In today's supply chain management, there is a growing emphasis on transitioning to environmentally sustainable practices. This paper aimed to identify and rank the barriers to the implementation of eco-regenerative supply chains. A novel integrated approach was proposed based on stepwise weighted assessment ratio analysis (SWARA) and the multi-attributive border approximation area (MABAC) method using ZE-fuzzy numbers. This approach aimed to address some of the limitations of the failure mode and effects analysis (FMEA) method, including lack of thorough prioritization and inability to make decisions about the importance of various failure factors in an uncertain environment. By combining fuzzy sets and considering the reliability levels of two distinct groups of decision-makers and experts, this proposed method offers a comprehensive evaluation framework. Following the determination of the risk priority number (RPN) by the FMEA method, risk factors were evaluated using ZE-SWARA, and barriers were ranked using the ZE-MABAC method to identify critical barriers and propose corrective actions. Furthermore, sensitivity analysis was conducted in this study to demonstrate the viability of the proposed method. This research contributes to the advancement of eco-regenerative supply chain management practices by offering a systematic and innovative approach to addressing environmental concerns and improving decision-making processes in uncertain environments.
Citation: Zeynab Rezazadeh Salteh, Saeed Fazayeli, Saeid Jafarzadeh Ghoushchi. Evaluation and prioritization of barriers to the implementation of the eco-regenerative supply chains using fuzzy ZE-numbers framework in group decision-making[J]. AIMS Environmental Science, 2024, 11(4): 516-550. doi: 10.3934/environsci.2024026
[1] | Haiming Liu, Jiajing Miao . Gauss-Bonnet theorem in Lorentzian Sasakian space forms. AIMS Mathematics, 2021, 6(8): 8772-8791. doi: 10.3934/math.2021509 |
[2] | Haiming Liu, Xiawei Chen, Jianyun Guan, Peifu Zu . Lorentzian approximations for a Lorentzian α-Sasakian manifold and Gauss-Bonnet theorems. AIMS Mathematics, 2023, 8(1): 501-528. doi: 10.3934/math.2023024 |
[3] | Lizhen Huang, Qunying Wu . Precise asymptotics for complete integral convergence in the law of the logarithm under the sub-linear expectations. AIMS Mathematics, 2023, 8(4): 8964-8984. doi: 10.3934/math.2023449 |
[4] | Xhevat Z. Krasniqi . Approximation of functions in a certain Banach space by some generalized singular integrals. AIMS Mathematics, 2024, 9(2): 3386-3398. doi: 10.3934/math.2024166 |
[5] | Shuyan Li, Qunying Wu . Complete integration convergence for arrays of rowwise extended negatively dependent random variables under the sub-linear expectations. AIMS Mathematics, 2021, 6(11): 12166-12181. doi: 10.3934/math.2021706 |
[6] | Najmeddine Attia, Rim Amami . On linear transformation of generalized affine fractal interpolation function. AIMS Mathematics, 2024, 9(7): 16848-16862. doi: 10.3934/math.2024817 |
[7] | Franka Baaske, Romaric Kana Nguedia, Hans-Jürgen Schmeißer . Smoothing properties of the fractional Gauss-Weierstrass semi-group in Morrey smoothness spaces. AIMS Mathematics, 2024, 9(11): 31962-31984. doi: 10.3934/math.20241536 |
[8] | Qiujin He, Chunxia Bu, Rongling Yang . A Generalization of Lieb concavity theorem. AIMS Mathematics, 2024, 9(5): 12305-12314. doi: 10.3934/math.2024601 |
[9] | Fethi Bouzeffour . Inversion formulas for space-fractional Bessel heat diffusion through Tikhonov regularization. AIMS Mathematics, 2024, 9(8): 20826-20842. doi: 10.3934/math.20241013 |
[10] | Iqra Shamas, Saif Ur Rehman, Thabet Abdeljawad, Mariyam Sattar, Sami Ullah Khan, Nabil Mlaiki . Generalized contraction theorems approach to fuzzy differential equations in fuzzy metric spaces. AIMS Mathematics, 2022, 7(6): 11243-11275. doi: 10.3934/math.2022628 |
In today's supply chain management, there is a growing emphasis on transitioning to environmentally sustainable practices. This paper aimed to identify and rank the barriers to the implementation of eco-regenerative supply chains. A novel integrated approach was proposed based on stepwise weighted assessment ratio analysis (SWARA) and the multi-attributive border approximation area (MABAC) method using ZE-fuzzy numbers. This approach aimed to address some of the limitations of the failure mode and effects analysis (FMEA) method, including lack of thorough prioritization and inability to make decisions about the importance of various failure factors in an uncertain environment. By combining fuzzy sets and considering the reliability levels of two distinct groups of decision-makers and experts, this proposed method offers a comprehensive evaluation framework. Following the determination of the risk priority number (RPN) by the FMEA method, risk factors were evaluated using ZE-SWARA, and barriers were ranked using the ZE-MABAC method to identify critical barriers and propose corrective actions. Furthermore, sensitivity analysis was conducted in this study to demonstrate the viability of the proposed method. This research contributes to the advancement of eco-regenerative supply chain management practices by offering a systematic and innovative approach to addressing environmental concerns and improving decision-making processes in uncertain environments.
