In this study, we introduced an innovative and robust semi-supervised learning strategy tailored for high-dimensional data categorization. This strategy encompasses several pivotal symmetry elements. To begin, we implemented a risk regularization factor to gauge the uncertainty and possible hazards linked to unlabeled samples within semi-supervised learning. Additionally, we defined a unique non-second-order statistical indicator, termed Cp-Loss, within the kernel domain. This Cp-Loss feature is characterized by symmetry and bounded non-negativity, efficiently minimizing the influence of noise points and anomalies on the model's efficacy. Furthermore, we developed a robust safe semi-supervised extreme learning machine (RS3ELM), grounded on this educational framework. We derived the generalization boundary of RS3ELM utilizing Rademacher complexity. The optimization of the output weight matrix in RS3ELM is executed via a fixed point iteration technique, with our theoretical exposition encompassing RS3ELM's convergence and computational complexity. Through empirical analysis on various benchmark datasets, we demonstrated RS3ELM's proficiency and compared it against multiple leading-edge semi-supervised learning models.
Citation: Jun Ma, Xiaolong Zhu. Robust safe semi-supervised learning framework for high-dimensional data classification[J]. AIMS Mathematics, 2024, 9(9): 25705-25731. doi: 10.3934/math.20241256
[1] | Fahad Sikander, Tanveer Fatima, Sharief Deshmukh, Ayman Elsharkawy . Curvature analysis of concircular trajectories in doubly warped product manifolds. AIMS Mathematics, 2024, 9(8): 21940-21951. doi: 10.3934/math.20241066 |
[2] | Mohd Danish Siddiqi, Fatemah Mofarreh . Schur-type inequality for solitonic hypersurfaces in (k,μ)-contact metric manifolds. AIMS Mathematics, 2024, 9(12): 36069-36081. doi: 10.3934/math.20241711 |
[3] | Ayman Elsharkawy, Hoda Elsayied, Abdelrhman Tawfiq, Fatimah Alghamdi . Geometric analysis of the pseudo-projective curvature tensor in doubly and twisted warped product manifolds. AIMS Mathematics, 2025, 10(1): 56-71. doi: 10.3934/math.2025004 |
[4] | Amira A. Ishan, Meraj Ali Khan . Chen-Ricci inequality for biwarped product submanifolds in complex space forms. AIMS Mathematics, 2021, 6(5): 5256-5274. doi: 10.3934/math.2021311 |
[5] | Tong Wu, Yong Wang . Super warped products with a semi-symmetric non-metric connection. AIMS Mathematics, 2022, 7(6): 10534-10553. doi: 10.3934/math.2022587 |
[6] | Mohd. Danish Siddiqi, Fatemah Mofarreh . Hyperbolic Ricci soliton and gradient hyperbolic Ricci soliton on relativistic prefect fluid spacetime. AIMS Mathematics, 2024, 9(8): 21628-21640. doi: 10.3934/math.20241051 |
[7] | Shahroud Azami, Mehdi Jafari, Nargis Jamal, Abdul Haseeb . Hyperbolic Ricci solitons on perfect fluid spacetimes. AIMS Mathematics, 2024, 9(7): 18929-18943. doi: 10.3934/math.2024921 |
[8] | Noura Alhouiti, Fatemah Mofarreh, Fatemah Abdullah Alghamdi, Akram Ali, Piscoran-Ioan Laurian . Geometric topology of CR-warped products in six-dimensional sphere. AIMS Mathematics, 2024, 9(9): 25114-25126. doi: 10.3934/math.20241224 |
[9] | Abdul Haseeb, Fatemah Mofarreh, Sudhakar Kumar Chaubey, Rajendra Prasad . A study of ∗-Ricci–Yamabe solitons on LP-Kenmotsu manifolds. AIMS Mathematics, 2024, 9(8): 22532-22546. doi: 10.3934/math.20241096 |
[10] | Ibrahim Al-Dayel, Meraj Ali Khan . Ricci curvature of contact CR-warped product submanifolds in generalized Sasakian space forms admitting nearly Sasakian structure. AIMS Mathematics, 2021, 6(3): 2132-2151. doi: 10.3934/math.2021130 |
In this study, we introduced an innovative and robust semi-supervised learning strategy tailored for high-dimensional data categorization. This strategy encompasses several pivotal symmetry elements. To begin, we implemented a risk regularization factor to gauge the uncertainty and possible hazards linked to unlabeled samples within semi-supervised learning. Additionally, we defined a unique non-second-order statistical indicator, termed Cp-Loss, within the kernel domain. This Cp-Loss feature is characterized by symmetry and bounded non-negativity, efficiently minimizing the influence of noise points and anomalies on the model's efficacy. Furthermore, we developed a robust safe semi-supervised extreme learning machine (RS3ELM), grounded on this educational framework. We derived the generalization boundary of RS3ELM utilizing Rademacher complexity. The optimization of the output weight matrix in RS3ELM is executed via a fixed point iteration technique, with our theoretical exposition encompassing RS3ELM's convergence and computational complexity. Through empirical analysis on various benchmark datasets, we demonstrated RS3ELM's proficiency and compared it against multiple leading-edge semi-supervised learning models.
In this paper we are concerned with the following problem
{utt−Δu+u+∫t0b(t−s)Δu(s)ds+|ut|γ(⋅)−2ut=uln|u|αinΩ×(0,+∞),u=∂u∂ν=0,on∂Ω×(0,∞),u(x,0)=u0(x),ut(x,0)=u1(x),inΩ, | (1.1) |
where Ω is a bounded domain of Rn with a smooth boundary ∂Ω, ν is the unit outer normal to ∂Ω, u0 and u1 are the given data, b is a relaxation function and γ(.) is a variable exponent.
Problem (1.1) contains three class of problems:
I. Viscoelasticity with wide class of relaxation functions.
The importance of the viscoelastic properties of materials has been realized because of the rapid developments in rubber and plastics industry. Many advances in the studies of constitutive relations, failure theories and life prediction of viscoelastic materials and structures were reported and reviewed in the last two decades [1]. There is an extensive literature on the stabilization of viscoelastic wave equations and many results have been established. There are a lot of contributions to generalize the decay rates by allowing an extended class of relaxation functions and give general decay rates. In fact, the journey of generalization of relaxation functions passed through several steps, we mention here the following stages:
1) As in [2], the relaxation function b satisfies, for two positive constants a1 and a2,
−a1b(t)≤b′(t)≤−a2b(t),t≥0. |
2)As in [3,4], the relaxation function b satisfies
b′(t)≤−a(t)b(t), t≥0, |
where a:R+→R+ is a nonincreasing differentiable function.
3) As in [5], the relaxation function b satisfies
b′(t)≤−χ(b(t)), |
where χ is a positive function, χ(0)=χ′(0)=0, and χ is strictly increasing and strictly convex near the origin.
4) As in [6], the relaxation function b satisfies
b′(t)≤−a(t)bp(t), ∀t≥0, 1≤p<32. |
5)As in [7], the relaxation function b satisfies
b′(t)≤−a(t)B(b(t)), | (1.2) |
where B∈C1(R), with B(0)=0 and B is linear or strictly increasing and strictly convex function C2 near the origin.
II. Variable-exponent nonlinearity.
With the advancement of sciences and technology, many physical and engineering models required more sophisticated mathematical functional spaces to be studied and well understood. For example, in fluid dynamics, the elecrtorheological fluids (smart fluids) have the property that the viscosity changes (often drastically) when exposed to an electrical field. The Lebesgue and Sobolev spaces with variable exponents proved to be efficient tools to study such problems as well as other models like fluids with temperature-dependent viscosity, nonlinear viscoelasticity, filtration processes through a porous media and image processing. More details on these problems can be found in [8,9]. For hyperbolic problems involving variable-exponent nonlinearities, we refer to [10,11,12,13,14,15]. For more results of other problems with the nonlinearity of power type, we refer the interested reader to see [16,17,18].
III. Logarithmic source term.
The logarithmic nonlinearity appears naturally in inflation cosmology and supersymmetric filed theories, quantum mechanics and nuclear physics [19,20]. Problems with logarithmic nonlinearity have a lot of applications in many branches of physics such as nuclear physics, optics and geophysics [21,22,23].
In this paper, we consider problem (1.1) and prove the global existence of solutions, using the well-depth method. We then establish explicit and general decay results of the solution under suitable assumptions on the variable exponent γ(.) and very general assumption on the relaxation function. To the best of our knowledge, such a problem has not been discussed before in the context of nonlinearity with variable exponents.
In addition to the introduction, this paper has four other sections. In Section 2, we present some preliminaries. The Existence is given in Section 3. In Section 4, we establish some technical lemmas needed for the proof of the main results. Our stability results and their proof are given in Section 5.
In this section, we present some preliminaries about the logarithmic nonlinerity and the Lebesgue and Sobolev spaces with variable exponents (see [24,25,26,27]). Throughout this paper, c is used to denote a generic positive constant.
