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Abstract: In this study, we introduced an innovative and robust semi-supervised learning strategy
tailored for high-dimensional data categorization. This strategy encompasses several pivotal symmetry
elements. To begin, we implemented a risk regularization factor to gauge the uncertainty and possible
hazards linked to unlabeled samples within semi-supervised learning. Additionally, we defined
a unique non-second-order statistical indicator, termed Cp-Loss, within the kernel domain. This
Cp-Loss feature is characterized by symmetry and bounded non-negativity, efficiently minimizing
the influence of noise points and anomalies on the model’s efficacy. Furthermore, we developed
a robust safe semi-supervised extreme learning machine (RS3ELM), grounded on this educational
framework. We derived the generalization boundary of RS3ELM utilizing Rademacher complexity.
The optimization of the output weight matrix in RS3ELM is executed via a fixed point iteration
technique, with our theoretical exposition encompassing RS3ELM’s convergence and computational
complexity. Through empirical analysis on various benchmark datasets, we demonstrated RS3ELM’s
proficiency and compared it against multiple leading-edge semi-supervised learning models.
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1. Introduction

With the exponential growth of computing technology and increased access to diverse data sources,
the availability of information has skyrocketed. To effectively extract the relevant data from this vast
pool, machine learning has emerged as a crucial tool. It offers a solution to the challenging task of
extracting the desired information amidst an abundance of data. In supervised learning, a multitude
of data is utilized to train a model, which is then employed to make predictions on unlabeled data.
However, if the model fails to generalize adequately and there is an excess of labeled data, it may lead
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to overfitting. In numerous practical scenarios, there exists a considerable amount of unlabeled data
alongside a subset of labeled data. However, labeling data can be a laborious and costly process.
Utilizing the limited labeled data to enhance performance through learning from the vast pool of
unlabeled data poses a significant challenge. Over the past decade, semi-supervised learning (SSL)
has emerged as a highly effective learning framework, showcasing remarkable success in both theory
and practical applications [1, 2]. Obtaining labeled samples is often a challenging and expensive task,
while acquiring unlabeled samples tends to be easier and more cost-effective in many real-world
problems. Semi-supervised learning (SSL) tackles this issue by leveraging different assumptions
to establish connections between labeled and unlabeled samples. Among these assumptions, the
manifold assumption [1] has gained significant traction and is widely adopted in practice. This
assumption assumes that the data resides on a low-dimensional manifold, facilitating the exploration
and utilization of unlabeled data for improved learning outcomes. For instance, Belkin et al. [1]
introduced two algorithms, namely Laplacian regularized least squares (Lap-RLS) and support vector
machines (Lap-SVM), which utilize manifold regularization to effectively harness information from
unlabeled samples. These algorithms have demonstrated promising results. However, recent studies
have highlighted a potential concern related to the reliance on unlabeled samples, suggesting that they
could be compromised and potentially diminish the performance of SSL [3–5]. This raises limitations
on the practical applicability of SSL to some extent [6, 7]. Consequently, there is a need to develop
a safe semi-supervised learning (SaSSL) method that guarantees never performing worse than its
supervised learning (SL) counterpart utilizing only labeled samples [8–12]. In recent years, numerous
outstanding safe semi-supervised learning methods have been proposed [13–16].

Extreme learning machines (ELM) [17–19] have been extensively researched as single hidden
layer feedforward networks (SLFNs). ELM has gained traction in the field of machine learning
due to its simple architecture, low computational requirements, and wide applicability [20–22].
Additionally, ELM addresses drawbacks associated with conventional neural networks, including
issues like local minima, imprecise learning, and slow convergence. Moreover, ELM offers a unified
learning framework that caters to various applications such as regression, binary, and multiclass
classification [23]. Recently, a semi-supervised ELM algorithm based on manifold regularization has
been proposed to effectively leverage both labeled and unlabeled samples [24]. Although the results of
ELM have been promising, it is worth mentioning that existing algorithms typically employ the mean
square error (MSE) criterion as the cost function, while the impact of sample noise and outliers remain
understudied. In the MSE-based criteria, equal penalty is assigned to all samples. However, samples
with outliers or non-Gaussian noise tend to exhibit larger errors, leading to higher penalties for these
samples. Consequently, the generalization performance suffers in the presence of non-Gaussian noise
or outliers. This issue is particularly critical in semi-supervised learning, where misclassifications
between labeled data easily affect nearby unlabeled data. Recently, the correlation coefficient has
emerged as a novel criterion to address non-Gaussian noise and outliers [25–28]. Correntropy,
a local similarity measure in kernel space, has been proposed to complement this approach. It
offers an effective mechanism to mitigate the impact of noise and outliers by enhancing robustness
through assigning lower weights to data outside the local neighborhood. In the areas of resilient
learning and signal processing, such as adaptive filtering [26], state estimation [27], and principal
component analysis [28], the correntropy-based criterion has shown promising results [29–32].
The correlation-based criterion has been used in a number of extreme learning machine (ELM)
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algorithms, including [33–36]. In order to obtain robust learning performance when addressing
outliers, Chen et al. [29] introduced the kernel mean p-power error (KMPE), a non-second-order
statistical metric in kernel space. The regularized correntropy criterion (RCC) had been developed
by Xing and Wang in order to help the ELM handle noise or outliers in the training data [30].
In parallel, Yang et al. [37] proposed a brand-new semi-supervised ELM technique based on the
maximum correntropy criterion (MCC), known as RCC-based SSELM (RC-SSELM). According
to experimental findings, RC-SSELM performs impressively in semi-supervised learning scenarios
with non-Gaussian noise and outliers. Chen et al. established the Maximum Mixed Correlation
Criterion (MMCC) for ELM to achieve robust generalization performance in [32] and presented
the mixed correlation approach, which employs a combination of two or more kernel functions, to
enhance the performance of ELM. A new semi-supervised ELM algorithm based on the MMCC
optimization strategy was proposed by Yang et al. [35], which increases the algorithm’s effectiveness
and adaptability for managing huge and complicated outliers. For the purpose of demonstrating the
efficacy of MC-SSELM, experimental results from several benchmark datasets were collected. The
algorithm’s superiority in terms of performance and adaptability was also shown through comparisons
with a number of cutting-edge semi-supervised learning methods.

It can be observed that none of the existing semi-supervised ELM learning algorithms based on
correntropy has focused on the uncertainty and potential risks of the unlabeled samples in the semi-
supervised learning process. Inspired by the above research, in this paper, first of all, a robust and
safe semi-supervised learning framework is proposed. Then, on the basis of this learning framework,
a robust safe semi-supervised extreme machine learning (RS3ELM) framework is proposed. In more
specific terms, the main contributions of this paper are as follows:

(1) Targeting uncertainty and potential risk of unlabeled samples in semi-supervised learning, a risk
regularization term is constructed, which can better handle the uncertainty and potential risks, thereby
improving the security and reliability of the learning algorithm.

(2) Based on the theory of correntropy, a new robust loss function is defined in the kernel space,
which is called the p-power C-loss. The influence of noise points and outliers on the performance of
the model can be effectively suppressed by this loss function.

(3) A robust and safe semi-supervised learning framework is established based on the risk
regularization term and the p-power C-loss.

