves diagnosing performance 

by amplifying important information, that is, the discriminative information between normal and weak 

fault conditions. For deep learning models, the choice of hyperparameters directly affects the 

performance of the model; however, the hyperparameter optimization process often relies on the 

accumulation of professional knowledge and long-term experience. Manual tuning is cumbersome, 

costly, and inefficient, and the performance of neural network models is limited by human experience. 

Therefore, automatically finding the optimal parameters and thus determining the optimal model is 

essential for efficiently improving the model performance. 

To enhance the effectiveness of fault diagnosis using deep learning models, numerous studies 

have explored the integration of optimization algorithms to improve model performance. Commonly 

employed algorithms include the particle swarm algorithm [29], cuckoo search algorithm [30], among 

others. Additionally, to prevent the overlooking of optimal solutions, Gao et al. [31] introduced an 

adaptive convolutional neural network based on Nesterov momentum for rolling bearing fault 

diagnosis. The traditional momentum method is replaced by Nesterov momentum, and an adaptive 

rule dynamically adjusting the learning rate is incorporated to enhance the network’s generalization 

ability. Li et al. [32] devised an automated hyperparameter selection algorithm for motor bearing fault 

diagnosis. It exhibits superior noise immunity and achieves 100% model accuracy, a notable 

improvement over other deep learning method. 

Early detection of weak faults is crucial for rotating machinery operation, preventing downtime, 

reducing maintenance costs, extending equipment lifespan, and enhancing safety. However, early weak 

fault signals in rotating machinery bearings exhibit non-linearity and non-stationarity, posing 

challenges for effective fault feature extraction. Additionally, traditional diagnostic models often 

require manual parameter tuning, introducing subjectivity and impacting diagnostic performance. We 

address these challenges by proposing the adaptive feature extraction algorithm, considering both time-

domain and frequency-domain modalities (AFETF), coupled with a GWO-optimized Bi-LSTM 

algorithm for early weak fault diagnosis in rotating machinery bearings. The effectiveness of the 

proposed algorithm is demonstrated through comparative analysis. The major contributions are: 

1) Utilization of SVD for signal denoising and CEEMDAN for adaptive signal decomposition 

to obtain Intrinsic Mode Functions (IMFs), beneficial for extracting weak fault features under 

noisy conditions. 

2) Application of the AFETF algorithm to process IMFs, integrating time-domain and frequency-

domain modalities information to enhance weak fault signal characterization. 

3) Adoption of the GWO-optimized Bi-LSTM algorithm for bearing weak fault diagnosis, 

improving robustness, and generalization capability by automating hyperparameter optimization. 

2. Theoretical background 

2.1. SVD noise reduction 

Singular Value Decomposition (SVD) is a commonly used matrix decomposition method in 

mathematics [33,34], which has been widely used in signal processing, noise control, and data 

dimensionality reduction in recent years [35]. In decomposing a matrix using SVD, a matrix of order 



4077 

Electronic Research Archive  Volume 32, Issue 6, 4074–4095. 

is assumed, where all the elements belong to the actual or complex domain, and there exists a 

decomposition equation: 

𝑄 = 𝑈 ∑ 𝑉𝑇,           (1) 

where 𝑈: 𝑎 ∗  𝑎 unitary matrix, 𝑉: 𝑏 ∗  𝑏 unitary matrix, satisfies 𝑈𝑈𝑇  =  𝐼, 𝑉𝑉𝑇  =  𝐼, 𝑇: transpose, 

∑: semi-positive definite diagonal matrix, where the elements are zero except the diagonal elements. 

2.2. CEEMDAN signal decomposition 

The bearing vibration signal is non-smooth and non-linear whereas the Wavelet Transform (WT) 

and the Empirical Modal Decomposition (EMD) are commonly used methods, the former will produce 

different effects when dealing with different basis functions, which relies more on people’s subjective 

experience. Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) 

is a further optimized algorithm based on the EMD, which can decompose the signal into several IMFs 

of a smooth single mode and a cosine term according to the characteristics of the signal itself [36]. 