Definition 2.1. Let β:Ω→[1,∞] be a measurable function, where Ω is a bounded domain of Rn, then we have the following definitions:
1) The Lebesgue space with a variable exponent β(⋅) is defined by
Lβ(⋅)(Ω):={v:Ω→R;measurable inΩ:ϱβ(⋅)(kv)<∞,for somek>0}, |
where ϱβ(⋅)(v)=∫Ω1β(x)|v(x)|β(x)dx is a modular.
2) The variable-exponent Sobolev space W1,β(⋅)(Ω) is:
W1,β(⋅)(Ω)={v∈Lβ(⋅)(Ω)such that∇vexistsand|∇v|∈Lβ(⋅)(Ω)}. |
3) W1,β(⋅)0(Ω) is the closure of C∞0(Ω) in W1,β(⋅)(Ω).
Remark 2.2. [9]
1) Lβ(⋅)(Ω) is a Banach space equipped with the following Luxembourg-type norm
‖v‖β(⋅):=inf{λ>0:∫Ω|v(x)λ|β(x)dx≤1}, |
2) W1,β(⋅)(Ω) is a Banach space with respect to the norm
‖v‖W1,β(⋅)(Ω)=‖v‖β(⋅)+‖∇v‖β(⋅). |
Definition 2.3. Let K be a convex function on (0,r], then the convex conjugate of K, in the sense of Young (see [32]), is defined as follows:
K∗(s)=s(K′)−1(s)−K[(K′)−1(s)],ifs∈(0,K′(r)] | (2.1) |
and K∗ satisfies the following generalized Young inequality
α1α2≤K∗(α1)+K(α2),ifα1∈(0,K′(r)],α2∈(0,r]. | (2.2) |
Let
β1:=essinfx∈Ωβ(x),β2:=esssupx∈Ωβ(x). |
Lemma 2.4. [9] If β:Ω→[1,∞) is a measurable function with β2<∞, then C∞0(Ω) is dense in Lβ(⋅)(Ω).
Remark 2.5 (Log-Hölder continuity condition). The exponent p(⋅):Ω→[1,∞] is said to be satisfying the log-Hölder continuity condition; if there exists a constant c>0 such that, for all δ with 0<δ<1,
|p(x)−p(y)|≤−clog|x−y|,for allx,y∈Ω,with|x−y|<δ. | (2.3) |
Lemma 2.6. [9][Poincaré's Inequality] Let Ω be a bounded domain of Rn and p(⋅) satisfies (2.3), then
‖v‖p(⋅)≤c∗‖∇v‖p(⋅),for allv∈W1,p(⋅)0(Ω). |
In particular, the space W1,p(⋅)0(Ω) has an equivalent norm given by ‖v‖W1,p(⋅)0(Ω)=‖∇v‖p(⋅).
Lemma 2.7. [9][Embedding Property] Let Ω be a bounded domain in Rn with a smooth boundary ∂Ω. Assume that p,k∈C(¯Ω) such that
1<p1≤p(x)≤p2<+∞,1<k1≤k(x)≤k2<+∞,∀x∈¯Ω, |
and k(x)<p∗(x) in ¯Ω with
p∗(x)={np(x)n−p(x),if p2<n;+∞,if p2≥n, |
then we have continuous and compact embedding W1,p(.)(Ω)↪Lk(.)(Ω). So, there exists ce>0 such that
‖v‖k≤ce‖v‖W1,p(.),∀v∈W1,p(.)(Ω). |
Lemma 2.8. [27] Let ϵ∈(0,1). Then there exists βε>0 such that
s|lns|≤s2+βϵs1−ϵ,∀s>0. | (2.4) |
We consider the following hypotheses:
(A1) The relaxation function b:R+→R+ is a C1 nonincreasing function satisfying
b(0)>0,1−∫∞0b(s)ds=ˉb>0, | (2.5) |
and there exists a C1 function B:(0,∞)→(0,∞) which is strictly increasing and strictly convex C2 function on (0,r], r≤b(0), with B(0)=B′(0)=0, such that
b′(t)≤−a(t)B(b(t)),∀t≥0, | (2.6) |
where a is a positive nonincreasing differentiable function.
(A2) γ:¯Ω→[1,∞) is a continuous function satisfies the log-Hölder continuity condition (Remark 2.5) such that
γ1:=essinfx∈Ωγ(x),γ2:=esssupx∈Ωγ(x). |
and 1<γ1<γ(x)≤γ2, where
{γ2<∞,n=1,2;γ2≤2nn−2,n≥3. |
(A3) The constant α in (1.1) satisfies 0<α<α0, where α0 is the positive real number satisfying
√2πˉbα0=e−32−1α0 | (2.7) |
where ‖.‖2=‖.‖L2(Ω).
Lemma 2.9. [28,29] (Logarithmic Sobolev inequality) Let u be any function in H10(Ω) and d be any positive real number. Then
∫Ωu2ln|u|dx≤12‖u‖22ln‖u‖22+d22π‖∇u‖22−(1+lnd)‖u‖22. | (2.8) |
Lemma 2.10. There exists a unique α0>0 such that
e−32−1s<√2πˉbs,∀s∈(0,α0). | (2.9) |
Proof. Let g(s)=√2πˉbs−e−32−1s, then g is a continuous and decreasing function on (0,∞), with
lims→0+g(s)=∞andlimx→∞g(x)=−e−32. |
Then, there exists a unique α0>0 such that g(α0)=0 and (2.9) holds
Remark 2.11. Lemma 2.10 shows that the selection of α in (A3) is possible.
Remark 2.12. Using the facts that B(0)=0 and B is strictly convex on (0,r], then
B(θs)≤θB(s), 0≤θ≤1 and s∈(0,r]. | (2.10) |
Remark 2.13. [7] If B is a strictly increasing and strictly convex C2 function on (0,r], with B(0)=B′(0)=0, then there is a strictly convex and strictly increasing C2 function ¯B:[0,+∞)⟶[0,+∞) which is an extension of B. For simplicity, in the rest of this paper, we use B instead of ¯B.
In this section, we state the local existence theorem whose proof can be established by combining the arguments of [10,30,31]. Also, we state and prove a global existence result under smallness conditions on the initial data (u0,u1).
Theorem 3.1 (Local Existence). Suppose conditions (A1)-(A3) hold and (u0,u1)∈H10(Ω)×L2(Ω). Then, there exists T>0, such that problem (1.1) has a weak solution
u∈L∞((0,T),H10(Ω)),ut∈L∞((0,T),L2(Ω))∩Lγ(.)(Ω×(0,T)). |
Definition 3.2. We define the following functionals which are needed for establishing the global existence
E(t)=12[‖ut‖22+(1−∫t0b(s)ds)‖∇u‖22+(b∘∇u)(t)+α+22‖u‖22]−12∫Ωu2ln|u|αdx | (3.1) |
where for v∈L2loc(R+;L2(Ω)),
(b∘v)(t):=∫t0b(t−s)‖v(t)−v(s)‖22ds. |
E(t) represents the modified energy functional associated to problem (1.1).
I(u)=I(u(t))=(1−∫t0b(s)ds)‖∇u‖22+‖u‖22+(bo∇u)(t)−∫Ωu2ln|u|αdx | (3.2) |
J(u)=J(u(t))=12I(u(t))+α4‖u‖22, | (3.3) |
then
E(t)=12||ut(t)||22+J(u(t)). | (3.4) |
Notation: We define
ρ∗=e2D0−αα,E1=12D0ρ2∗−α4ρ2∗lnρ2∗ |
and
D0=α+22+α(1+lnd), |
where 0<d<√2πˉbα.
Lemma 3.3. Assume that (u0,u1)∈H10(Ω)×L2(Ω), (A1) holds,
‖u0‖2<ρ∗ and 0<E(0)<E1. | (3.5) |
Then, I(u(t))≥0 for all t∈[0,T).
Proof. First, we show that ‖u‖2<ρ∗, ∀t∈[0,T). By (2.5), (3.4) and (2.9), we obtain
E(t)≥J(u(t))≥ˉb2‖∇u‖22+12‖u‖22+12(bo∇u)(t)−12∫Ωu2ln|u|αdx+α4‖u‖22≥12(ˉb−αd22π)‖∇u‖22+12(α+22+α(1+lnd)−α2ln‖u‖22)‖u‖22 | (3.6) |
If we select d<√2πˉbα, then (3.6) becomes
E(t)≥Z(ρ)=12D0ρ2−α4ρ2lnρ2 | (3.7) |
where D0=α+22+α(1+lnd) and ρ=‖u‖2. Using (3.7), we can deduce that that Z is increasing on (0,ρ∗), decreasing on (ρ∗,+∞) and Z(ρ)→−∞ as ρ→+∞. Moreover,
max0<ρ<+∞Z(ρ)=12D0ρ2∗−α4ρ2∗lnρ2∗=Z(ρ∗)=E1. |
Suppose that ‖u(x,t)‖2<ρ∗ is not true in [0,T). Therefore, using the continuity of u(t), it follows that there exists 0<t0<T such that ‖u(x,t0)‖2=ρ∗. From Eq (3.7), we can see that
E(t0)≥Z(‖u(x,t0)‖2)=Z(ρ∗)=E1, |
which is a contradiction with E(t)≤E(0)<E1 for all t≥0. Recalling the definition of I(u(t)), and using (2.9) with d<√2πˉbα, for all t∈[0,T), lead to
I(u(t))≥ˉb‖∇u‖22−∫Ωu2ln|u|αdx≥(ˉb−αd22π)‖∇u‖22+(1+α(1+lnd)−α2ln‖u‖22)‖u‖22≥(ˉb−αd22π)‖∇u‖22+‖u‖22≥0. | (3.8) |
This completes the proof.