(4) A robust safe semi-supervised extreme learning machine (RS3ELM) for pattern classification is
proposed based on this learning framework.

(5) The generalizing bound of RS3ELM is given by using Rademacher complexity. The fixed-point
iteration method is used to solve the RS3ELM, and the computational complexity and the convergence
of the algorithm are analyzed from a theoretical point of view.

(6) Experimental results show that RS3ELM performs significantly better than existing semi-
supervised ELM learning algorithms on multiple benchmark datasets.

The remaining work is organized as follows. In Section 2, we review related work, including
supervised learning, extreme learning machines (ELM), semi-supervised learning, and semi-
supervised extreme learning (SS-ELM). In Section 3, we detail our algorithm. Experimental results
and analysis are presented in Section 4. Finally, the main conclusions of this work are summarized in
Section 5, and we also discuss future developments.
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2. Related work

2.1. ELM

Let Tl = {xi, yi}
l
i=1 be the training set, where l is the number of training samples, xi ∈ R

n,
yi ∈ {−1,+1}(i = 1, . . . , l). Suppose that f (·) represents the decision function. Let HK denote the
reproducing kernel Hilbert space (RKHS) associated with a Mercer kernel K. Suppose that the general
decision function f , the basic supervised learning framework, can be expressed as

min
f∈HK

1
l

∑
i∈I

ρloss(xi, yi, f (xi)) + γA‖ f ‖2H , (2.1)

where ρloss(·) is any loss function, such as the hinge loss function max{0.1−yi f (xi)}; ‖ f ‖2H is the RKHS
norm penalty and represents the complexity of functions in RKHSHK .

Under the assumption that L is the number of neurons in the hidden layer, the output function of
ELM [17, 18] is

Y = Hβ, (2.2)

where β = [β1, β2, . . . , βL]T is the vector of output weights between the hidden layer of L nodes and the
output node, Y = [y1, y2, . . . , yl]T , and H is the output matrix of the hidden layer defined as

H =


h1(x1) · · · hL(x1)
...

...
...

h1(xl) · · · hL(xl)

 ,
where hi(x) = G(ai, bi, x) = ai · x + bi, i = 1, . . . , L (a and b can be randomly generated according to a
continuous probability distribution). The primal regularization ELM framework can be expressed as

min
β

Ψ(β) = C‖Hβ − Y‖2 + ‖β‖2, (2.3)

where C is a penalty coefficient for the errors in the training process. Then, the output weight vector β
can obtained by

β∗ =

{
(HT H + IL

C )−1HT Y, l ≥ L,
HT (HHT + Il

C )−1Y, l ≤ L,
(2.4)

where IL is an identity matrix of dimension L and Il is an identity matrix of dimension l.

2.2. SS-ELM

Let T = Tl∪Tu = {xi, yi}
l
i=1∪{xi}

l+u
i=l+1 be a semi-supervised learning training dataset, where xi ∈ R

n,
yi ∈ {−1,+1}, Tl denotes labeled samples set with l, Tu denotes unlabeled samples set with u; n = l + u.
Suppose that the general decision function f , the general semi-supervised learning framework can be
expressed as the following optimization problem:

min
f∈HK

1
l

∑
i∈I

ρloss(xi, yi, f (xi)) + γA‖ f ‖2H + γI‖ f ‖2I , (2.5)

AIMS Mathematics Volume 9, Issue 9, 25705–25731.



25709

where ρloss(·) is some loss function, ‖ f ‖2
H

is the RKHS norm penalty and represents the complexity
of functions in RKHS HK , γA and γI are the nonnegative regularization parameters, and ‖ f ‖2I is the
manifold regularizer (MR) [1] whose empirical form takes

‖ f ‖2I =
1

(l + u)2

l+u∑
i, j=1

Wi j( f (xi) − f (x j))2 =
1

(l + u)2 ( f T L f ), (2.6)

where L = D−W is the graph Laplacian; D is the diagonal degree matrix of W given by Dii =
∑l+u

j=1 Wi j,
Di j = 0 for i , j; and the normalizing coefficient 1

(l+u)2 is the natural scale factor for the empirical
estimate of the Laplace operator. The weight matrix W may be defined by k nearest neighbors or graph
kernels as follows

Wi j =

 exp(−||xi−x j ||
2
2

2σ2 ), i f xi ∈ Nk(x j) or x j ∈ Nk(xi),
0, otherwise,

(2.7)

where Nk(x j) denotes the data sets of k nearest neighbors of xi.
Consequently, the primal problem of the semi-supervised extreme learning machine (SS-ELM) by

introducing a manifold regularization term into (2.3), is

min
β

Ψ(β) = C‖Hlβ − Y‖2 + ‖β‖2 + λTr(βT HT
n LHnβ), (2.8)

where C and λ are regularization parameters, Tr(·) denotes the trace of a matrix. Thus, we have

β∗ =

{
(Il + HT

l CHl + λHT
n LHn)−1HT

l CY, n ≥ L,
HT

l (In + CHlHT
l + λLHnHT

n )−1CY, n ≤ L,
(2.9)

where Il is an identity matrix of dimension l; and C is a diagonal matrix whose entries are C j j = C
lt j

,
where lt j is the number of training samples belonging to class j, j = 1, 2 . . . , l; In is an identity matrix
of dimension n.

2.3. Correntropy

In this section, the definition of correntropy is derived [25]. Some of its properties are briefly
introduced.

Definition 1. [25] Given two random variables X and Y, the correntropy is defined as:

V(X,Y) = E[〈Φ(X),Φ(Y)〉H]

=

∫
〈Φ(x),Φ(y)〉HdFXY(x, y)

= E[κ(X,Y)], (2.10)

where E[·] is the expectation operator, FXY(x, y) is the joint distribution function, and Φ(x) = κ(x, ·) is
a nonlinear mapping induced by a Mercer kernel κ(·), which transforms x from the original space to
a functional Hilbert space (or kernel space) H equipped with an inner product 〈·, ·〉H which satisfies
〈Φ(x),Φ(y)〉H = κ(x, y). It is obvious that we have V(X,Y) = E[κ(X,Y)]. Throughout this article,
unless otherwise noted, the kernel function is a Gaussian kernel, given by
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κ(x, y) = κσ(x − y) = exp(−
(x − y)2

2σ2 ) (2.11)

with σ being the kernel bandwidth.

In practice, if the given sample is {(x1, y1), (x2, y2), ..., (xm, ym)}, but the joint probability density
function between the data is unknown, the correlation coefficient can be approximated as

VM,σ(X,Y) =
1
m

m∑
i=1

κσ(xi − yi). (2.12)

Property 1. [25] Correntropy is symmetric, expressed as Vσ(X,Y) = Vσ(Y, X).

Property 2. [25] The value of correntropy is positive and bounded, and it is proven that the upper
bound is reached if and only if X = Y.

Property 3. [25] Assume that the probability density function of the sample {(xi, yi), i = 1, ...,m} is
fX,Y(x, y). E = Y −X is defined as the error random variable. fE,σ(e) is the Parzen estimate of the error
probability density function from the data sample {(ei = xi − yi), i = 1, ...,N}. Afterwards Vm,σ(X,Y) is
equal to the value of fE,σ(e) evaluated at point e = 0.