Add 𝑁  times Gaussian white noise 𝑧𝑖(𝑡)(𝑡 =  1,2, … , 𝑁)  to the original signal 𝑦(𝑡) . This is 

shown in the following equation: 

𝑦𝑖(𝑡) = 𝑦(𝑡) + 𝑧𝑖(𝑡).          (2) 

Each original signal 𝑦(𝑡) with Gaussian white noise added is decomposed using EMD to obtain 

a number of IMFs. Assuming that there are 𝑀 IMFs, and the overall averaging is calculated as shown 

in the following equation: 

𝑐𝑚(𝑡) =
1

𝑀
∑ 𝑐𝑚,𝑖(𝑡)𝑀

𝑖=1 .         (3) 

According to the Eq (3), the first order IMF can be calculated as shown below: 

𝑐1 = 𝑐1(𝑡) =
1

𝑀
∑ 𝑐1,𝑖(𝑡)𝑀

𝑖=1 .        (4) 

The residual can be calculated from 𝑐1 as: 

ℎ1(𝑡) = 𝑦(𝑡) − 𝑐1.         (5) 

Define 𝑦𝐸𝑘(∙) as the 𝑘 th IMF after EMD decomposition, 𝑝𝑘(𝑡) denotes the signal residual after 

the 𝑘 th addition of noise, and 𝐴 denotes the amplitude of the added noise. Gaussian white noise is 

added on top of the residual from the first stage of decomposition, and the EMD decomposition is 

continued for the processed signal residual. The IMFs generated from the first stage residuals are 

averaged together to obtain the second stage IMF 𝑐2: 

𝑝𝑘(𝑡) = ℎ𝑘(𝑡) + 𝐴𝑦𝐸𝐾(𝑧𝑖(𝑡)),        (6) 

𝑐2 =
1

𝑀
∑ 𝑦𝐸1(𝑝1(𝑡))𝑀

𝑖=1 .         (7) 

Repeat the steps above for each subsequent stage of the residual to finally obtain the m th signal 

residual, as shown in the following equation: 
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ℎ𝑚(𝑡) = ℎ𝑚−1(𝑡) − 𝑐𝑚.         (8) 

Multiple EMD decompositions are performed on the signal until the signal residuals cannot be 

further decomposed to complete the CEEMDAN process, and finally, after 𝑀  decompositions, all 

CEEMDAN decompositions of the signal are as follows: 

𝑦(𝑡) = ∑ 𝐼𝑀𝐹𝑚 + ℎ𝑀(𝑡)𝑀
𝑚=1 .        (9) 

2.3. Grey Wolf Optimization algorithm 

The Grey Wolf Optimization algorithm (GWO) is based on the collaboration mechanism of grey 

wolves and simulates a wolf pack hunting to achieve the goal. Compared with other intelligent 

optimization algorithms, it has the characteristics of solid convergence, few parameters, easiness to 

implement, and can achieve the global optimal solution [37]. A certain number of grey wolves are 

divided into 𝛼, 𝛽, 𝛿 and 𝜔 according to their duties. 𝛼 is the sole leader and is responsible for the 

group decision-making of the wolf pack; 𝛽 is the auxiliary, assisting the leader in managing the wolf 

pack and also acting as the replacement of the leader; 𝛿 needs to follow the orders of 𝛼 and 𝛽, and is 

responsible for scouting, hunting, and guarding, etc.; and 𝜔 is the lowest level of the wolf pack, which 

is responsible for following the orders of the superiors and maintaining the equilibrium of the pack races. 

The steps of GWO include searching, tracking, encircling, hunting, and attacking. The principle 

of the algorithm is that, in the encirclement, each wolf represents a potential solution, and 𝛼, 𝛽, 𝛿, 𝜔 

gradually decreases according to their levels of priority. According to the positions of the first three 

wolves, the other individuals calculate the distances and constantly approach them to update the 

position to complete the search of optimality. 