Remark 3.4. We can see that if ‖u0‖2<ρ∗ and E(0)<E1, then J(u(t))≥0 and consequently E(t)≥0 for all t∈[0,T). Therefore, from (3.8), for t∈[0,T) we have
‖ut‖22≤2E(t)≤2E(0),‖∇u‖22≤2π2πˉb−αd2I(t)≤4π2πˉb−αd2E(t)≤4π2πˉb−αd2E(0), | (3.9) |
which shows that the soultion is global and bounded in time.
In this section, we establish several lemmas needed for the proof of our main result.
Lemma 4.1. The energy functional associated to problem (1.1) satisfies, for any t≥0,
E′(t)=12(b′∘∇u)(t)−12b(t)‖∇u‖22−∫Ω|ut|γ(x)dx≤0. | (4.1) |
Proof. Multiplying (1.1) by ut, integrating over Ω and using the boundary conditions, imply (4.1).
Lemma 4.2. [31] Assume that b satisfies (A1). Then, for u∈H10(Ω),
∫Ω(∫t0b(t−s)(u(t)−u(s))ds)2dx≤c(bo∇u)(t), |
and
∫Ω(∫t0b′(t−s)(u(t)−u(s))ds)2dx≤−c(b′o∇u)(t). |
Lemma 4.3. [7] Assume (A1) holds. Then, for any t≥t0,, we have
a(t)∫t00b(s)‖∇u(t)−∇u(t−s)‖22ds≤−cE′(t). |
Lemma 4.4. Assume that (A1)-(A3) and (3.5) hold, then the functional
I1(t):=∫Ωuutdx |
satisfies, along with the solution of (1.1), the estimates:
I′1(t)≤||ut||22−‖u‖22−ˉb4||∇u(t)||22+c(bo∇u)(t)+c∫Ω|ut|γ(x)dx+∫Ωu2ln|u|αdx,for γ1≥2 | (4.2) |
and
I′1(t)≤||ut||22−‖u‖22−ˉb4||∇u(t)||22+c(bo∇u)(t)+c∫Ω|ut|γ(x)dx+(∫Ω|ut|γ(x))γ1−1+∫Ωu2ln|u|αdx,for1<γ1<2. | (4.3) |
Proof. Differentiate I1 and use the differential equation in (1.1), to get
I′1(t)=||ut||22−‖u‖22−(1−∫t0b(s)ds)||∇u||22+∫Ω∇u(t)∫t0b(t−s)(∇u(s)−∇u(t))dsdx−∫Ωu|ut|γ(x)−2utdx+∫Ωu2ln|u|αdx. | (4.4) |
Young's inequality and (4.2) give
∫Ω∇u.∫t0b(t−s)(∇u(s)−∇u(t))dsdx≤δ0∫Ω|∇u|2dx+c4δ0(bo∇u)(t). | (4.5) |
Estimation of the term −∫Ωu|ut|γ(x)−2utdx:
We use Young's inequality with p(x)=γ(x)γ(x)−1 and p′(x)=γ(x) so, for all x∈Ω, we have
|ut|γ(x)−2utu≤δ|u|γ(x)+cδ(x)|ut|γ(x), |
where
cδ(x)=δ1−γ(x)(γ(x))−γ(x)(γ(x)−1)γ(x)−1. |
Hence,
−∫Ωu|ut|γ(x)−2utdx≤δ∫Ω|u|γ(x)dx+∫Ωcδ(x)|ut|γ(x)dx. | (4.6) |
Now, using (3.1), (4.1), (3.9) and Lemma 2.7, we obtain
∫Ω|u|γ(x)dx≤∫Ω+|u|γ(x)dx+∫Ω−|u|γ(x)dx≤∫Ω+|u|γ2dx+∫Ω−|u|γ1dx≤∫Ω|u|γ2dx+∫Ω|u|γ1dx≤(cγ1e||∇u||γ12+cγ2e||∇u||γ22)≤(cγ1e||∇u||γ1−22+cγ2e||∇u||γ2−22)||∇u||22≤(cγ1e(4π2πˉb−αd2E(0))γ1−2+cγ2e(4π2πˉb−αd2E(0))γ2−2)||∇u||22≤c||∇u||22, | (4.7) |
where
Ω+={x∈Ω:|u(x,t)|≥1}andΩ−={x∈Ω:|u(x,t)|<1}, |
and
c=(cγ1e(4π2πˉb−αd2E(0))γ1−2+cγ2e(4π2πˉb−αd2E(0))γ2−2). |
Then, (4.6) and (4.7) yield
−∫Ωu|ut|γ(x)utdx≤δc||∇u||22+∫Ωcδ(x)|ut|γ(x)dx. | (4.8) |
Combining the above results with fixing δ0=ˉb2 and δ=ˉb4c completes the proof of (4.2).
For the proof of (4.3), we re-estimate the fifth term in (4.4) as follows:
First, we define
Ω1={x∈Ω:γ(x)<2}andΩ2={x∈Ω:γ(x)≥2}. |
Then, we get
−∫Ωu|ut|γ(x)−2utdx=−∫Ω1u|ut|γ(x)−2utdx−∫Ω2u|ut|γ(x)−2utdx. | (4.9) |
Using the definition of Ω1, we have
2γ(x)−2<γ(x),and2γ(x)−2≥2γ1−2. | (4.10) |
Therefore, using Young's and Poincaré's inequalities and (4.10), we obtain
−∫Ω1u|ut|γ(x)−2utdx≤θ∫Ω1|u|2dx+14θ∫Ω1|ut|2γ(x)−2dx≤θc2∗||∇u||22+c[∫Ω+1|ut|2γ(x)−2dx+∫Ω−1|ut|2γ(x)−2dx]≤θc2∗||∇u||22+c[∫Ω+1|ut|γ(x)dx+∫Ω−1|ut|2γ1−2dx]≤θc2∗||∇u||22+c[∫Ω|ut|γ(x)dx+(∫Ω−1|ut|2dx)γ1−1]≤θc2∗||∇u||22+c[∫Ω|ut|γ(x)dx+(∫Ω−1|ut|γ(x)dx)γ1−1]≤θc2∗||∇u||22+c[∫Ω|ut|γ(x)dx+(∫Ω|ut|γ(x)dx)γ1−1], | (4.11) |
where
Ω+1={x∈Ω1:|ut(x,t)|≥1}andΩ−1={x∈Ω1:|ut(x,t)|<1}. | (4.12) |
After setting θ=ˉb8c2∗, (4.11) becomes
−∫Ω1u|ut|γ(x)−2utdx≤ˉb8||∇u||22+c[∫Ω|ut|γ(x)dx+(∫Ω|ut|γ(x)dx)γ1−1]. | (4.13) |
Next, for any δ we have, by the case γ(x)≥2,
−∫Ω2u|ut|γ(x)−2utdx≤δc||∇u||22+∫Ωcδ(x)|ut|γ(x)dx. | (4.14) |
Therefore, by combining (4.9)-(4.14), we arrive at
I′1(t)≤||ut||22−(3ˉb8−cδ)||∇u(t)||22+c(bo∇u)(t)+c[∫Ω(1+cδ(x))|ut|γ(x)dx+(∫Ω|ut|γ(x))γ1−1]+∫Ωu2ln|u|αdx. |
By fixing δ=ˉb8c, cδ(x) remains bounded and, consequently, we obtain (4.3).