Vm,σ(X,Y) = fE,σ(0). (2.13)

Definition 2. [33, 34] Given two random variables X and Y, the C-Loss C(X,Y) is defined by

C(X,Y) =
1
2

E[‖Φ(X) − Φ(Y)‖2
H

]

=
1
2

E[2κσ(0) − 2κσ(X − Y)]

= E[1 − κσ(X − Y)]. (2.14)

It holds that C(X,Y) = 1 − V(X,Y), so that the minimization of C-Loss is equivalent to the
maximization of correlation. The MCC has recently attracted increasing attention due to its robustness
to large outliers [33–36].

3. Main contributions

3.1. Motivation

In this section, we systematically describe our approach. Typically, semi-supervised learning
leverages a large volume of unlabeled data alongside a sparse amount of labeled data. However,
research indicates that the inclusion of unlabeled samples can sometimes degrade the performance
of semi-supervised classifiers due to the inherent uncertainties and risks associated with unlabeled
data. Moreover, in manifold regularization-based semi-supervised learning frameworks, often only
the local manifold geometry of the samples is considered, while the global information is overlooked.
Our core methodology involves constructing a risk degree regularization term to assess the uncertainty
and potential risk of unlabeled data during the semi-supervised learning process. Intuitively, the risk
associated with unlabeled samples is minimal when they contribute positively to semi-supervised
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learning; conversely, the risk is high, warranting the use of a supervised classifier to predict their
labels. Additionally, we introduce a novel non-second-order statistical indicator, referred to as Cp-
Loss, within the kernel domain. The Cp-Loss metric is symmetrical and bounded by non-negativity,
which effectively reduces the impact of outliers and noise on the model’s performance. Furthermore,
we propose a robust, safe, semi-supervised extreme learning machine (RS3ELM) based on this
framework. We derive the generalization boundary of RS3ELM using Rademacher complexity, and
the optimization of the output weight matrix in RS3ELM is performed through a analysis also covers
the convergence and computational complexity of RS3ELM.

3.2. Risk estimation of unlabeled samples

In this section, we will provide a more detailed explanation of our algorithm. Our algorithm is based
on two main methods: the SL method and the collaborative representation-based classification (CRC)
method. Initially, we utilize the SL method and CRC method to reconstruct the unlabeled samples. This
involves using the labeled samples to train a model that can reconstruct the features of the unlabeled
samples. By doing this, we aim to capture the underlying structure and patterns in the unlabeled data.
Furthermore, to assess the risk of the unlabeled samples, we compare the original and reconstructed
versions of the unlabeled samples. By examining how well the reconstructed samples match the
original ones, we obtain a measure of the risk associated with the unlabeled data. To incorporate
these risk measures into our learning framework, we define risk-based regularization terms. These
regularization terms serve as constraints that guide the learning process. By embedding these terms into
the semi-supervised learning framework, we ensure that the resulting model strikes a balance between
supervised and semi-supervised learning approaches. Therefore, the outputs of our learning framework
represent a compromise between the information obtained from the available labeled samples and the
reconstruction-based risk assessment of the unlabeled samples. This approach allows us to leverage
the benefits of both supervised and semi-supervised learning, resulting in a more robust and effective
learning algorithm.

To begin with, we start by training an ELM classifier using the labeled samples Xl. Using this
trained classifier, we can then make predictions yu for the unlabeled samples xu. These predictions serve
as an estimate of the risk associated with each unlabeled sample. Next, we employ the collaborative
representation-based classification (CRC) method to reconstruct the unlabeled samples. This involves
utilizing the labeled samples Xyu

l from the same class yu to reconstruct the unlabeled samples. The
objective function of CRC can be defined as follows:

min
δ j

(1 − exp
−‖x j−X

y j
l δ j‖

2

2σ2 ) + λ‖δ j‖
2, (3.1)

where λ is a regularization parameter.

Let L1(δu) =
‖xu−X

yu
l δu‖

2

2σ2 + λ‖δu‖
2 and L2(δ j) =

‖xu−X
y j
l δ j‖

2

2σ2 − 1 + exp
−‖x j−X

y j
l δ j‖

2

2σ2 . Thus, the optimization
problem (3.1) can be rewritten as

min
δ j

L1(δ j) − L2(δ j). (3.2)

Clearly, the functions L1(δ j) and L2(δ j) are both convex. This means that the optimization problem
given by Eq (3.2) is a DC (difference of convex) programming problem, where the differentiable convex
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component is L2(δ j). By utilizing DC programming techniques, we can find the optimal value of δ j

denoted as δ∗j. With this optimal value, we can reconstruct the unlabeled samples using the following
expression:

x̄ j = (Xy j

l )Tδ∗j. (3.3)

Moreover, we apply the ELM classifier to classify the reconstructed samples x̄ j and obtain the predicted
label ȳ j.

Definition 3. Denote y j and ȳ j as the predictions of x j and x̄ j, respectively. The degree of risk (RD) of
the unlabeled samples can be defined as the following:

r j =


exp{−

‖x j − x̄ j‖
2

σ
}, i f y j = ȳ j,

exp{
‖x j − x̄ j‖

2

σ
}, otherwise.

(3.4)

Based on Eq (3.4), when the predictions are identical (ŷ = ȳ), it implies that the unlabeled samples
might be considered safe. In this case, as the error increases, r j should be reduced to minimize any
potential risks. On the other hand, if the predictions are not equal (ŷ , ȳ), it indicates that the unlabeled
samples could be potentially risky. Therefore, in such instances, r j should be elevated with increasing
error to effectively address these risks.

Definition 4. Let g(x) and f (x) be the outputs of the supervised classifier and the semi-supervised
classifier, respectively. The decision function ΞR( f ) aims to find a trade-off between g(x) and f (x) by
incorporating a risk-based term. It can be expressed as follows:

ΞR( f ) =

n∑
j=l+1

r j‖ f (x) − g(x)‖2. (3.5)

Here, r j represents the safety degree of the unlabeled samples x j.

Based on the above analysis, it is evident that ΞR( f ) plays a crucial role in determining the degree
of disparity between supervised learning and semi-supervised learning.

3.3. Cp-Loss based on correntropy

Definition 5. The Cp-Loss between two random variables X and Y can be defined as follows:

Cp(X,Y) = 2−pE
[
‖Φ(X) − Φ(Y)‖2p

H

]
= 2−pE

[
(‖Φ(X) − Φ(Y)‖2

H
)p
]

= 2−pE [(2κσ(0) − 2κσ(X − Y))p]
= E [(1 − κσ(X − Y))p] . (3.6)

Here, p > 0 is the power parameter.

Remark 1. If p = 1, then the Cp-Loss will degenerate into the C-Loss. In other words, C-Loss is a
special case of Cp-Loss.

Remark 2. Given N samples {xi, yi}, the empirical Cp-Loss can be easily obtained as
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Ĉp(X,Y) =
1
N

N∑
i=1

(1 − κσ(xi − yi))p. (3.7)

The curves of our proposed loss function under different parameters are shown in Figure 1.
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(A) p = 1, 3, 9, and σ = 1.
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(B) σ = 0.5, 0.8, 1.0, and p = 3.
Figure 1. Loss function L(z) = (1 − κσ(z))p with different parameters.

Our Cp(X,Y) loss has the following interesting properties:

Property 4. Symmetry: Cp(X,Y) = Cp(Y, X).