In the 𝑄-dimensional space, a single wolf is denoted as 𝑊𝑖 = (𝑤𝑖,1, 𝑤𝑖,2, … , 𝑤𝑖,𝑞), and the constituent 

wolves are denoted as 𝑊𝑖 = (𝑊1, 𝑊2, … , 𝑊𝑁). The calculation is shown in the following equations: 

𝐷𝑚 = 𝐶𝑘 ⋅ 𝑊𝑚 − 𝑊𝑖𝑘(𝑡), 𝑚 = 𝛼, 𝛽, 𝛿; 𝑖 = 1,2,3 … , 𝑛,     (10) 

𝐶𝑘 = 2𝑟1, 𝑘 = 1,2,3,          (11) 

𝑊𝑖𝑘
′ = 𝑊𝑚 − 𝐴𝑘 ⋅ 𝐷𝑚,         (12) 

𝑊𝑖(𝑡+1) =
1

3
∑ 𝑊𝑖𝑘

′ ,          (13) 

𝐴𝑘 = 2𝑎𝑟2 − 𝑎, 𝑘 = 1,2,3,         (14) 

where 𝑎 = 2 − 𝑡/𝑡𝑚𝑎𝑥, 𝑎: convergence factor, which decreases linearly with the number of iterations 

and takes values in the range [0,2], 𝐷𝑚: distance of grey wolf 𝑊𝑖 from wolves 𝛼, 𝛽, 𝛿 at iteration 𝑡, 
𝐶𝑘: coefficient vector, 𝐴𝑘: coefficient vector, 𝑟1: random values of [0,1], 𝑟2: random values of [0,1], 

𝑊𝑖𝑘
′ : vector of the grey wolf’s movement as it approaches 𝛼, 𝛽, 𝛿, 𝑊𝑖(𝑡+1): move value of the grey 

wolf 𝑊𝑖 for the next iteration. 

2.4. Bi-LSTM algorithm 

Bidirectional Long Short-Term Memory (Bi-LSTM) is composed of forward LSTM and 
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backward LSTM. Bi-LSTM is connected to one output for forward and backward propagation, 

respectively, but forward and backward propagations are not associated. The hidden layers of both 

propagations are independent of each other, and their confidential information layers can be propagated 

in both directions. The composition of Bi-LSTM makes itself more suitable for diagnosing early-stage 

weak faults of bearings by fully using the information of timing features [38]. 

The LSTM consists of a forget gate 𝑓𝑡, an input gate 𝑖𝑡, a cell state 𝑐𝑡 and an output gate 𝑜𝑡, and 

𝜎 is an activation function-sigmoid. The composition of LSTM is shown in Figure 1. 

  

Figure 1. The composition of LSTM. 

Forward LSTM operates memory cells using input gates, output gates, and forget gates. In this 

computational process, the forget gate decides to remember or forget the hidden state of the previous 

layer according to the probability. The error term propagation of the backward LSTM is concentrated in 

the direction along the time axis and in the direction of the previous layer of the network. 

During the actual training process of LSTM, each output is compared with the corresponding 

labels to update the weight parameters of the network. Each label is coded using one-hot coding, and 

its coded result needs to match the output of softmax, which takes the value range of [0,1]. Using this 

function allows the LSTM to judge the probability of the labels. The value of the softmax function is 

calculated as shown in the following equation: 

𝑆𝑖 =
𝑒𝑍𝑖

∑ 𝑒𝑍𝑗𝐽
𝑗=1

,           (15) 

where 𝑍𝑖: the 𝑖 th element of the array 𝑍, 𝐽: number of categories of the array 𝑍, 𝑒: natural number. 

In the softmax function, the cross entropy is used as the loss function in this paper, and its 

expression is shown in the following equation: 

𝐿 = ∑ 𝑦𝑖𝑙𝑜𝑔 (𝑆𝑖)
𝑛
𝑘=1 ,         (16) 

where 𝑦𝑖: category of the 𝑖 th data, 𝑆𝑖: probability of a category for the 𝑖 th data, 𝑛: total number 

of categories. 
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3. Proposed methods 

3.1. Adaptive feature extraction considering both time-domain and frequency-domain modalities 

CEEMDAN decomposes the vibration signal according to the frequency. However, there are 

pseudo-components in the decomposition process, so it is very critical to filter out the IMF that contains 

the wealthiest information about early-stage weak faults, which directly affects the establishment of 

the fault diagnosis model and ultimately affects the accuracy of weak fault diagnosis. The time-domain 

characteristics of the vibration signal are analyzed according to the time history of the signal to obtain its 

statistical characteristics. Its processing will not cause losses of signal or distortions, and it is not affected 

by the influence of the measurement points, which renders itself rather suitable for weak fault diagnosis. 