In [4], Diniz and Veloso gave the definition of Gaussian curvature for non-horizontal surfaces in sub-Riemannian Heisenberg space H1 and the proof of the Gauss-Bonnet theorem. In [1], intrinsic Gaussian curvature for a Euclidean C2-smooth surface in the Heisenberg group H1 away from characteristic points and intrinsic signed geodesic curvature for Euclidean C2-smooth curves on surfaces are defined by using a Riemannian approximation scheme. These results were then used to prove a Heisenberg version of the Gauss-Bonnet theorem. In [5], Veloso verified that Gaussian curvature of surfaces and normal curvature of curves in surfaces introduced by [4] and by [1] to prove Gauss-Bonnet theorems in Heisenberg space H1 were unequal and he applied the same formalism of [4] to get the curvatures of [1]. With the obtained formulas, the Gauss-Bonnet theorem can be proved as a straightforward application of Stokes theorem in [5].
In [1] and [2], Balogh-Tyson-Vecchi used that the Riemannian approximation scheme may depend upon the choice of the complement to the horizontal distribution in general. In the context of H1 the choice which they have adopted is rather natural. The existence of the limit defining the intrinsic curvature of a surface depends crucially on the cancellation of certain divergent quantities in the limit. Such cancellation stems from the specific choice of the adapted frame bundle on the surface, and on symmetries of the underlying left-invariant group structure on the Heisenberg group. In [1], they proposed an interesting question to understand to what extent similar phenomena hold in other sub-Riemannian geometric structures. In [6], Wang and Wei gave sub-Riemannian limits of Gaussian curvature for a Euclidean C2-smooth surface in the affine group and the group of rigid motions of the Minkowski plane away from characteristic points and signed geodesic curvature for Euclidean C2-smooth curves on surfaces. And they got Gauss-Bonnet theorems in the affine group and the group of rigid motions of the Minkowski plane. In [7], Wang and Wei gave sub-Riemannian limits of Gaussian curvature for a Euclidean C2-smooth surface in the BCV spaces and the twisted Heisenberg group away from characteristic points and signed geodesic curvature for Euclidean C2-smooth curves on surfaces. And they got Gauss-Bonnet theorems in the BCV spaces and the twisted Heisenberg group.
In this paper, we solve this problem for the generalized affine group and the generalized BCV spaces. In the case of the generalized affine group, the cancellation of certain divergent quantities in the limit happens and the limit of the Riemannian Gaussian curvature exists. In the case of the generalized BCV spaces, the result is the same as the generalized affine group. We also get Gauss-Bonnet theorems in the generalized affine group and the generalized BCV spaces.
In Section 2, we compute the sub-Riemannian limit of curvature of curves in the generalized affine group. In Section 3, we compute sub-Riemannian limits of geodesic curvature of curves on surfaces and the Riemannian Gaussian curvature of surfaces in the generalized affine group. In Section 4, we prove the Gauss-Bonnet theorem in the generalized affine group. In Section 5, we compute the sub-Riemannian limit of curvature of curves in the generalized BCV spaces. In Section 6, we compute sub-Riemannian limits of geodesic curvature of curves on surfaces and the Riemannian Gaussian curvature of surfaces in the generalized BCV spaces and get a Gauss-Bonnet theorem in the generalized BCV spaces.