Lemma 4.5. Assume that (A1)-(A3) and (3.5) hold, then for any δ>0, the functional
I2(t):=−∫Ωut∫t0b(t−s)(u(t)−u(s))dsdx |
satisfies, along the solution of (1.1), the estimates:
I′2(t)≤δ‖∇u‖22−(∫t0b(s)ds−δ)‖ut‖22+∫Ωcδ(x)|ut|γ(x)dx+cδ(−b′o∇u)(t)+cδ(b∘∇u)(t)+cϵ,δ(bo∇u)11+ϵ(t),forγ1≥2, | (4.15) |
and for 1<γ1<2, we have the following estimate
I′2(t)≤δ‖∇u‖22−(∫t0b(s)ds−δ)‖ut‖22+c(b∘∇u)(t)+cϵ,δ(bo∇u)11+ϵ(t)+cδ(−b′o∇u)(t)+cδ[∫Ω|ut|γ(x)dx+(∫Ω|ut|γ(x)dx)γ1−1] | (4.16) |
Proof. Direct differentiation of I2, using (1.1), yields
I′2(t)=∫Ω∇u∫t0b(t−s)(∇u(t)−∇u(s))dsdx−∫Ωu∫t0b(t−s)(u(t)−u(s))dsdx−∫Ω(∫t0b(t−s)∇u(s)ds)(∫t0b(t−s)(∇u(t)−∇u(s))ds)dx−∫Ωut∫t0b′(t−s)(u(t)−u(s))dsdx−(∫t0b(s)ds)‖ut‖22+∫Ω|ut|γ(x)−2ut∫t0b(t−s)(u(t)−u(s))dsdx−α∫Ωuln|u|∫t0b(t−s)(u(t)−u(s))dsdx=(1−∫t0b(s)ds)∫Ω∇u∫t0b(t−s)(∇u(t)−∇u(s))dsdx−∫Ωu∫t0b(t−s)(u(t)−u(s))dsdx+∫Ω(∫t0b(t−s)(∇u(t)−∇u(s))ds)2dx−∫Ωut∫t0b′(t−s)(u(t)−u(s))dsdx−(∫t0b(s)ds)‖ut‖22+∫Ω|ut|γ(x)−2ut∫t0b(t−s)(u(t)−u(s))dsdx−α∫Ωuln|u|∫t0b(t−s)(u(t)−u(s))dsdx. | (4.17) |
Using Young's inequality and Lemma 4.2, we obtain
(1−∫t0b(s)ds)∫Ω∇u.∫t0b(t−s)(∇u(t)−∇u(s))dsdx≤cδ‖∇u‖22+cδ(bo∇u)(t). | (4.18) |
The use of Lemma 4.2, Young's and Poincaré's inequalities leads to
∫Ωu∫t0b(t−s)(u(t)−u(s))dsdx≤cδ||∇u||22+cδ(bo∇u)(t) | (4.19) |
Exploiting Lemma (4.2) and Young's inequality, we obtain
−∫Ωut∫t0b′(t−s)(u(t)−u(s))dsdx≤δ‖ut‖22+cδ(−b′o∇u)(t). | (4.20) |
Next, for almost every x∈Ω fixed, we have
∫t0b(t−s)|u(t)−u(s)|ds≤(∫t0b(s)ds)γ(x)−1γ(x)(∫t0b(t−s)|u(t)−u(s)|γ(x)ds)1γ(x)≤(1−ˉb)γ(x)−1γ(x)(∫t0b(t−s)|u(t)−u(s)|γ(x)ds)1γ(x). | (4.21) |
Therefore, for almost every x∈Ω, we have
|∫t0b(t−s)|u(t)−u(s)|ds|γ(x)≤(1−ˉb)γ1−1∫t0b(t−s)|u(t)−u(s)|γ(x)ds. | (4.22) |
By using Young's, Hölder's and Poincaré's inequalities and Lemma 4.2, we get
∫Ω|ut|γ(x)−2ut∫t0b(t−s)(u(t)−u(s))dsdx≤δ∫Ω|∫t0b(t−s)(u(t)−u(s))ds|γ(x)dx+∫Ωcδ(x)|ut|γ(x)dx≤δ(1−ˉb)γ1−1∫Ω∫t0b(t−s)|(u(t)−u(s)|γ(x)dsdx+∫Ωcδ(x)|ut|γ(x)dx, | (4.23) |
where
cδ(x)=δ1−γ(x)(γ(x))−γ(x)(γ(x)−1)γ(x)−1. |
Similarly, we have
∫Ω∫t0b(t−s)|(u(t)−u(s)|γ(x)dsdx≤∫Ω+∫t0b(t−s)|(u(t)−u(s)|γ2dsdx+∫Ω−∫t0b(t−s)|(u(t)−u(s)|γ1dsdx≤∫t0b(t−s)||(u(t)−u(s)||γ2γ2ds+∫t0b(t−s)||(u(t)−u(s)||γ1γ1ds≤[cγ2e(4π2πˉb−αd2E(0))γ2−22+cγ1e(4π2πˉb−αd2E(0))γ1−22]∫t0b(t−s)||(u(t)−u(s)||22ds. | (4.24) |
Therefore,
∫Ω|ut|γ(x)−2ut∫t0b(t−s)(u(t)−u(s))dsdx≤cδ(1−ˉb)γ1−1(b∘∇u)(t)+∫Ωcδ(x)|ut|γ(x)dx, | (4.25) |
where c=[cγ2e(4π2πˉb−αd2E(0))γ2−22+cγ1e(4π2πˉb−αd2E(0))γ1−22].
For the last term in (4.17), the use of (2.4), Young's, Cauchy-Schwarz' and Poincaré's inequalities, the embedding theorem and Lemma 4.2 leads to, for any δ>0,
∫Ωuln|u|α∫t0b(t−s)(u(t)−u(s))dsdx≤α∫Ω(u2+βϵ|u|1−ϵ)|∫t0b(t−s)(u(t)−u(s))dsdx|≤c∫Ω|u|2|∫t0b(t−s)(u(t)−u(s))ds|dx+δ∫Ωu2dx+cϵ,δ∫Ω|∫t0b(t−s)(u(t)−u(s))ds|21+ϵdx≤cδ||∇u||22+cδ∫Ω|∫t0b(t−s)(u(t)−u(s))ds|2dx+cϵ,δ∫Ω|∫t0b(t−s)(u(t)−u(s))ds|21+ϵdx≤cδ||∇u||22+cδ(bo∇u)(t)+cϵ,δ(bo∇u)11+ϵ(t). |
Combining the above estimates with (4.17), we obtain (4.15).
For the proof of (4.16), we re-estimate the fifth term in (4.17) as follows:
∫Ω|ut|γ(x)−2ut∫t0b(t−s)(u(t)−u(s))dsdx≤δ∫Ω|∫t0b(t−s)(u(t)−u(s))ds|2dx+cδ∫Ω|ut|2γ(x)−2dx≤δ(1−ˉb)(b∘u)(t)+cδ∫Ω|ut|2γ(x)−2dx≤cδ(b∘∇u)(t)+cδ∫Ω1|ut|2γ(x)−2dx+cδ∫Ω2|ut|2γ(x)−2dx≤cδ(b∘∇u)(t)+cδ(∫Ω|ut|γ(x)dx+(∫Ω|ut|γ(x)dx)γ1−1). | (4.26) |
Then (4.16) is established.
Lemma 4.6. Given t0>0. Assume that (A1)-(A3) and (3.5) hold. Then,
L(t):=N1E(t)+N2I1(t)+I2(t) |
satisfies, for a suitable choice of N1,N2>0 and for some positive constants λ0 and c, the estimates, for any t≥t0,
L′(t)≤−λ0E(t)+c(bo∇u)(t)+cϵ(bo∇u)11+ϵ(t),forγ1≥2, | (4.27) |
and
L′(t)≤−cE(t)+c(b∘∇u)(t)+cϵ(bo∇u)11+ϵ(t)+c(−E′(t))γ1−1,for1<γ1<2. | (4.28) |
Proof. Since b is positive and b(0)>0 then, for any t0>0, we have
∫t0b(s)ds≥∫t00b(s)ds=b0>0, ∀t≥t0. |
By using (4.1), (4.2) and (4.15), then, for t≥t0 and any λ0>0, we have
L′(t)≤−λ0E(t)−(N2δ−ˉb2+λ0(1−b0)2)|| ∇u||22−(N2(b0−δ)−1−λ02)||ut||22+c(bo∇u)(t)+(12N1−4cℓN22)(b′o∇u)(t)+(1−λ02)∫Ωu2ln|u|αdx+(1−λ0(α+2)4)‖u‖22. |
Using the Logarithmic Sobolev inequality, for 0<λ0<12, we get
L′(t)≤−λ0E(t)−(N2δ−ˉb2+λ0(1−b0)2−(1−λ02)αd22π)|| ∇u||22−(N2(b0−δ)−1−λ02)||ut||22+c(bo∇u)(t)+(12N1−4cˉbN22)(b′o∇u)(t)−(1−α2(1−λ02)ln‖u‖22+α(1+lnd)(1−λ02)−λ0(α+2)4)‖u‖22. |
At this point, we select λ0 and α so small that
1−α2(1−λ02)ln‖u‖22+α(1+lnd)(1−λ02)−λ0(α+2)4>0. |
Then, we choose N2 large enough so that:
N2δ−ˉb2+λ0(1−b0)2−(1−λ02)αd22π>0 |
and
N2(b0−δ)−1−λ02>0, |
and then N1 large enough that
N1−4cˉbN22>0. |
Therefore, we arrive at the desired result (4.27). On the other hand, we can choose N1 even larger (if needed) so that
L∼E. | (4.29) |
In this section, we establish our main decay results. For this purpose, we need the following remarks and lemma.