We propose an adaptive extraction algorithm of weak fault features considering time-frequency 

modalities (AFETF) for envelope spectrum analysis. We select the kurtosis, mean square error, and 

sample entropy as the parameter indexes in the time domain dimension. Kurtosis is more sensitive to 

shock pulses and pulse-like fault signals, which makes itself applicable for surfacing damage faults 

and diagnosing early weak faults [39]. The mean square error can reflect the degree of data dispersion 

and is an essential indicator of accuracy. The early-stage weak faults will be enhanced when the faults 

appear and change the mean square deviation [40]. The sample entropy can reflect the complexity of 

the time series, and at the same time, it is less dependent on the data and it is high in consistency [41]. 

These three indexes are more sensitive to early weak faults. 

Kurtosis is affected by the number and the size of signal 𝑥 waveform shocks, and the formula for 

calculating the kurtosis value is shown below: 

𝐾 =
𝐸(𝑥−𝜇)2

𝜎4
,           (17) 

where 𝐸: expectation, 𝜇: signal mean, 𝜎: signal mean variance. 

The formula for calculating the mean square error is shown in the following equation: 

𝜎 = √
1

𝑁
∑ (𝑥𝑖 − 𝜇)2𝑁

𝑖=1
,         (18) 

where 𝑁: number of sampling points. 

The sample entropy equation is shown below: 

𝑆𝑎𝑚𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) = −𝑙 𝑛 [
𝐴𝑚(𝑟)

𝐵𝑚(𝑟)
],        (19) 

where 𝐵𝑚(𝑟) : the probability of matching to 𝑚  points under the distance restriction 𝑟 , 𝐴𝑚(𝑟) : the 

probability of matching to 𝑚 + 1 points. 

The specific equation of the metric proposed in this paper used to quantify information of the 

early-stage weak faults contained in IMFs is shown as follow: 

𝑋𝑖 =
𝐾𝑖

𝐾𝑚𝑎𝑥
+

𝜎𝑖

𝜎𝑚𝑎𝑥
+

𝑆𝑖

𝑆𝑚𝑎𝑥
,         (20) 

where 𝐾𝑖: the kurtosis of 𝑖 th IMF, 𝐾𝑚𝑎𝑥: the max kurtosis of IMFs, 𝜎𝑖: the mean square error of 𝑖 th 

IMF, 𝜎𝑚𝑎𝑥: the max mean square error of IMFs, 𝑆𝑖: the sample entropy of 𝑖 th IMF, 𝑆𝑚𝑎𝑥: the max 
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sample entropy of IMFs. 

Although time domain modality analysis is suitable for early weak fault diagnosis, its precision 

must be improved. Frequency domain modality analysis can make up well for this defect. In this paper, 

the theoretical characteristic frequency of each fault is calculated according to the bearing type, size 

parameter, and rotational speed. After CEEMDAN has been used to decompose the original signal into 

several IMFs, assuming that 𝐿 IMFs are obtained, their envelope signals are obtained using the Hilbert 

variation. Then, the spectral transformation is performed to obtain the envelope spectrum of the IMF. 