Property 5. Non-negative boundedness: 0 ≤ Cp(X,Y) < 1. The equal sign is true if and only if X = Y.

Property 6. When σ→ ∞, we have

Cp(X,Y) ≈ (2σ2)−pE[‖X − Y‖2p]. (3.8)

Property 7. When p→ 0, we have

Cp(X,Y) ≈ 1 + pE[log(1 − κσ(X − Y))]. (3.9)

3.4. Robust safe semi-supervised learning framework

We can define the robust safe semi-supervised learning framework as follows:

min
f∈Hk

{
Ĉp(xi, yi, f (xi)) + γA‖ f ‖2H + γI‖ f ‖2I + γRΞR( f )

}
. (3.10)

In Eq (3.10), the regularization parameters γA > 0, γI > 0, and γR > 0 are used. The first three terms in
Eq (3.10) are responsible for finding the semi-supervised classifier. The last term controls the trade-off

between supervised and semi-supervised learning. The objective function in Eq (3.10) possesses the
following characteristics:

(1) The empirical risk is defined in the first term of Eq (3.10), which evaluates how well the model
fits the trained samples.

(2) The second term of Eq (3.10) represents the structural risk, which ensures the generalization
capability of the model and prevents it from overfitting.
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(3) The third term of Eq (3.10) introduces a joint regularization term. This term not only utilizes
discriminative information more effectively but also explores the local geometric structure of new
samples to enhance the classification performance. For this joint regularization, samples that are similar
on the manifold should have the same class label if they belong to the same class, or different class
labels if they do not.

(4) The fourth term of Eq (3.10) incorporates risk-based regularization. This term controls the trade-
off between supervised and semi-supervised learning. The choice of risk degrees determines how the
unlabeled samples are utilized.

Building upon our robust safe semi-supervised learning framework, we introduce a novel approach
named robust safe semi-supervised extreme learning machine (RS3ELM), which is described
as follows:

min Ĉp(Yl,Hlβ) + λ‖β‖2F + γTr(βT HT
n LHnβ) + α

l+u∑
j=l+1

r j‖ f (x j) − g(x j)‖2. (3.11)

In this framework, we incorporate three regularization parameters: λ, γ, and α. These parameters
contribute to the definition of semi-supervised classifiers, while the last term is responsible for ensuring
a suitable balance between ELM and SS-ELM.

min
β

Γ(β) = Ĉp(Hlβ,T) + λ‖β‖2F + γTr(βT HT
n LHnβ) + α

l+u∑
j=l+1

r j‖ f (x j) − g(x j)‖2

=
1
l

l∑
i=1

(1 − κσ(ei))p + λ‖β‖2F + γTr(βT HT
n LHnβ)

+α(Huβ − HuβELM)T R(Huβ − HuβELM)

=
1
l

l∑
i=1

(1 − exp(
−(e2

i )
2σ2 ))p + λ‖β‖2F + γTr(βT HT

n LHnβ)

+α(Huβ − HuβELM)T R(Huβ − HuβELM). (3.12)

In this scenario, we denote βELM as the optimal solution obtained from ELM, Hu as the hidden layer
output matrix pertaining to unlabeled samples, and R as a diagonal matrix with the entry R j j = r j+l.
The derivative of Eq (3.12) with respect to β is

∂Γ

∂β
= 0

⇒
1
l

l∑
i=1

[
−p
σ2 (1 − κσ(ei))p−1κσ(ei)eihT

i ] + 2λβ + 2γ(HT
n LHnβ)

+2αHT
u R(Huβ − HuβELM) = 0

⇒

l∑
i=1

[−(1 − κσ(ei))p−1κσ(ei)eihT
i ] +

2σ2lλ
p
β +

2σ2lγ
p

(HT
n LHnβ)

+
2σ2lα

p
HT

u R(Huβ − HuβELM) = 0
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⇒

l∑
i=1

(ϕ(ei)hT
i hiβ − ϕ(ei)tihT

i ) + λ̂β + γ̂(HT
n LHnβ)

+α̂HT
u R(Huβ − HuβELM) = 0

⇒

l∑
i=1

(ϕ(ei)hT
i hiβ) + λ̂β + γ̂(HT

n LHnβ) + α̂HT
u R(Huβ)

=

l∑
i=1

(ϕ(ei)tihT
i ) + α̂HT

u RHuβELM.

(3.13)

Thus, we can get

β = [HT AH + λ̂I + α̂HT
u RHu]−1(HT AT + α̂HT

u RHuβELM), (3.14)

where λ̂ = 2σ2lλ
p , γ̂ =

2σ2lγ
p , α̂ = 2σ2lα

p , hi is the i-th row of H, and A is a diagonal matrix with diagonal
elements Aii = ϕ(ei) = (1 − κσ(ei))p−1κσ(ei).

The obtained optimal solution β can be expressed as β = [HT AH + λ̂I + γ̂HT
n LHn +

α̂HT
u RHu]−1(HT AT + α̂HT

u RHuβELM). However, this equation does not have a closed-form solution
as the right-hand side matrix depends on the weight vector β through the error term ei = ti − hiβ.
Therefore, it is essentially a fixed-point equation, and the true optimal solution can be obtained using
a fixed-point iterative algorithm.

Given a test set Xnew, we can calculate its corresponding hidden layer output matrix Hnew, and the
prediction result can be obtained as follows:

Y = Hnewβ
∗. (3.15)

Based on the above discussion, our algorithm will be presented in Algorithm 1.

Algorithm 1 Our algorithm

Input: l labeled examples {(xi, yi)}li=1; u unlabeled examples {(xi)}ui=1; regularization parameters γA,
γD, and γR.

Output: The decision function f ∗(x) =
∑l+u

i=1 β
∗
i K(xi, x) of RS3ELM.

1: Learn the ELM and predict the output yu of the unlabeled instance xu using ELM;
2: calculate x̄u through (3.3);
3: compute risk degree of unlabeled samples using Eq (3.4);
4: construct data adjacency graph G with (l+u) nodes using k nearest neighbors, and construct weight

matrix Wi j;
5: construct L using W;
6: initiate an ELM network of L hidden neurons with random input weights and biases, and calculate

the output matrices of the hidden neurons Hl, Hu, and Hn;
7: compute the output weights β∗ using Eq (3.13).
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3.5. Convergence and computational complexity analysis

3.5.1. Convergence analysis

Theorem 1. [38] Based on the robust estimation given by Huber, if the loss function Φ(Z) is called a
robust loss function, then it needs to satisfy the following:

• Φ(Z) ≥ 0 and Φ(Z) = 0;
• ∀Z ∈ R, Φ(Z) = Φ(−Z);
• ∀Z ≥ 0, Φ′(Z) ≥ 0;
• Φ(Z) is second-order differentiable in R+, and Φ′′(0+) > 0;
• Φ(

√
Z) is concave in R+;

then there exists a convex function Ψ(q) such that

Φ(Z) = inf
q>0
{
1
2

qZ2 + Ψ(q)}, ∀Z. (3.16)

When Z is fixed, a minimum solution q∗ exists in the right-hand side of (3.16):

inf
q>0
{
1
2

qZ2 + Ψ(q)} =
1
2

q∗Z2 + Ψ(q∗), (3.17)

where q∗ =


Φ′(Z)

Z
Z > 0,

Φ′′(0+) Z = 0,
Φ′(−Z)
−Z

Z < 0.