Remark 5.1. Using (3.6) and (4.1), we get
(bo∇u)(t)=(bo∇u)ϵ1+ϵ(t)(bo∇u)11+ϵ(t)≤c(bo∇u)11+ϵ(t). | (5.1) |
Remark 5.2. In the case of B is linear and since a is nonincreasing, we have
a(t)(b∘∇u)11+ϵ(t)=(aϵ(t)a(t)(b∘∇u)(t))11+ϵ≤(aϵ(0)a(t)(b∘∇u)(t))11+ϵ≤c(a(t)(b∘∇u)(t))11+ϵ≤c(−E′(t))11+ϵ. | (5.2) |
Lemma 5.3. If (A1)-(A2) are satisfied, then we have the following estimate
(bo∇u)(t)≤tε0B−1(ε0ψ(t)ta(t)),∀t>0, | (5.3) |
where ε0 is small enough and the functional ψ is defined by
ψ(t):=(−b′o∇u)(t)≤−cE′(t), | (5.4) |
Proof. To establish (5.3), let us define the following functional
Λ(t):=ε0t∫t0||∇u(t)−∇u(t−s)||22ds,∀t>0. | (5.5) |
Then, using (3.1), (4.1) and the dentition of Λ(t), we have
Λ(t)≤2ε0t(∫t0||∇u(t)||22+∫t0||∇u(t−s)||22ds).≤4ε0ˉbt(∫t0(E(t)+E(t−s))ds)≤8ε0ˉbt∫t0E(s)ds≤8ε0ˉbt∫t0E(0)ds=8ε0ˉbE(0)<+∞. | (5.6) |
Thus, ε0 can be chosen so small so that, for all t>0,
Λ(t)<1. | (5.7) |
Without loss of the generality, for all t>0, we assume that Λ(t)>0, otherwise we get an exponential decay from (4.27). The use of Jensen's inequality and using (5.4), (2.10) and (5.7) gives
ψ(t)=1ε0Λ(t)∫t0Λ(t)(−b′(s))∫Ωε0|∇u(t)−∇u(t−s)|2dxds≥1ε0Λ(t)∫t0Λ(t)a(s)B(b(s))∫Ωε0|∇u(t)−∇u(t−s)|2dxds≥a(t)ε0Λ(t)∫t0B(Λ(t)b(s))∫Ωε0|∇u(t)−∇u(t−s)|2dxds≥ta(t)ε0B(ε0t∫t0b(s)∫Ω|∇u(t)−∇u(t−s)|2dxds), | (5.8) |
hence (5.3) is established.
Theorem 5.4 (The case: γ1≥2). Assume that (A1)-(A3) and (3.5) hold. Let (u0,u1)∈H10(Ω)×L2(Ω). Then, there exist positive constants c, t0 and t1 such that the solution of (1.1) satisfies,
E(t)≤c(1+∫tt0a1+ϵ(s)ds)−1ϵ,∀t≥t0,if B is linear | (5.9) |
and
E(t)≤ct11+ϵB2−1(ct11+ϵ∫tt1a(s)ds),∀t≥t1,if B is nonlinear, | (5.10) |
where B2(s)=sB′(ε1s) and B(t)=([B−1]11+ϵ)−1(t).
Proof. Case 1: B is linear
We multiply (4.27) by a(t) and use (5.1) and (5.2) to get
a(t)L′(t)≤−λ0a(t)E(t)+c(−E′(t))11+ϵ,∀t≥t0. | (5.11) |
Multiply (5.11) by aϵ(t)Eϵ(t), and recall that a′≤0, to obtain
aϵ+1(t)Eϵ(t)L′(t)≤−λ0aϵ+1(t)Eϵ+1(t)+c(aE)ϵ(t)(−E′(t))1ϵ+1,∀t≥t0. |
Use of Young's inequality, with q=ϵ+1 and q∗=ϵ+1ϵ, gives, for any ε′>0,
aϵ+1(t)Eϵ(t)L′(t)≤−λ0aϵ+1(t)Eϵ+1(t)+c(ε′aϵ+1(t)Eϵ+1−cε′E′(t))=−(λ0−ε′c)aϵ+1(t)Eϵ+1−cE′(t),∀t≥t0. |
We then choose 0<ε′<λ0c and use that a′≤0 and E′≤0, to get, for c1=λ0−ε′c,
(aϵ+1EϵL)′(t)≤aϵ+1(t)Eϵ(t)L′1(t)≤−c1aϵ+1(t)Eϵ+1(t)−cE′(t),∀t≥t0, |
which implies
(aϵ+1EϵL+cE)′(t)≤−c1aϵ+1(t)Eϵ+1(t),∀t≥t0, |
where L1=aϵ+1EϵL+cE. Then L1∼E (thanks to (4.29)) and
L′1(t)≤−caϵ+1(t)Lϵ+11(t), ∀t≥t0. |
Integrating over (t0,t) and using the fact that L1∼E, we obtain (5.9).
Case 2: B is non-linear.
Using (4.27), (5.1) and (5.3), we obtain, ∀t≥t0,
L′(t)≤−λ0E(t)+ct11+ϵ[B−1(ε0ψ(t)ta(t))]11+ϵ. | (5.12) |
Combining the strictly increasing property of ¯B and the fact that 1t<1 whenever t>1, we obtain
B−1(ε0ψ(t)ta(t))≤B−1(ε0ψ(t)t11+ϵa(t)) | (5.13) |
then, (5.12) becomes, for ∀t≥t1=max{t0,1},
L′(t)≤−λ0E(t)+ct11+ϵ[B−1(ε0ψ(t)t11+ϵa(t))]11+ϵ. | (5.14) |
Set
B(t)=([B−1]11+ϵ)−1(t),χ(t)=ε0ψ(t)t11+ϵa(t) | (5.15) |
Using the facts that B′>0 and B′′>0 on (o,r], (5.14) reduces to
L′(t)≤−λ0E(t)+ct11+ϵB−1(χ(t)),∀t≥t1 | (5.16) |
Now, for ε1<r and using (5.16) and the fact that E′≤0, B′>0,B′′>0 on (0,r], we find that the functional L2, defined by
L2(t):=B′(ε1t11+ϵ⋅E(t)E(0))L(t), |
satisfies, for some c1,c2>0.
c1L2(t)≤E(t)≤c2L2(t) | (5.17) |
and, for all t≥t1,
L′2(t)≤−λ0E(t)B′(ε1t11+ϵ⋅E(t)E(0))+ct11+ϵB′(ε1t11+ϵ⋅E(t)E(0))B−1(χ(t)). | (5.18) |
So, using (2.1) and (2.2) with α1=B′(ε1t11+ϵ⋅E(t)E(0)) and α2=B−1(χ(t)), we arrive at
L′2(t)≤−λ0E(t)B′(ε1t11+ϵ⋅E(t)E(0))+ct11+ϵ0B∗(G′(ε1t11+ϵ⋅E(t)E(0)))+ct11+ϵχ(t)≤−λ0E(t)B′(ε1t11+ϵ0⋅E(t)E(0))+cε1E(t)E(0)B′(ε1t11+ϵ0⋅E(t)E(0))+ct11+ϵ0χ(t). | (5.19) |
Then, multiplying (5.19) by a(t) and using (5.4), (5.15), we get
a(t)L′2(t)≤−λ0a(t)E(t)B′(ε1t11+ϵ0⋅E(t)E(0))+cε1a(t)E(t)E(0)B′(ε1t11+ϵ0⋅E(t)E(0))−cE′(t),∀t≥t1. |
Using the non-increasing property of a, we obtain, for all t≥t1,
(aL2+cE)′(t)≤−λ0a(t)E(t)B′(ε1t11+ϵ⋅E(t)E(0))+cε1a(t)E(t)E(0)B′(ε1t11+ϵ⋅E(t)E(0)) |
Therefore, by setting L3:=aL2+cE∼E, we conclude that
L′3(t)≤−λ0a(t)E(t)B′(ε1t11+ϵ⋅E(t)E(0))+cε1a(t)⋅E(t)E(0)B′(ε1t11+ϵ⋅E(t)E(0)). |
This gives, for a suitable choice of ε1,
L′3(t)≤−ca(t)(E(t)E(0))B′(ε1t11+ϵ⋅E(t)E(0)),∀t≥t1 |
or
c(E(t)E(0))B′(ε1t11+ϵ⋅E(t)E(0))a(t)≤−L′3(t),∀t≥t1 | (5.20) |
An integration of (5.20) yields
∫tt1c(E(s)E(0))B′(ε1s11+ϵ⋅E(s)E(0))a(s)ds≤−∫tt1L′3(s)ds≤L3(t1). | (5.21) |
Using the facts that B′,B″>0 and the non-increasing property of E, we deduce that the map t↦E(t)B′(ε1t11+ϵ⋅E(t)E(0)) is non-increasing and consequently, we have
c(E(t)E(0))B′(ε1t11+ϵ0⋅E(t)E(0))∫tt1a(s)ds≤∫tt1c(E(s)E(0))B′(ε1s11+ϵ⋅E(s)E(0))a(s)ds≤L3(t1),∀t≥t1 | (5.22) |
Multiplying each side of (5.22) by 1t11+ϵ, we have
(1t11+ϵ⋅E(t)E(0))B′(ε1t11+ϵ⋅E(t)E(0))∫tt1a(s)ds≤ct11+ϵ,∀t≥t1 | (5.23) |
Next, we set B2(s)=sB′(ε1s) which is strictly increasing, and consequently we obtain,
B2(1t11+ϵ⋅E(t)E(0))∫tt1a(s)ds≤ct11+ϵ,∀t≥t1 | (5.24) |
Finally, we infer
E(t)≤ct11+ϵB2−1(ct11+ϵ∫tt1a(s)ds). | (5.25) |
This finishes the proof.