Given the manufacture and assembly of bearings and the influence of the operating environment, there is 

often a particular gap between the actual fault characteristic frequency of bearings and the theoretical fault 

characteristic frequency, and the fluctuation range is usually within 5%. The number of fault characteristic 

frequencies and that of their multiplicative frequencies are obtained in the envelope spectrum. We define 

the fault characteristic frequency screening function, as shown in the following equation: 

𝐹𝑖 = 𝑁𝑢𝑚𝑏𝑒𝑟𝑚(𝑊𝑖(𝑓)), 𝑓 ∈ [𝑓′ − 𝛾𝑓′, 𝑓′ + 𝛾𝑓′], 𝑖 = 1,2, … , 𝐿,    (21) 

where 𝑓′: the theoretical characteristic frequency of fault, 𝑓: the range of characteristic frequency for 

screening, 𝑊𝑖(𝑓): the envelope spectrum of the 𝑖 th IMF component, 𝛾: the screening factor within 5%, 

𝑚 : the number of selected spectral amplitudes, 𝑁𝑢𝑚𝑏𝑒𝑟 : the number of spectra in the first 𝑚 

frequencies with the highest spectral amplitude that match the screening range. 

After obtaining 𝐹𝑖 for each IMF, its percentage is calculated as shown in the following equation: 

𝑌𝑖 =
𝐹𝑖

∑ 𝐹𝑖
𝐿
𝑖=1

.           (22) 

The index of measuring fault information is obtained in the dimension of time domain, and the 

number of corresponding fault characteristic frequencies and their multiples are obtained in the 

dimension of frequency domain. Based on the time-frequency characteristics above, it defines 𝑍 as a 

parameter index which can achieve the most abundant information of early-stage weak faults, and its 

calculation formula is shown as the following equation: 

𝑍𝑖 = 𝑚𝑎 𝑥(𝑋𝑖 ∗ 𝑌𝑖) , 𝑖 = 1,2, … , 𝐿.        (23) 

3.2. Adaptive classification algorithm: GWO-BiLSTM 

LSTM is improved by introducing a flexible and self-control self-loop design on the RNN [42]. 

LSTM can only propagate in one direction, and in the process of weak fault diagnosis. LSTM misses 

the part of the weak fault feature information because the weak fault itself is not apparent. Bi-LSTM 

can realize the bi-directional propagation to extract information of weak fault feature to the maximum 

extent to improve the accuracy of the model. In weak fault diagnosis, by using Bi-LSTM, the number 

of neurons in the hidden layer of the model, the initial learning rate, and the regularization coefficient 

need to be specified subjectively, which cannot guarantee the optimal solution, thus affecting the 

accuracy of the model [43]. Therefore, we propose a classification algorithm for GWO-BiLSTM, which 

uses GWO to optimize and adjust the hyperparameters of Bi-LSTM to obtain the optimal solution of the 

model parameters, thus improving the accuracy of the model. 

To improve the accuracy of the Bi-LSTM model, this paper uses the GWO algorithm to optimize 

the hyperparameters of the Bi-LSTM, including the number of neurons in the hidden layer, the learning 

rate, and the regularization coefficient. The obtained results of model classification must be infinitely 
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close to the actual results to get the minimum objective function. The fitness function is defined as 

shown in the following equation: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = − ∑ (𝑦′ − 𝑦)2𝑆
𝑆=1 ,        (24) 

where 𝑦′: the real class, 𝑦: the actual class, 𝑆: the length of training. 

The flow of the optimized classification algorithm based on GWO-BiLSTM is shown in Figure 2. 

 

Figure 2. GWO-BiLSTM overall architecture. 

First, the number of hidden layer neurons, the learning rate, and the regularization coefficient of 

the Bi-LSTM are initialized. The random distribution function is used to initialize the grey wolf 

position, decompose the parameters of the LSTM network, including the weights, etc., and substitute 

them into the network to iteratively calculate the fitness value until the end of the iteration. The best 

𝑊𝛼 is returned as the optimal solution. Inputting it into the Bi-LSTM network and inputting the dataset 

for training can generate the final classification result. 

3.3. Adaptive weak fault diagnosis model 

The process of early-stage weak fault diagnosis for bearings proposed in this paper is shown in 

Figure 3. 

 

Figure 3. Flowchart of the proposed method. 
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We begin by employing SVD to reduce noise in the original bearing signal. The order of the SVD 

is then determined using the difference spectrum. Next, CEEMDAN decomposes the signal into 

multiple IMFs. We utilize AFETF algorithm proposed in this paper to screen the IMF, which contains 

the richest weak fault information. Finally, GWO is employed to optimize the hyperparameters of Bi-

LSTM and train the model for final diagnosis. 