Proposition 1. For the function G(z) = exp
(
−‖z‖2

2σ2

)
, it is possible to find a convex function ψ : R → R

such that the following equation holds:

G(z) = sup
ϑ∈R−

(
ϑ
‖z‖2

2σ2 − ψ(ϑ)
)
. (3.18)

In the above equation, R− represents the set of negative real numbers, and sup(·) denotes the operation
of finding the supremum. Additionally, for a fixed z, the supremum is attained at ϑ = −G(z).

To simplify the expression, let us define the objective function of the proposed method as follows:

Γ(β) = min
β

1
l

l∑
i=1

(
1 − exp(

−(e2
i )

2σ2 )
)p

+ λ‖β‖2F + γTr(βT HT
n LHnβ)

+α(Huβ − HuβELM)T R(Huβ − HuβELM). (3.19)

According to Proposition 1, we can rewrite (3.19) as

Γ̂(β, ϑ) = min
β,ϑ

1
l

l∑
i=1

(
1 − ϑi

‖tT
i − hiβ‖

2

2σ2 + ψ(ϑi)
)p

+ λ‖β‖2F + γTr(βT HT
n LHnβ)
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+α(Huβ − HuβELM)T R(Huβ − HuβELM), (3.20)

where ϑi = (ϑ1, ϑ2, · · · , ϑl).
Thus, given a fixed β, the local optimal solution of (3.20) is

ϑi = (1 −G(ei))p−1G(ei), (3.21)

where ei = tT
i − hiβ, i = 1, 2, · · · , l.

Then, we have Γ(β) = minϑ Γ(β, ϑ) and β can be derived as

β = arg min
β

1
l

l∑
i=1

(
1 − ϑi

‖tT
i − hiβ‖

2

2σ2

)p

+ λ‖β‖2F + γTr(βT HT
n LHnβ)

+α(Huβ − HuβELM)T R(Huβ − HuβELM) −Const. (3.22)

Const is a constant real number greater than zero,
∑l

i=1(ϕ(ei)hT
i hiβ)+λ̂β+γ̂(HT

n LHnβ)+α̂HT
u R(Huβ) =∑l

i=1(ϕ(ei)tihT
i )+α̂HT

u RHuβELM,where ϕ(ei) = (1−κσ(ei))p−1κσ(ei). Therefore, the output weight vector
β can be calculated by the following formula

β = [HT AH + λ̂I + γ̂HT
n LHn + α̂HT

u RHu]−1(HT AT + α̂HT
u RHuβELM),

where A is a diagonal matrix and diagonal elements for Aii = ϕ(ei) = (1 − κσ(ei))p−1κσ(ei).
Assume that at iteration k, there is

ϑk
i = (1 −G(tT

i − hiβ
k−1))p−1G(tT

i − hiβ
k−1), i = 1, 2, · · · , l. (3.23)

βk = arg min
β

Γ̂(β, ϑk). (3.24)

Therefore, we can obtain

Γ(βk) = min
ϑ

Γ̂(βk, ϑ) = min
ϑ

Γ̂(βk, ϑk+1). (3.25)

For a fixed βk, Γ̂(βk, ϑk+1) is the minimum value with respect to ϑ. Therefore,

Γ̂(βk, ϑk+1) ≤ Γ̂(βk, ϑk), (3.26)
Γ̂(βk, ϑk+1) ≤ Γ̂(βk−1, ϑk), (3.27)

Γ(βk−1) = Γ̂(βk−1, ϑk). (3.28)

Therefore, we have
Γ(βk) ≤ Γ(βk−1). (3.29)

3.5.2. Computational complexity analysis

In the RS3ELM algorithm, the computational complexity primarily resides in the matrix update (R),
weight vector update (β), graph Laplacian construction, and the computation of the nearest
neighbors (k). The main computational cost of each iteration is determined by the O(L3) computation
required to update β.

Thus, the approximate computational complexity of the RS3ELM algorithm is given by O(T · (L3 +

(l + u)2 log(l + u) + 2(l + u)2))). Based on our experimental results, a satisfactory choice for the iteration
count T is 10.
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3.6. Generalization bound of RS3ELM

In this section, we provide theoretical bounds for the generalization error of the proposed method
based on the Rademacher complexity. Let us define the empirical Rademacher complexity of function
class F , denoted by Ên(F ), for a sample {x1, . . . , xn} generated by a distribution D, where F is a
real-valued function class with domain X.

Ên(F ) = Eσ

sup
f∈F

∣∣∣∣∣∣∣2n
n∑

i=1

σi f (xi)

∣∣∣∣∣∣∣
 . (3.30)

The expectation is taken over σ = (σ1, σ2, . . . , σn)T , where σi ∈ {−1,+1} are independent uniform
random variables. The Rademacher random variables satisfy P{σi = −1} = P{σi = +1} = 1

2 .
Based on the above, we can express the Rademacher complexity of F , denoted by En(F ), as

follows:

En(F ) = Ex[Ên(F )] = Exσ

sup
f∈F

∣∣∣∣∣∣∣2n
n∑

i=1

σi f (xi)

∣∣∣∣∣∣∣
 . (3.31)

Here, the expectation is taken over the joint distribution of x and σ.

Theorem 2. [37] Let F : Z = X × Y 7→ [−1,+1] be a class of functions. Let n samples be drawn
independently from a distribution D. Then, with a probability of at least 1−θ, for every f ∈ F , we have

| Err( f ) − ˆErr( f ) |≤ Ên(F ) + 3

√
ln( 2

θ
)

2n
, (3.32)

where Err( f ) and ˆErr( f ) denote the expected error and the empirical error of f , respectively.

If we can compute the empirical Rademacher complexity Ên(F ) for the function class F , then this
bound is applicable to a wide range of learning algorithms. Additionally, for kernelized algorithms, it
is relatively simple to bound the empirical Rademacher complexity using the trace of the kernel matrix.

Theorem 3. [37] For a kernel K : X × X 7→ R and a sample {x1, . . . , xn} from X, the empirical
Rademacher complexity of the class F (B) satisfies the following condition: If the norm ‖ f ‖H ≤ B, then

Ên(F (B)) ≤
2B
n

√√
n∑

i=1

K(xi, xi). (3.33)

If for all x ∈ X, we have K(x, x) ≤ T 2 and K is a standard kernel, the inequality above can be
rewritten as

Ên(F (B)) ≤
2B
n

√√
n∑

i=1

K(xi, xi) ≤ 2B

√
T 2

n
. (3.34)

Theorem 4. (Generalization bound of RS3ELM) Suppose Err( f ) and ˆErr( f ) are the expected error
and the empirical error of RS3ELM, l and u are the sets of labeled and unlabeled examples,
respectively, and n = l + u. If the unlabeled sample is risk-free and K(x, x) ≤ T 2, then for every
θ ∈ (0, 1), with probability at least 1 − θ, the generalization error of RS3ELM is given by

|Err( f ) − ˆErr( f )| ≤ 2T

√
n

λn2 + γπ1

[
1 − exp(−

1
2σ2 )

]p

+ 3

√
ln(2

θ
)

2n
. (3.35)
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Proof. To utilize Theorem 3, we need to determine the value of B in the inequality (3.33), which
serves as an upper bound for ‖ f ‖2

H
. Assuming the unlabeled samples are safe, the objective function of

RS3ELM in the regenerative Hilbert space can be reformulated as

Φ( f ) =

l∑
i=1

Loss(yi, f (xi)) +
λ

2
‖ f ‖2

H
+

γ

2n2 f T L f . (3.36)

Assuming that f ∗ = arg min f∈H Φ( f ) is the solution to (3.36), we have Φ( f ∗) ≤ Φ(0). As a result, we
can derive additional information

λ

2
‖ f ∗‖2

H
+

γ

2n2 f T L f ≤ Φ(0). (3.37)

Let π1 < π2 < · · · < πr be the non-zero eigenvalues of the Laplacian matrix L, where r is the rank
of L. In terms of the eigenvalues, we have the inequality π1 < π2 < · · · < πr. This inequality
represents the relationship between the minimum eigenvalue π1 and the maximum eigenvalue πr of the
Laplacian matrix.