The following examples illustrate the results of Theorem 5.4:
Example 1. Let b(t)=c1e−c2(1+t), where c2>0 and c1>0 is small enough so that (A1) holds. Then b′(t)=−a(t)B(b(t)) where B(t)=t and a(t)=c. Therefore, we can use (5.9) to deduce
E(t)≤c(1+t)1ϵ. | (5.26) |
Example 2. Let b(t)=c1(1+t)q, where q>1+ϵ and c1 is chosen so that hypothesis (A1) is satisfied. Then
b′(t)=−aB(b(t)),withB(s)=sq+1q, |
where a is a fixed constant. Then, (5.10) gives,
E(t)≤ctq−1−ϵ(1+ϵ)2(q+1). | (5.27) |
To establish the stability result in the case 1<γ1<2, we need the following lemma:
Lemma 5.5. The energy functional E(t) satisfies the following estimate:
[−E′(t)]11+ε+[−E′(t)]γ1−1≤c[−E′(t)]γε, | (5.28) |
where γε=min{γ1−1,11+ε}.
Proof. Using (2.5), (3.1), (3.3), (3.6) and Lemma 3.3, we have
E(t)=J(t)+12‖ut(t)‖22≥J(t)≥ˉb2‖∇u(t)‖22, |
then, using (4.1),
‖∇u(t)‖22≤2ˉbE(t)≤2ˉbE(0). | (5.29) |
So, from (4.1), (4.7) and using Young's inequality, we get
|E′(t)|=12b(t)‖∇u(t)‖22−12(b′o∇u)(t)−∫Ω|ut|γ(x)dx≤12b(t)‖∇u(t)‖22−∫t0b′(t−s)(‖∇u(t)‖22+‖∇u(s)‖22)ds+c‖∇u‖22≤2l(12b(t)+2b(0)−2b(t)+c)E(0)≤cE(0). | (5.30) |
Setting γε=min{γ1−1,11+ε} and using (5.30), we obtain
[−E′(t)]11+ε+[−E′(t)]γ1−1≤[−E′(t)]γε[−E′(t)]11+ε−γε+[−E′(t)]γε[−E′(t)]γ1−1−γε≤((cE(0))11+ε−γε+(cE(0))γ1−1−γε)[−E′(t)]γε, | (5.31) |
which completes the proof of Lemma 5.5.
Theorem 5.6 (The case: 1<γ1<2). Assume that (A1)-(A3) and (3.5) hold. Let (u0,u1)∈H10(Ω)×L2(Ω). Then, there exist positive constants C, k2,k3 such that the energy functional associated to problem (1.1) satisfies
E(t)≤C(∫tt0a1γε(s)ds)γε−1γε,∀t≥t0,if B is linear, | (5.32) |
and, if B is nonlinear, we have
E(t)≤k3t11+ϵB3−1(k2t11+ϵ∫tt1a(s)ds),∀t>t1, | (5.33) |
where γε=min{γ1−1,11+ε}, B3(s)=sB′(ε3s)and B(s)=([B−1]11+ϵ)−1(s).
Proof. Case B is linear.
Multiplying (4.28) by a(t) and combining (2.6), (3.1), (5.2) and (5.28), we obtain, for some m1>0,
a(t)L′(t)≤−m1a(t)E(t)+c[−E′(t)]11+ε+ca(t)[−E′(t)]γ1−1≤−m1a(t)E(t)c+c[−E′(t)]γε,∀t>t0. | (5.34) |
Let L:=aL+cE∼E, multiply both sides of the above estimate by aqEq, with q=1γε−1 and apply Young's inequality, to get,
aqEq(t)L′(t)≤−(m1−ϵ2)aq+1(t)Eq+1(t)−cE′(t),∀t≥t0. |
Set L1:=aqEqL+cE∼E, take ϵ2 small enough and use the non-increasing property of E we obtain, for some m2,m3>0,
L′1(t)≤−m2aq+1(t)Eq+1(t)≤−m3aq+1(t)Lq+12(t),∀t≥t0. |
A simple integration over (t0,t) and using the equivalence L∼E, we obtain,
E(t)≤C(∫tt0a1γε(s)ds)γε−1γε,∀t≥t0. |
Case B is nonlinear.
Using (4.27), (5.1) and (5.3), we obtain, ∀t≥t0,
L′(t)≤−λ0E(t)+ct11+ϵ[B−1(ε0I(t)ta(t))]11+ϵ+c[−E′(t)]γ1−1. | (5.35) |
Using (5.13)-(5.15), (5.35) reduces to
L′(t)≤−λ0E(t)+ct11+ϵB−1(χ(t))+c[−E′(t)]γ1−1,∀t≥t1 | (5.36) |
Now, for ε3<r and using (5.16) and the fact that E′≤0, H′>0,H′′>0 on (0,r], we find that the functional F, defined by
F(t):=B′(ε3t11+ϵ⋅E(t)E(0))L(t), |
satisfies
F∼E | (5.37) |
and, for all t≥t1,
F′(t)≤−λ0E(t)B′(ε3t11+ϵ⋅E(t)E(0))+ct11+ϵB′(ε3t11+ϵ⋅E(t)E(0))B−1(χ(t))+cB′(ε3t11+ϵ⋅E(t)E(0))[−E′(t)]γ1−1. | (5.38) |
After applying with the generalized Young inequality
we arrive at
F′(t)≤−λ0E(t)B′(ε3t11+ϵ⋅E(t)E(0))+ct11+ϵ0B∗(B′(ε3t11+ϵ⋅E(t)E(0)))+cB′(ε3t11+ϵ⋅E(t)E(0))[−E′(t)]γ1−1+ct11+ϵχ(t)≤−λ0E(t)B′(ε3t11+ϵ⋅E(t)E(0))+cε1E(t)E(0)B′(ε3t11+ϵ⋅E(t)E(0))+ct11+ϵχ(t)−cεE′+ε[B′]12−γ1(ε3t11+ϵ⋅E(t)E(0)). | (5.39) |
Using the facts that 12−γ1>1 and B′(ε3t11+ϵ⋅E(t)E(0)) is bounded, we have
[B′]12−γ1(ε3t11+ϵ⋅E(t)E(0))≤cB′(ε3t11+ϵ⋅E(t)E(0)). | (5.40) |
Then, multiplying (5.39) by a(t), using (5.15), (5.40) and the fact that E(t)>0, we get
a(t)F′1(t)≤−λ0a(t)E(t)B′(ε3t11+ϵ⋅E(t)E(0))+cε5a(t)⋅E(t)E(0)B′(ε3t11+ϵ⋅E(t)E(0))+cεa(t)E(t)B′(ε3t11+ϵ⋅E(t)E(0))−cE′(t),∀t≥t1. |
where F1=F+cεE′. Using the non-increasing property of a, we obtain, for all t≥t1,
(aF1+cE)′(t)≤−λ0a(t)E(t)H′(ε3t11+ϵ⋅E(t)E(0))+cε5a(t)E(t)E(0)B′(ε3t11+ϵ⋅E(t)E(0))+cεa(t)E(t)B′(ε3t11+ϵ⋅E(t)E(0)). |
Therefore, by setting F2:=aF1+cE∼E, we conclude that
F′2(t)≤−λ0a(t)E(t)B′(ε3t11+ϵ⋅E(t)E(0))+cε3a(t)⋅E(t)E(0)B′(ε3t11+ϵ⋅E(t)E(0))+cεa(t)E(t)B′(ε3t11+ϵ⋅E(t)E(0)). |
This gives, for a suitable choice of ε3 and ε,
F′2(t)≤−ka(t)(E(t)E(0))B′(ε3t11+ϵ⋅E(t)E(0)),∀t≥t1 |
or
k(E(t)E(0))B′(ε3t11+ϵ0⋅E(t)E(0))a(t)≤−F′2(t),∀t≥t1 | (5.41) |
An integration of (5.41) yields
∫tt1k(E(s)E(0))B′(ε3s11+ϵ⋅E(s)E(0))a(s)ds≤−∫tt1F′2(s)ds≤F2(t1). | (5.42) |
Using the facts that B′,B″>0 and the non-increasing property of E, we deduce that the map t↦E(t)B′(ε3t11+ϵ⋅E(t)E(0)) is non-increasing and consequently, we have
k(E(t)E(0))B′(ε3t11+ϵ⋅E(t)E(0))∫tt1a(s)ds≤∫tt1k(E(s)E(0))B′(ε3s11+ϵ⋅E(s)E(0))a(s)ds≤F2(t1),∀t≥t1 | (5.43) |
Multiplying each side of (5.43) by 1t11+ϵ, we have
(kt11+ϵ⋅E(t)E(0))B′(ε3t11+ϵ0⋅E(t)E(0))∫tt1a(s)ds≤k2t11+ϵ,∀t≥t1 | (5.44) |
Using the fact that B3(s)=sB′(ε3s) is strictly increasing, we obtain
kB3(1t11+ϵ⋅E(t)E(0))∫tt1a(s)ds≤k2t11+ϵ,∀t≥t1 | (5.45) |
Finally, we infer
E(t)≤k3t11+ϵB3−1(k2t11+ϵ∫tt1a(s)ds). | (5.46) |
This finishes the proof.