4. Experiments and results analysis 

To verify the effectiveness of the proposed method, a simulation test of bearing fault is performed in 

the test rig shown in Figure 4. The test rig consists of an electric motor, an inertia wheel for applying radial 

load, a coupling, a conveyor belt drive mechanism, a conveyor belt, a crank-connecting rod mechanism, 

a gearbox with the bearing, and a reciprocating mechanism with a spring. The bearing selected for this 

test is a deep groove ball bearing (MB ER-10K), and the rotational frequency of the shaft is defined as 𝑓𝑟. 

Two acceleration meters as shown in Figure 4, are PCB Model 608A11. The sensitivity of these 

acceleration meters is 10.2 (mV/ms-2) / 100 (mv/g). The acquisition card model is NI 9234. According to 

the formula for calculating the fault frequency of the bearing, the characteristic fault frequencies of the 

outer race, inner race and ball are fo = 3.052fr, fi = 4.948fr, and fb = 3.984fr, respectively. 

  

Figure 4. Schematic diagram of bearing test rig. 

Vibration tests were conducted on bearings featuring damage to the outer race, inner race, and 

steel ball components. Localized cracks with a width and a height of 0.2 and 0.4 mm were etched on 

the outer race grooves, inner race grooves, and steel ball surfaces, respectively. The sampling 

frequency 𝑓𝑠 of this test is 25.6 kHz and the motor speed is 900 r/min, corresponding to a rotational 

frequency 𝑓𝑟 of 15 Hz. 

Table 1 displays the characteristic fault frequency of each component under real measurements. 

Table 1. Actual characteristic fault frequency of individual components (Hz). 

Component Outer race Inner race Ball 

Measured rotation frequency 14.33 14.76 14.12 

Characteristic fault frequency 43.75 73.03 56.25 

Taking the outer race weak fault with a 0.2 mm crack vibration signal as an example, its time 
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domain and frequency domain are shown in Figure 5. 

 

(a) Time domain within 0.1 seconds. (b) Frequency domain within 6000 Hz. 

Figure 5. Original signal of the outer race fault with a 0.2 mm crack. 

Figure 5(a) reveals prominent shock characteristics in the time-domain plot, while Figure 5(b) 

illustrates a frequency domain plot with a poorly smoothed signal waveform and numerous mutation 

points, indicating significant background noise. Extracting fault features in this scenario without noise 

reduction is challenging. 

We initially employ SVD for noise reduction of fault signal data to eliminate background noises. 

However, selecting the appropriate order is crucial, as different singular value orders yield vastly 

different effects on noise reduction. The distribution of singular values is depicted in Figure 6, where 

the singular value gradually decreases with increasing order. 

 

Figure 6. Distribution of singular values. 

Figure 7 displays the singular value difference spectrum. At a singular value order of 8, the 

maximum difference value reaches 8.157, indicating a clearer distinction between the signal and noise. 

Hence, a singular value order of 8 is selected for noise reduction in this study. 

Figure 8 illustrates the time domain comparison before and after noise reduction, indicating a 

reduced signal amplitude and a more defined boundary contour. Similarly, Figure 9 displays smoother 

frequency domains post-noise reduction, with fewer mutation points. Irrelevant noise bands are 

suppressed, preserving valuable signal bands and enhancing signal amplitude. SVD noise reduction 

better represents the characteristics of the original signal. 
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Figure 7. Singular value difference spectrum. 

 

(a) Original signal.     (b) Denoised signal. 

Figure 8. Time domain comparison. 

 

(a) Original signal.    (b) Denoised signal. 

Figure 9. Frequency domain comparison. 

Following noise reduction, the signal undergoes CEEMDAN decomposition, yielding 12 IMFs. 

These decomposition results are illustrated in Figure 10. 
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Figure 10. The IMFs obtained from CEEMDAN decomposition. Note R represents the residual. 

CEEMDAN decomposes the signal into 12 IMFs based on frequency, with the final IMF 

representing the residual. Throughout the decomposition process, a reduction in the richness of 

information within each IMF becomes evident. 