π1‖ f ∗‖2H ≤ f T L f ≤ πr‖ f ∗‖2H , (3.38)

and (
λ

2
+
γπ1

2n2

)
‖ f ∗‖2

H
≤

λ

2
‖ f ∗‖2

H
+
γπ1

2n2 f T L f

≤

(
λ

2
+
γπr

2n2

)
‖ f ∗‖2

H
. (3.39)

By combining the inequalities (3.37) and (3.39), we can derive the following resulting inequalities(
λ

2
+
γπ1

2n2

)
‖ f ∗‖2

H
≤ Φ(0). (3.40)

Hence, to restrict the search range of f ∗, we can confine it within a radius R =
√

Φ(0)(
λ
2 +

γπ1
2n2

) inside the ball.

Let HR = { f ∈ H : ‖ f ‖H ≤ R} denote the sphere with radius R in the regenerative Hilbert space H ,
and the generalized version of RS3ELM can be expressed as:

|Err( f ) − ˆErr( f )| ≤ Ên(HR) + 3

√
ln(2

θ
)

2n
, (3.41)

where

Ên(HR) ≤ 2R

√
T 2

n
. (3.42)

Suppose the output weight vector β = (0, 0, . . . , 0)T is chosen such that the last two terms in Eq (3.36)
become zero. Then

Φ(0) =

l∑
i=1

Loss(yi, f (0)) =

[
1 − exp(−

1
2σ2 )

]p

. (3.43)
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By substituting (3.43) into (3.40), we can get(
λ

2
+
γπ1

2n2

)
‖ f ∗‖2

H
≤

[
1 − exp(−

1
2σ2 )

]p

. (3.44)

The inequality (3.44) can be equivalently written as

‖ f ∗‖2
H
≤

2n2

λn2 + γπ1

[
1 − exp(−

1
2σ2 )

]p

. (3.45)

Obviously, the radius R is

R =

√
2n2

λn2 + γπ1

[
1 − exp(−

1
2σ2 )

]p

. (3.46)

By substituting Eq (3.46) into Eq (3.42), we can derive the following inequality.

Ên(HR) ≤ 2T

√
n

λn2 + γπ1

[
1 − exp(−

1
2σ2 )

]p

. (3.47)

By substituting Eq (3.47) into Eq (3.41), we can easily obtain an approximation for the generalization
error bound of RS3ELM:

|Err( f ) − ˆErr( f )| ≤ 2T

√
n

λn2 + γπ1

[
1 − exp(−

1
2σ2 )

]p

+ 3

√
ln(2

θ
)

2n
. (3.48)

�

4. Experiments

4.1. Experimental setup

In this section, we conducted experiments on nine benchmark datasets to validate the effectiveness
of the RS3ELM algorithm. We compared it with the following algorithms: SS-ELM [24], Lap-
SVM [1], Lap-RLS [2], RCSSELM [36], and MC-SSELM [35]. For the experiments, we used the
following parameters:

• SS-ELM: The number of hidden nodes L was chosen from the set {100, 500, 1000, 2000}. The
regularization parameters C and λ were chosen from the set {10−5, 10−3, 10−1, 101, 103, 105}.
• RC-SSELM: The regularization parameters C, λ, and the number of hidden nodes L were chosen

within the same range as SS-ELM. The Gaussian kernel parameter σ was chosen from the
set {1, 3, 5, 7, 9}.
• Lap-SVM and Lap-RLS: The Gaussian kernel parameter σ was chosen from the

set {2−10, 2−6, 2−2, 22, 26}. The regularization parameters γI and γA were chosen from the
set {10−6, 10−4, 10−2, 10−1, 100, 101, 102}.
• MC-SSELM: The regularization parameters C, λ, and the number of hidden nodes L were chosen

within the same range as SS-ELM. The Gaussian kernel parameters σ1 and σ2 were chosen from
the set {2−5, 2−3, 2−1, 21, 23, 25}. The maximum number of iterations K was set to 50, and the
tolerable error ε was set to 10−3. The variable center values were {−3,−1, 1, 3}, and the weight
parameter α was chosen from the set {0.1, 0.2, 0.3, 0.4, 0.5}.
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• RS3ELM: The maximum number of iterations K was set to 50, and the tolerable
error ε was set to 10−3. The Gaussian kernel parameter σ was chosen from the
set {2−10, 2−6, 2−2, 22, 26}. The regularization parameters γ, λ, and α were chosen from the
set {10−6, 10−4, 10−2, 10−1, 100, 101, 102}.

To ensure a fair comparison, we performed a grid search to find the optimal parameters for all
algorithms, and the algorithm with the best performance was selected.

To assess the classification performance of all the algorithms, we used the traditional accuracy
index (ACC). The ACC is defined as follows:

ACC =
T P + T N

T P + FN + T N + FP
. (4.1)

In this equation, T P represents the number of true positives, T N represents the number of true
negatives, FN represents the number of false negatives, and FP represents the number of false
positives. A higher ACC value indicates a better model performance. Additionally, to compare the
computational time of the algorithms, we recorded their running time, including both training and
testing, on all the datasets used.

In the experiment, the main criterion for evaluating the performance of all the algorithms was the
average classification accuracy, obtained through Monte Carlo cross-validation (MCCV) [39] and grid
search. All the datasets used were approximately balanced, and the following steps were taken:

• Random division: The datasets were randomly divided into training sets and test sets, with a ratio
of approximately 7:3.
• Repetition: This process of random division was repeated 10 times.
• Averaging: The results from the 10 repetitions were averaged to obtain a more reliable measure

of performance.
• Normalization: To ensure fair comparison, all the datasets were normalized to the interval [0, 1].

Details of the datasets are presented in Table 1.
• Recording: The average classification accuracy, denoted by ACC, was obtained as the average of

the 10 test results.

Table 1. Information description of 9 benchmark datasets.

ID Datasets Samples Features Class

1 Breast Cancer 569 30 2
2 wine 178 13 2
3 COIL20 1440 1024 20
4 Diabetic 1151 19 2
6 Carcinomc 174 9182 11
7 Heart diseasec 270 13 2
8 Lungc 203 3312 5
9 Proteinc 1483 56 10

AIMS Mathematics Volume 9, Issue 9, 25705–25731.