The following examples illustrate the results of Theorem 5.6:
Example 3. Let b(t)=c1e−c2(1+t), where c2>0 and c1>0 is small enough so that (A1) holds. Then b′(t)=−a(t)B(b(t)) where B(t)=t and a(t)=c. Therefore, (5.32) gives for t>t0 and ϵ∈(0,1),
E(t)≤c(t−t0)γϵ−1γϵ. | (5.47) |
Example 4. Let b(t)=c1(1+t)q, where q>1+ϵ and c1 is chosen so that hypothesis (A1) is satisfied. Then
b′(t)=−aB(b(t)),withB(s)=sq+1q, |
where a is a fixed constant. Then, (5.33) gives, for t>t1 and ϵ∈(0,1),
E(t)≤ctq−1−ϵ(1+ϵ)2(q+1). | (5.48) |
Remark 5.7. The classical power-type nonlinearity term in [33] provides a canonical description for the dynamics analysis of a quasi-wave propagation in a nonlinear process, therefore, the fast cumulative of such nonlinear interactions results in a significant effect to the solution under large spatial and temporal scales. However, the logarithmic nonlinearity in (1.1) only expresses slowly cumulative of nonlinear, thus giving another kind of description for dynamic process. Let us note here that though the logarithmic nonlinearity is somehow weaker than the polynomial nonlinearity, both the existence and stability result are not obtained by straightforward application of the method used for polynomial nonlinearity.
The authors would like to express their profound gratitude to King Fahd University of Petroleum and Minerals (KFUPM)- Interdisciplinary Research Center (IRC) for Construction and Building Materials for their continuous supports. The authors also thank the referee for her/his very careful reading and valuable comments. This work is funded by KFUPM under Project #SB191037.
The authors declare that there is no conflict of interest regarding the publication of this paper.
[1] |
M. Belkin, P. Niyogi, V. Sindhwani, Manifold regularization: A geometric framework for learning from labeled and unlabeled examples, J. Mach. Learn. Res., 7 (2006), 2399–2434. http://dx.doi.org/10.5555/1248547.124863 doi: 10.5555/1248547.124863
![]() |
[2] | O. Chapelle, B. Scholkopf, A. Zien, Semi-supervised learning, IEEE T. Neural Networ., https://doi.org/10.1109/TNN.2009.2015974 |
[3] |
T. Yang, C. E. Priebe, The effect of model misspecification on semi-supervised classification, IEEE T. Pattern Anal., 33 (2011), 2093–2103. http://dx.doi.org/10.1109/TPAMI.2011.45 doi: 10.1109/TPAMI.2011.45
![]() |
[4] |
Y. F. Li, Z. H. Zhou, Towards making unlabeled data never hurt, IEEE T. Pattern Anal., 37 (2015), 175–188. https://doi.org/10.1109/TPAMI.2014.2299812 doi: 10.1109/TPAMI.2014.2299812
![]() |
[5] | Y. T. Li, J. T. Kwok, Z. H. Zhou, Towards safe semi-supervised learning for multivariate performance measures, In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, 30 (2016), 1816–1822. https://doi.org/10.1609/aaai.v30i1.10282 |
[6] |
Y. Wang, S. Chen, Z. H. Zhou, New semi-supervised classification method based on modified cluster assumption, IEEE T. Neural Networ., 23 (2011), 689–702. https://doi.org/10.1609/aaai.v25i1.7920 doi: 10.1609/aaai.v25i1.7920
![]() |
[7] |
Y. Wang, S. Chen, Safety-aware semi-supervised classification, IEEE T. Neural Networ., 24 (2013), 1763–1772. https://doi.org/10.1109/TNNLS.2013.2263512 doi: 10.1109/TNNLS.2013.2263512
![]() |
[8] |
M. Kawakita, J. Takeuchi, Safe semi-supervised learning based on weighted likelihood, Neural Networks, 53 (2014), 146–164. https://doi.org/10.1016/j.neunet.2014.01.016 doi: 10.1016/j.neunet.2014.01.016
![]() |
[9] |
H. Gan, Z. Luo, M. Meng, Y. Ma, Q. She, A risk degree-based safe semi-supervised learning algorithm, Int. J. Mach. Learn. Cyb., 7 (2015), 85–94. https://doi.org/10.1007/s13042-015-0416-8 doi: 10.1007/s13042-015-0416-8
![]() |
[10] |
H. Gan, Z. Luo, Y. Sun, X. Xi, N. Sang, R. Huang, Towards designing risk-based safe Laplacian regularized least squares, Expert Syst. Appl., 45 (2016), 1–7. https://doi.org/10.1016/j.eswa.2015.09.017 doi: 10.1016/j.eswa.2015.09.017
![]() |
[11] |
H. Gan, Z. Li, Y. Fan, Z. Luo, Dual learning-based safe semi-supervised learning, IEEE Access, 6 (2017), 2615–2621. https://doi.org/10.1109/access.2017.2784406 doi: 10.1109/access.2017.2784406
![]() |
[12] |
H. Gan, Z. Li, W. Wu, Z. Luo, R. Huang, Safety-aware graph-based semi-supervised learning, Expert Syst. Appl., 107 (2018), 243–254. https://doi.org/10.1016/j.eswa.2018.04.031 doi: 10.1016/j.eswa.2018.04.031
![]() |
[13] |
N. Sang, H. Gan, Y. Fan, W. Wu, Z. Yang, Adaptive safety degree-based safe semi-supervised learning, Int. J. Mach. Learn. Cyb., 10 (2018), 1101–1108. https://doi.org/10.1007/s13042-018-0788-7 doi: 10.1007/s13042-018-0788-7
![]() |
[14] |
Y. Y. Wang, Y. Meng, Z. Fu, H. Xue, Towards safe semi-supervised classification: Adjusted cluster assumption via clustering, Neural Process. Lett., 46 (2017), 1031–1042. https://doi.org/10.1007/s11063-017-9607-5 doi: 10.1007/s11063-017-9607-5
![]() |
[15] |
H. Gan, G. Li, S. Xia, T. Wang, A hybrid safe semi-supervised learning method, Expert Syst. Appl., 149 (2020), 1–9. https://doi.org/10.1016/j.eswa.2020.113295 doi: 10.1016/j.eswa.2020.113295
![]() |
[16] | Y. T. Li, J. T. Kwok, Z. H. Zhou, Towards safe semi-supervised learning for multivariate performance measures, In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, 30 (2016), 1816–1822. https://doi.org/10.1609/aaai.v30i1.10282 |
[17] |
G. B. Huang, Q. Y. Zhu, C. K. Siew, Extreme learning machine: Theory and applications, Neurocomputing, 70 (2006), 489–501. https://doi.org/10.1016/j.neucom.2005.12.126 doi: 10.1016/j.neucom.2005.12.126
![]() |
[18] |
Y. Cheng, D. Zhao, Y. Wang, G. Pei, Multi-label learning with kernel extreme learning machine autoencoder, Knowl.-Based Syst., 178 (2019), 1–10. https://doi.org/10.1016/j.knosys.2019.04.002 doi: 10.1016/j.knosys.2019.04.002
![]() |
[19] |
X. Huang, Q. Lei, T. Xie, Y. Zhang, Z. Hu, Q. Zhou, Deep transfer convolutional neural network and extreme learning machine for lung nodule diagnosis on CT images, Knowl.-Based Syst., 204 (2020), 106230. https://doi.org/10.1016/j.knosys.2020.106230 doi: 10.1016/j.knosys.2020.106230
![]() |
[20] |
J. Ma, L. Yang, Y. Wen, Q. Sun, Twin minimax probability extreme learning machine for pattern recognition, Knowl.-Based Syst., 187 (2020), 104806. https://doi.org/10.1016/j.knosys.2019.06.014 doi: 10.1016/j.knosys.2019.06.014
![]() |
[21] |
C. Yuan, L. Yang, Robust twin extreme learning machines with correntropy-based metric, Knowl.-Based Syst., 214 (2021), 106707. https://doi.org/10.1016/j.knosys.2020.106707 doi: 10.1016/j.knosys.2020.106707
![]() |
[22] |
Y. Li, Y. Wang, Z. Chen, R. Zou, Bayesian robust multi-extreme learning machine, Knowl.-Based Syst., 210 (2020), 106468. https://doi.org/10.1016/j.knosys.2020.106468 doi: 10.1016/j.knosys.2020.106468