 

Figure 11. The sifting iterations boxplot of CEEMDAN mode. 

Figure 11 illustrates the sifting iterations for each IMF during CEEMDAN decomposition. The 

maximum number of sifting iterations for IMF1 is 159, indicating the rapid signal decomposition 

capability of CEEMDAN [44]. 

We propose a AFETF algorithm, which can help filter the IMF containing the richest fault 

information for diagnosis of early-stage weak faults. 

Figure 12 presents the calculation results of mean square error, kurtosis, and sample entropy for 

each IMF in the time domain. 

Figure 12 indicates that the first five IMFs contain the most significant amount of information. 

Setting 𝐿 as 5, 𝛾 as 0.05, and 𝑚 as 5, and according to Eq (21), the envelope spectrum of the first five 
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IMFs are plotted so as to find the number of times the fault frequency that will be multiplied. 

 

(a) Mean square error.   (b) Kurtosis.   (c) Sample entropy. 

Figure 12. IMF time domain index. 

 

(a) IMF1.     (b) IMF2.     (c) IMF3. 

 

(d) IMF4.     (e) IMF5. 

Figure 13. The characteristic frequency of the outer race fault and its frequency multiplier 

in the IMF frequency domain. 

Figure 13 shows that among the eigenfrequencies of the first five highest amplitudes and their 

multiples, there are four for IMF1, two for IMF2, one for IMF3, two for IMF4, and one for IMF5. 

The fault information contained in each IMF is calculated according to Eq (23) and the results are 

shown in Figure 14. 

According to Figure 14, it can be learned that according to the adaptive feature extraction method 

proposed in this paper, IMF1 contains the most abundant fault information, so IMF1 is chosen as the 

feature of weak fault extracted from the outer race. 
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Figure 14. Fault information index. 

Initially, the weak fault with a 0.2 mm crack signal is sliced into segments of 0.1 seconds 

each. Using AFETF proposed in this paper, the optimal IMF is selected and labeled to create a dataset 

of 1140 × 2560. Subsequently, 30% of the data from each category is extracted as the test set. Next, 

the strong fault with a 0.4 mm crack signal is processed similarly to form the same 1140 × 2560 dataset. 

As an example, for weak fault with a 0.2 mm crack, the IMFs selected for the three types of fault 

signals are shown in Figure 15. 

 

Figure 15. IMF selection results for three types of faults. 

From Figure 15, it can be seen that according to the AFETF algorithm of this paper, IMF1, IMF2, 

and IMF3 are the major features to be selected for faults from the outer race, IMF1 for faults from the 

inner race, and IMF1, IMF2, and IMF3 for the ball faults. 

To assess the effectiveness of the proposed method, the weak fault with a 0.2 mm crack is taken 

as an example. First, noise reduction is performed using SVD, followed by signal decomposition with 

CEEMDAN. Subsequently, feature extraction is conducted using Minimum Entropy Deconvolution 

(MED), Maximum Correlated Kurtosis Deconvolution (MCKD), and AFETF proposed in this paper. 

Additionally, the original signal and the first IMF selected after signal decomposition are included as 

features for comprehensive comparison. These features are visualized in 2D using t-sne, as depicted in 

Figure 16. 
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(a) MED.     (b) MCKD.     (c) First IMF. 

 

(d) Original signal.    (e) AFETF. 

Figure 16. Different fault features visualization by t-sne under various feature extraction 

methods. Note red indicates ball fault features, green indicates inner race fault features, and blue 

indicates outer race fault features. 

According to Figure 16, it can be found that the three features extracted by the AFETF algorithm 

proposed in this paper have more distinct boundaries. 

Taking weak fault with a 0.2 mm crack diagnosis as an example, after feature extraction using the 

different feature extraction algorithms mentioned above, the GWO-BiLSTM algorithm is used for 

classification, and the curve of its train accuracy is shown in Figure 17. 

  

Figure 17. Train accuracy curve. 
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The GWO-BiLSTM classification results of confusion matrixes are shown in Figure 18. 

 

(a) MED.     (b) MCKD.     (c) First IMF. 