25722

By following these steps, we aimed to obtain objective experimental results that accurately assessed
the performance of the algorithms. We implemented the algorithms used in the experiments using
MATLAB scripts. To ensure a fair comparison, we employed the MATLAB toolbox for quadratic
programming (QP) to solve all the quadratic programming problems embedded in the algorithms. The
implementation was carried out on a PC with the following specifications: Intel(R) Core(TM) i7-8700
processor (3.20 GHz) and 16 GB of RAM. The operating system used was Windows 10, and MATLAB
version 2014a was employed for the implementation purpose.

4.2. Experiments on synthetic dataset

In this section, we aim to demonstrate the robustness of our method by conducting experiments on
a two-dimensional “XOR” dataset. The dataset is generated by perturbing points from two intersecting
lines, Class 1: yi = 0.7xi +η and Class 2: yi = −0.3xi +η. Each instance is randomly assigned Gaussian
noise, following a normal distribution with mean 0 and standard deviation 0.2. Both classes consist of
1000 sample points. We evaluate our method on both the original “XOR” dataset and a contaminated
version, which includes a few outliers. The experimental results are presented in Table 2.

The experimental results indicate that all methods perform exceptionally well in classifying the
synthetic dataset without outliers. Among the algorithms, Lap-SVM exhibits the highest classification
performance. However, the scenario changes when the dataset is contaminated with outliers. In this
case, we observe that Lap-SVM, Lap-RSL, and SS-ELM demonstrate significantly poorer performance
compared to the other algorithms. The classification accuracies of Lap-SVM, Lap-RSL, SS-ELM, RC-
SSELM, MC-SSELM, and RS3ELM is presented in Table 2. It is evident from the experiments that
our method, RS3ELM, outperforms the other five classifiers in terms of accuracy when classifying
a synthetic dataset with outliers. However, in terms of training time, RS3ELM does not exhibit
a notable advantage over the other classifiers. These results effectively highlight the robustness of
RS3ELM. RS3ELM are more time-consuming: Despite having similar accuracy, RS3ELM requires
more computational time compared to MC-SSELM. This could mean that the internal algorithms
or processes involved in RS3ELM are more complex or require more iterations/operations for
convergence.

Table 2. The accuracy (%) and learning time(s) of each classifier were evaluated on the
“XOR” dataset, both with and without the presence of outliers.

Lap-SVM Lap-RSL SS-ELM RC-SSELM MC-SSELM RS3ELM
Datasets ACC±std(%) ACC±std(%) ACC±std(%) ACC±std(%) ACC±std(%) ACC±std(%)

Time (s) Time (s) Time (s) Time (s) Time (s) Time (s)

Without outliers 81.78±1.35 80.12±1.75 80.28±1.47 81.29±1.69 81.47±1.56 81.55±1.34
0.891 0.836 0.465 0.557 0.847 1.062

With outliers 77.35±1.86 78.86±1.26 79.56±1.57 80.13±1.43 80.68±1.54 80.72±1.78
0.891 0.836 0.465 0.557 0.847 1.062
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4.3. Experiment without outliers

In this section, we evaluate the performance of our proposed method in comparison with other
algorithms in a noise-free environment. Table 3 presents the experimental results for all algorithms
using the optimal parameters. For Lap-SVM, Lap-RSL, SS-ELM, RC-SSELM, and MC-SSELM
algorithms, we refer to the literature [35] for their experimental settings and results. Please consult
the literature [35] for more detailed information. From Table 3, it is evident that our proposed method
achieves comparable performance to the other five algorithms in the noise-free experiment. In general,
the ELM-based methods demonstrate better performance than the SVM-based methods in most cases.

Table 3. Learning results of six algorithms in a noiseless environment.

Lap-SVM Lap-RSL SS-ELM RC-SSELM MC-SSELM RS3ELM

Datasets ACC±S(%) ACC±S(%) ACC±S(%) ACC± S(%) ACC± S(%) ACC± S(%)

1 90.09±1.83 91.08±1.62 91.15±1.19 91.97±1.22 90.41±0.43 90.53±0.67
2 94.87±3.39 95.73±1.96 98.72±0.00 98.72±0.00 100±0.00 97.87±1.33
3 96.15±0.98 94.43±0.20 96.17±0.56 96.31±0.34 96.62±0.40 97.05±0.94
4 70.72±1.61 70.53±1.49 72.35±1.02 72.58±0.60 73.45±0.54 73.21±1.12
5 96.97±0.52 95.15±1.05 96.91±0.50 96.73±1.52 97.64±0.73 97.89±0.84
6 68.60±9.65 65.22± 2.51 75.94 ±4.30 78.26 ± 1.02 78.33±2.34 79.17±1.04
7 81.18±3.28 82.55±1.22 82.47 ± 0.26 83.65 ±0.49 83.78 ±0.43 83.81±0.54
8 90.53±5.70 93.00±1.43 91.36±1.51 91.85±1.41 92.17±1.29 92.22 ±1.26
9 89.95 ±1.20 89.20±2.02 89.59 ±1.51 89.89 ± 0.70 90.23 ± 0.46 90.38± 0.53

4.4. Robustness analysis

To assess the efficacy of our proposed approach, we utilized nine benchmark datasets sourced
from the UCI machine learning repository: http://archive.ics.uci.edu/ml/datasets.html. In order to
ensure consistency, we standardized these datasets, thereby constraining the feature values to the range
of [0, 1]. Subsequently, we conducted two types of experiments on these standardized datasets.

In this section, we initially conducted experiments on datasets containing 10% and 30% outliers to
assess the robustness of the proposed method. These outliers were generated by randomly selecting
10% and 30% of the labeled training samples and applying the label inversion technique. (In robustness
testing, label inversion is used to test if a model can withstand label noise. For example, flipping a
certain percentage of labels randomly in the training data helps to determine how well the model can
generalize despite noisy conditions.) The experimental settings and results of Lap-SVM, Lap-RSL, SS-
ELM, RC-SSELM, and MC-SSELM algorithms were adopted from the literature [35]. The optimal
parameters were used in these experiments, and the results are presented in Tables 4 and 5. Observing
the tables, it is evident that the performance of all the algorithms declined as the label noise increased.
Moreover, the model utilizing the entropy loss function outperformed other methods, indicating its
effectiveness in handling outliers.
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Table 4. The performance outcomes of six algorithms were documented on a dataset that
contained 10% label noise.

Lap-SVM Lap-RSL SS-ELM RC-SSELM MC-SSELM RS3ELM
Datasets ACC±S(%) ACC±S(%) ACC±S(%) ACC± S(%) ACC± S(%) ACC± S(%)

1 88.48±0.98 87.86±0.57 89.59±0.53 89.89±1.47 90.41±0.36 90.26±0.43
2 95.30±3.23 93.16±4.12 97.44±1.28 97.69±1.07 99.74±0.51 96.88±1.49
3 93.45±0.20 91.72±1.08 92.07±0.40 93.72±0.26 95.21±0.33 95.56±0.41
4 67.25±1.61 69.76±0.67 69.04±0.43 69.04±0.56 72.00±0.68 72.47±0.64
5 96.67±0.52 95.76±0.52 96.36±1.57 97.09±0.41 96.36±0.57 96.08±1.12
6 67.15 ± 4.66 70.53 ± 3.65 75.94± 2.43 77.97 ± 4.51 78.65 ± 2.23 78.79 ± 2.28
5 96.67±0.52 95.76±0.52 96.36±1.57 97.09±0.41 96.36±0.57 96.08±1.12
6 96.67±0.52 95.76±0.52 96.36±1.57 97.09±0.41 96.36±0.57 96.08±1.12
7 80.78±2.78 81.96±0.90 79.88± 0.77 83.53 ±0.72 83.62 ±0.77 83.78 ±0.52
8 91.77±1.43 91.36±2.47 89.14±2.95 90.12±2.62 90.19±2.55 90.23±2.47
9 86.14±0.65 82.40±2.83 86.70±0.30 86.85±0.48 87.21±0.32 87.52±0.28

Table 5. The performance outcomes of six algorithms were documented on a dataset that
contained 30% label noise.