![]() |
[23] |
H. Pei, K. Wang, Q. Lin, P. Zhong, Robust semi-supervised extreme learning machine, Knowl.-Based Syst., 159 (2018), 203–220. https://doi.org/10.1016/j.knosys.2018.06.029 doi: 10.1016/j.knosys.2018.06.029
![]() |
[24] |
G. Huang, S. Song, J. N. D. Gupta, C. Wu, Semi-supervised and unsupervised extreme learning machines, IEEE T. Cybernetics, 44 (2014), 2405. https://doi.org/10.1109/tcyb.2014.2307349 doi: 10.1109/tcyb.2014.2307349
![]() |
[25] |
W. Liu, P. P. Pokharel, J. C. Principe, Correntropy: Properties and applications in non-Gaussian signal processing, IEEE T. Signal Proces., 55 (2007), 5286–5298. https://doi.org/10.1109/tsp.2007.896065 doi: 10.1109/tsp.2007.896065
![]() |
[26] |
N. Masuyama, C. K. Loo, F. Dawood, Kernel Bayesian ART and ARTMAP, Neural Networks, 98 (2018), 76–86. https://doi.org/10.1016/j.neunet.2017.11.003 doi: 10.1016/j.neunet.2017.11.003
![]() |
[27] |
X. Liu, B. Chen, H. Zhao, J. Qin, J. Cao, Maximum correntropy Kalman filter with state constraints, IEEE Access, 5 (2017), 25846–25853. https://doi.org/10.1109/access.2017.2769965 doi: 10.1109/access.2017.2769965
![]() |
[28] |
B. Chen, X. Liu, H. Zhao, J. C. Principe, Maximum correntropy Kalman filter, Automatica, 76 (2017), 70–77. https://doi.org/10.1016/j.automatica.2016.10.004 doi: 10.1016/j.automatica.2016.10.004
![]() |
[29] |
B. Chen, X. Lei, W. Xin, Q. Jing, N. Zheng, Robust learning with kernel mean p-power error loss, IEEE T. Cybernetics, 48 (2018), 2101–2113. https://doi.org/10.1109/tcyb.2017.2727278 doi: 10.1109/tcyb.2017.2727278
![]() |
[30] |
H. Xing, X. Wang, Training extreme learning machine via regularized correntropy criterion, Neural Comput. Appl., 23 (2013), 1977–1986. https://doi.org/10.1007/s00521-012-1184-y doi: 10.1007/s00521-012-1184-y
![]() |
[31] |
Z. Yuan, X. Wang, J. Cao, H. Zhao, B. Chen, Robust matching pursuit extreme learning machines, Sci. Programming, 1 (2018), 1–10. https://doi.org/10.1155/2018/4563040 doi: 10.1155/2018/4563040
![]() |
[32] |
B. Chen, X. Wang, N. Lu, S. Wang, J. Cao, J. Qin, Mixture correntropy for robust learning, Pattern Recogn., 79 (2018), 318–327. https://doi.org/10.1016/j.patcog.2018.02.010 doi: 10.1016/j.patcog.2018.02.010
![]() |
[33] |
G. Xu, B. G. Hu, J. C. Principe, Robust C-loss kernel classifiers, IEEE T. Neur. Net. Lear., 29 (2018), 510–522. https://doi.org/10.1109/tnnls.2016.2637351 doi: 10.1109/tnnls.2016.2637351
![]() |
[34] |
A. Singh, R. Pokharel, J. Principe, The C-loss function for pattern classification, Pattern Recogn., 47 (2014), 441–453. https://doi.org/10.1016/j.patcog.2013.07.017 doi: 10.1016/j.patcog.2013.07.017
![]() |
[35] |
J. Yang, J. Cao, A. Xue, Robust maximum mixture correntropy criterion-based semi-supervised ELM with variable center, IEEE T. Circuits-II, 67 (2020), 3572–3576. https://doi.org/10.1109/tcsii.2020.2995419 doi: 10.1109/tcsii.2020.2995419
![]() |
[36] |
J. Yang, J. Cao, T. Wang, A. Xue, B. Chen, Regularized correntropy criterion based semi-supervised ELM, Neural Networks, 122 (2020), 117–129. https://doi.org/10.1016/j.neunet.2019.09.030 doi: 10.1016/j.neunet.2019.09.030
![]() |
[37] | P. L. Bartlett, S. Mendelson, Rademacher and Gaussian complexities: Risk bounds and structural results, In: Conference on Computational Learning Theory & European Conference on Computational Learning Theory, Berlin/Heidelberg: Springer, 2001,224–240. https://doi.org/10.1007/3-540-44581-1-15 |
[38] |
P. J. Huber, Robust estimation of a location parameter, Ann. Math. Stat., 35 (1964), 73–101. https://doi.org/10.1214/aoms/1177703732 doi: 10.1214/aoms/1177703732
![]() |
[39] |
Q. S. Xu, Y. Z. Liang, Monte Carlo cross validation, Chemometr. Intell. Lab., 56 (2001), 1–11. https://doi.org/10.1016/s0169-7439(00)00122-2 doi: 10.1016/s0169-7439(00)00122-2
![]() |
1. | Khaoula Merzoug, Nouri Boumaza, Billel Gheraibia, 2021, General Decay Result of Solutions for Viscoelastic Wave Equation with Logarithmic Nonlinearity, 978-1-6654-4171-1, 1, 10.1109/ICRAMI52622.2021.9585910 | |
2. | A. M. Al-Mahdi, M. M. Al-Gharabli, I. Kissami, A. Soufyane, M. Zahri, Exponential and polynomial decay results for a swelling porous elastic system with a single nonlinear variable exponent damping: theory and numerics, 2023, 74, 0044-2275, 10.1007/s00033-023-01962-6 | |
3. | Mohammad Kafini, Jamilu Hashim Hassan, Adel M. Al-Mahdi, Jamal H. Al-Smail, Existence and blow up time estimate for a nonlinear Cauchy problem with variable exponents: theory and numerics, 2023, 0020-7160, 1, 10.1080/00207160.2023.2176196 | |
4. | Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Energy Decay Estimates of a Timoshenko System with Two Nonlinear Variable Exponent Damping Terms, 2023, 11, 2227-7390, 538, 10.3390/math11030538 | |
5. | Muhammad I. Mustafa, Timoshenko beams with variable‐exponent nonlinearity, 2023, 0170-4214, 10.1002/mma.9116 | |
6. | Mohammad M. Al-Gharabli, Adel M. Almahdi, Maher Noor, Johnson D. Audu, Numerical and Theoretical Stability Study of a Viscoelastic Plate Equation with Nonlinear Frictional Damping Term and a Logarithmic Source Term, 2022, 27, 2297-8747, 10, 10.3390/mca27010010 | |
7. | Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Maher Noor, Johnson D. Audu, Stability Results for a Weakly Dissipative Viscoelastic Equation with Variable-Exponent Nonlinearity: Theory and Numerics, 2023, 28, 2297-8747, 5, 10.3390/mca28010005 | |
8. | Adel M. Al‐Mahdi, Mohammad M. Al‐Gharabli, Mostafa Zahri, Theoretical and numerical decay results of a viscoelastic suspension bridge with variable exponents nonlinearity, 2023, 296, 0025-584X, 5426, 10.1002/mana.202200338 | |
9. | Bhargav Kumar Kakumani, Suman Prabha Yadav, Global existence and asymptotic behaviour for a viscoelastic plate equation with nonlinear damping and logarithmic nonlinearity, 2023, 135, 18758576, 399, 10.3233/ASY-231859 | |
10. | Muhammad I. Mustafa, Viscoelastic Wave Equation with Variable-Exponent Nonlinear Boundary Feedback, 2024, 30, 1079-2724, 10.1007/s10883-024-09714-z | |
11. | Mohammad Kafini, Mohammad M. Al-Gharabli, Adel M. Al-Mahdi, Existence and stability results of nonlinear swelling equations with logarithmic source terms, 2024, 9, 2473-6988, 12825, 10.3934/math.2024627 | |
12. | Adel M. Al-Mahdi, Internal and Boundary Control of Piezoelectric Beams with Magnetic Effects and Voltage Controller: Exponential and Polynomial Decay Rates, 2025, 11, 2349-5103, 10.1007/s40819-024-01816-3 | |
13. | Abdelbaki Choucha, Salah Boulaaras, Rashid Jan, Ayser Nasir Tahat, Results of the asymptotic behavior for a viscoelastic wave equation with nonlinear distributed delay and acoustic conditions in boundary feedback, 2024, 2024, 1029-242X, 10.1186/s13660-024-03241-y |