When TM=H⨁H⊥ and gTM=gH⨁gH⊥, we may consider the rescaled metric gL=gH⨁LgH⊥, then we may consider the sub-Riemannian limit of some geometric objects like the Gauss curvature and the mean curvature ⋅⋅⋅, when L goes to the infinity. In this case, we call the (M,gTM) as the manifold with the splitting tangent bundle. In this paper, our main objects: the generalized affine group and the generalized BCV spaces are not sub-Riemannian manifolds (groups) in general. But they are manifolds with the splitting tangent bundle. So we can use the Riemannian approximation scheme to get the Gauss-Bonnet theorems in these spaces.
Firstly we give some notations on the generalized affine group. Let G be the generalized affine group and choose the underlying manifold G={(x1,x2,x3)∈R3∣f(x1,x2,x3)>0}. On G, we let
X1=f∂x1,X2=f∂x2+∂x3,X3=f∂x2. | (2.1) |
where f be a smooth function with respect to x1,x2,x3. Then
∂x1=1fX1,∂x2=1fX3,∂x3=X2−X3, | (2.2) |
and span{X1,X2,X3}=TG. Let H=span{X1,X2} be the horizontal distribution on G. Let ω1=1fdx1,ω2=dx3,ω=1fdx2−dx3. Then H=Kerω. For the constant L>0, let gL=ω1⊗ω1+ω2⊗ω2+Lω⊗ω,g=g1 be the Riemannian metric on G. Then X1,X2,~X3:=L−12X3 are orthonormal basis on TG with respect to gL. We have
[X1,X2]=−(f2+f3f)X1+f1X3,[X1,X3]=−f2X1+f1X3,[X2,X3]=f3fX3. | (2.3) |
where fi=∂f∂xi, for 1≤i≤3.
Let ∇L be the Levi-Civita connection on G with respect to gL. Then we have the following lemma,
Lemma 2.1. Let G be the generalized affine group, then
∇LX1X1=(f2+f3f)X2+f3L,∇LX1X2=−(f2+f3f)X1+f12X3,∇LX2X1=−f12X3,∇LX2X2=0,∇LX1X3=−f2X1−f1L2X2,∇LX3X1=−f1L2X2−f1X3,∇LX2X3=f1L2X1,∇LX3X2=f1L2X1−f3fX3,∇LX3X3=f1LX1+f3LfX2. | (2.4) |
Proof. By the Koszul formula, we have
2⟨∇LXiXj,Xk⟩L=⟨[Xi,Xj],Xk⟩L−⟨[Xj,Xk],Xi⟩L+⟨[Xk,Xi],Xj⟩L, | (2.5) |
where i,j,k=1,2,3. So lemma 2.1 holds.
Definition 2.2. Let γ:[a,b]→(G,gL) be a Euclidean C1-smooth curve. We say that γ is regular if ˙γ≠0 for every t∈[a,b]. Moreover we say that γ(t) is a horizontal point of γ if
ω(˙γ(t))=˙γ2(t)f−˙γ3(t)=0, |
where γ(t)=(γ1(t),γ2(t),γ3(t)) and ˙γi(t)=∂γi(t)∂t.
Definition 2.3. Let γ:[a,b]→(G,gL) be a Euclidean C2-smooth regular curve in the Riemannian manifold (G,gL). The curvature kLγ of γ at γ(t) is defined as
kLγ:=√||∇L˙γ˙γ||2L||˙γ||4L−⟨∇L˙γ˙γ,˙γ⟩2L||˙γ||6L. | (2.6) |
Lemma 2.4. Let γ:[a,b]→(G,gL) be a Euclidean C2-smooth regular curve in the Riemannian manifold (G,gL). Then,
kLγ={{{[¨γ1−f2˙γ1˙γ3f−f′˙γ1+f3˙γ1˙γ3f2]+[f1L˙γ3−f2˙γ1f+f1Lω(˙γ(t))]ω(˙γ(t))}2+{[¨γ3+f2˙γ21f2+f3˙γ21f3]+[f3Lω(˙γ(t))f−f1L˙γ1f]ω(˙γ(t))}2+L{f2˙γ21f2L−[f1˙γ1f+f3˙γ3f]ω(˙γ(t))+ddtω(˙γ(t))}2}⋅[(˙γ1f)2+˙γ23+L(ω(˙γ(t)))2]−2−{[˙γ1¨γ1f2−f′˙γ21f3+˙γ3¨γ3]+Ldω(˙γ(t))dtω(˙γ(t))}2⋅[(˙γ1f)2+˙γ23+L(ω(˙γ(t)))2]−3}12 | (2.7) |
In particular, if γ(t) is a horizontal point of γ,
kLγ={{[¨γ1−f2˙γ1˙γ3f−f′˙γ1+f3˙γ1˙γ3f2]2+[¨γ3+f2˙γ21f2+f3˙γ21f3]2+L[f2˙γ21f2L+ddtω(˙γ(t))]2}⋅[(˙γ1f)2+˙γ23]−2−[˙γ1¨γ1f2−f′˙γ21f3+˙γ3¨γ3]2⋅[(˙γ1f)2+˙γ23]−3}12 | (2.8) |
where f′=˙γ(f)=ddtf(γ(t)).