Lap-SVM Lap-RSL SS-ELM RC-SSELM MC-SSELM RS3ELM

Datasets ACC±S(%) ACC±S(%) ACC±S(%) ACC± S(%) ACC± S(%) ACC± S(%)

1 85.25±3.90 86.74±3.72 89.37±0.86 89.52±1.27 89.59±1.21 89.61±1.17
2 88.89±3.92 90.60±1.48 82.05±4.53 93.33±0.57 95.64±0.63 94.72±0.69
3 85.06±2.65 85.06±2.49 86.28±0.50 86.41±0.61 87.86±0.30 89.73±1.09
4 60.39±1.17 62.22±3.83 64.41±0.63 65.28±0.80 66.96±0.76 66.79±0.52
5 93.94±3.19 94.55±0.91 95.27±1.49 96.36±0.91 97.27±0.57 95.06±1.17
5 96.67±0.52 95.76±0.52 96.36±1.57 97.09±0.41 96.36±0.57 96.08±1.12
6 54.11±1.67 64.25±0.84 68.99±4.18 71.01±5.42 71.54±3.45 71.89±3.32
7 78.43 ±3.78 79.61±1.89 75.53± 0.67 80.00± 0.59 80.41± 1.03 80.47± 0.74
8 88.07± 2.85 86.42±1.23 87.41±5.19 88.15±2.07 88.33±2.11 88.52±2.15
9 78.03± 3.19 81.46 ±1.60 81.46±0.35 83.07±0.71 83.17±0.85 83.03±0.67

In order to further validate the robustness of the proposed method, this study also conducted
experiments in a characteristic noise environment. The characteristic noise dataset was generated
by randomly selecting 30% of the characteristic values of each sample and assigning them a value
of 0, thus creating a new experimental dataset. The experimental settings and results of Lap-SVM,
Lap-RSL, SS-ELM, RC-SSELM, and MC-SSELM algorithms were obtained from the literature [35].
The experimental settings and parameter choices were consistent with the previous experiments. The
results of this experiment are presented in Table 6 using the optimal parameters. From Table 6, it can
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be observed that the proposed method performs comparably to other related algorithms. To summarize,
the proposed method in this paper demonstrates effectiveness in terms of robustness and significantly
enhances the performance of the model.

Table 6. Learning results of six algorithms on a dataset with characteristic noise.

Lap-SVM Lap-RSL SS-ELM RC-SSELM MC-SSELM RS3ELM

Datasets ACC±S(%) ACC±S(%) ACC±S(%) ACC± S(%) ACC± S(%) ACC± S(%)

1 85.75±6.11 87.86±0.86 87.66±2.30 88.40±1.45 89.52±1.04 90.11±1.24
2 81.37±2.23 82.35±2.56 80.35±1.22 82.59±1.42 81.76±0.37 82.23±1.19
3 97.01±0.74 94.44±4.12 97.18±1.07 97.95±1.15 98.21±0.63 98.33±1.14
4 59.71±1.53 59.23±0.89 59.36±0.38 61.62±0.76 62.26±0.22 62.05±1.06
5 95.45±1.82 94.55±1.57 96.00±1.04 96.00±0.50 96.36±1.29 96.55±1.26
6 30.92 ±7.15 34.30 ± 10.88 34.49 ± 5.27 40.58±3.40 39.94±3.76 40.71±2.66
7 81.37±2.23 82.35±2.56 80.35±1.22 82.59±1.42 82.74±1.28 82.79±1.24
8 79.01±0.00 78.60 ±0.71 79.01 ±0.00 79.01±0.00 79.01±0.00 79.01±0.00
9 79.21±1.17 80.71±0.19 80.26 ±1.35 81.27±0.88 81.41±0.27 81.45±0.31

4.5. Convergence analysis

To evaluate the convergence of the proposed algorithm, experiments are conducted on multiple
datasets including wine, breast cancer, diabetic, and G50C datasets. The optimal parameters are
selected, and the experimental procedure is consistent with the noise experiment. The learning
outcomes are presented in Figure 2. As observed from Figure 2, it is evident that the objective function
value of RS3ELM progressively decreases with each iteration, converging to a stable value in fewer
than 10 iterations. Hence, the proposed algorithm RS3ELM demonstrates convergence.
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Figure 2. Convergence curves of algorithm RS3ELM in wine, Breast Cancer, Diabetic, and
g50c datasets.

4.6. Sensitivity analysis of parameters

The RS3ELM algorithm incorporates several parameters, namely p and σ in the Cp-Loss function,
as well as the tradeoff coefficients for three terms in (3.12), which are λ, γ, and α. For simplicity, we
assume that γ, λ, and α are equal in value. To assist in parameter selection, we examine the impact of
p, σ, λ, γ, and α on the performance of RS3ELM.

In our experimental analysis, we investigated the impact of p and α on the performance of RS3ELM,
while keeping σ = 2−2, λ = 10−2, and γ = 10−1. We conducted the experiment by varying
α and p within the sets {10−4, 10−2, 10−1, 100, 101, 102} and {0.5, 1.0, 1.5, 2.0, 2.5, 3.0}, respectively.
The accuracy results in relation to the parameters p and α are presented in Figure 3. Although the
classification performance of the wine, Breast Cancer, Diabetic, and g50c datasets were minimally
influenced by changes in p and α, we can still make certain conclusions about the optimal values of
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these parameters based on Figure 3. Generally, outliers tend to affect the determination of hyperplanes.
However, RS3ELM can effectively mitigate this influence by adjusting the parameter p, indicating that
by controlling p, RS3ELM becomes less sensitive to outliers.
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Figure 3. Classification performance of RS3ELM under different parameters p and λ.

5. Conclusions

In this research paper, we propose a robust safe framework for semi-supervised learning that ensures
the reliable utilization of unlabeled samples and achieves resistance to noise and outliers. To implement
this framework, we introduce a robust safe semi-supervised extreme learning machine (RS3ELM),
which is solved using a fixed-point iterative algorithm. We theoretically analyze the computational
complexity and convergence of the RS3ELM and provide a generalizing error bound based on the
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Rademacher complexity. Our experimental results on multiple datasets validate the robustness and
classification accuracy of RS3ELM when compared to similar methods. Consequently, our proposed
approach can be effectively applied to robust classification problems. It is important to note that our
method focuses solely on binary classification tasks. Investigating the extension of this method to other
learning tasks without compromising the model’s classification accuracy and robustness is a valuable
direction for future research.
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