 

(d) Original Signal.   (e) AFETF. 

Figure 18. GWO-BiLSTM fault diagnosis confusion matrix based on different feature 

extraction methods. 

 

(a) Strong fault with a 0.4 mm crack.  (b) Weak fault with a 0.2 mm crack. 

Figure 19. Comparison of diagnostic accuracy for strong and weak faults under different feature 

extraction methods and diagnostic models. 
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The features are extracted using MED, MCKD, the first IMF, the original signal, and AFETF 

algorithm proposed in this paper, and then classified using CNN, Wide and Deep Convolutional Neural 

Network (WDCNN), Residual Neural Network (ResNet), Support Vector Machine (SVM), Random 

Forest (RF), and GWO-BiLSTM algorithms, respectively, adopted in this paper. The classification 

results for the weak fault with a 0.2 mm crack and for the strong fault with a 0.4 mm crack are shown 

in Figure 19. 

The accuracy of strong fault with a 0.4 mm crack diagnosis is shown in Table 2. 

Table 2. Diagnosis accuracy in the case of strong fault with a 0.4 mm crack. 

Methods MED MCKD First IMF Original signal AFETF 

CNN 88.88 86.35 91.33 61.76 92.65 

WDCNN 92.36 88.74 86.63 74.52 94.26 

ResNet 93.12 90.32 83.75 74.26 95.98 

SVM 90.67 91.93 85.96 73.68 92.27 

RF 88.49 80.06 84.53 76.12 89.34 

GWO-BiLSTM 93.64 92.25 92.81 82.32 96.82 

The diagnosis accuracy in the case of weak fault with a 0.2 mm crack is shown in Table 3. 

Table 3. Diagnosis accuracy in the case of weak fault with a 0.2 mm crack. 

Methods MED MCKD First IMF Original signal AFETF 

CNN 78.98 76.63 71.23 62.26 82.26 

WDCNN 82.43 83.74 79.63 70.25 89.03 

ResNet 83.36 70.12 76.25 68.36 85.94 

SVM 80.17 71.13 75.36 61.98 82.20 

RF 78.46 60.26 64.47 70.12 89.27 

GWO-BiLSTM 84.65 82.28 82.89 72.20 96.93 

According to Figure 19, Tables 2 and 3, regarding feature extraction, the diagnosis algorithms are 

unified using GWO-BiLSTM. AFETF algorithm proposed in this paper improves the accuracy respectively 

by 3.18, 4.57, 4.01, and 14.5% in the diagnosis of strong fault with a 0.4 mm crack. In the diagnosis of 

weak fault with a 0.2 mm crack, the accuracy is respectively improved by 12.28, 14.65, 14.04, and 24.73%. 

Regarding diagnosis algorithms, approaches of feature extraction are unified using AFETF 

algorithm proposed in this paper. In the diagnosis of strong fault with a 0.4 mm crack, compared 

with other algorithms, the accuracy of GWO-BiLSTM proposed in this paper is respectively 

improved by 4.17, 2.56, 0.84, 4.55, and 7.48%. In the diagnosis of weak fault with a 0.2 mm crack, 

the accuracy is respectively improved by 14.67, 7.9, 10.99, 14.73, and 7.66%. 

5. Discussion and conclusions 

We present an adaptive feature extraction and diagnosis method for detecting early-stage weak 

faults in bearings. Following SVD noise reduction, CEEMDAN decomposes the signal into modal 

components. Subsequently, the proposed algorithm, AFETF extracts fault features rich in information. 

GWO-BiLSTM, adept at identifying timing features, conduct adaptive fault diagnosis. Experimental 
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results demonstrate superior diagnostic accuracy for both 0.4 and 0.2 mm faults compared to traditional 

methods. While effective for both strong and weak faults, the method exhibits particularly significant 

accuracy improvement for weak faults. This study underscores the suitability of the proposed diagnosis 

method for detecting early-stage weak faults in bearings. 

We focus on the early-stage weak fault diagnosis of bearings under constant speed conditions. Future 

work will extend this research to weak fault diagnosis under variable speed conditions. 
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