Proof. By (2.2), we have
˙γ(t)=˙γ1fX1+˙γ3X2+ω(˙γ(t))X3. | (2.9) |
By Lemma 2.1 and (2.9), we have
∇L˙γX1=[ff2˙γ1(t)+f3˙γ1(t)f2−f1Lω(˙γ(t))2]X2+[f2˙γ1(t)fL−f1˙γ3(t)2−f1ω(˙γ(t))]X3,∇L˙γX2=[−ff2˙γ1(t)+f3˙γ1(t)f2+f1Lω(˙γ(t))2]X1+[−f3ω(˙γ(t))f+f1˙γ(t)2f]X3,∇L˙γX3=[−f2˙γ1(t)f+Lf1˙γ3(t)2+f1Lω(˙γ(t))]X1+[−f1L˙γ(t)2f+f3Lω(˙γ(t))f]X2. | (2.10) |
By (2.9) and (2.10), we have
∇L˙γ˙γ={[¨γ1−f2˙γ1˙γ3f−f′˙γ1+f3˙γ1˙γ3f2]+[f1L˙γ3−f2˙γ1f+f1Lω(˙γ(t))]ω(˙γ(t))}X1+{[¨γ3+f2˙γ21f2+f3˙γ21f3]+[f3Lω(˙γ(t))f−f1L˙γ1f]ω(˙γ(t))}X2+{f2˙γ21f2L−(f1˙γ1f+f3˙γ3f)ω(˙γ(t))+dω(˙γ(t))dt}X3 | (2.11) |
By (2.6), (2.9) and (2.11), we get Lemma 2.4.
Definition 2.5. Let γ:[a,b]→(G,gL) be a Euclidean C2-smooth regular curve in the Riemannian manifold (G,gL). We define the intrinsic curvature k∞γ of γ at γ(t) to be
k∞γ:=limL→+∞kLγ, |
if the limit exists.
We introduce the following notation: for continuous functions f1,f2:(0,+∞)→R,
f1(L)∼f2(L),asL→+∞⇔limL→+∞f1(L)f2(L)=1. | (2.12) |
Lemma 2.6. Let γ:[a,b]→(G,gL) be a Euclidean C2-smooth regular curve in the Riemannian manifold (G,gL). Then
k∞γ=√[f1˙γ1−f3˙γ2f+f3˙γ3]2+(f1˙γ2)2|f||ω(˙γ(t))|,ifω(˙γ(t))≠0, | (2.13) |
k∞γ={{[¨γ1−f2˙γ1˙γ3f−f′˙γ1+f3˙γ1˙γ3f2]2+[¨γ3+f2˙γ21f2+f3˙γ21f3]2+(f2˙γ21f2)2}⋅[(˙γ1f)2+˙γ23]−2−[˙γ1¨γ1f2−f′˙γ21f3+˙γ3¨γ3]2⋅[(˙γ1f)2+˙γ23]−3}12ifω(˙γ(t))=0andddt(ω(˙γ(t)))=0, | (2.14) |
limL→+∞kLγ√L=|ddt(ω(˙γ(t)))|(˙γ1f)2+˙γ23,ifω(˙γ(t))=0andddt(ω(˙γ(t)))≠0. | (2.15) |
Proof. Using the notation introduced in (2.12), when ω(˙γ(t))≠0, we have
||∇L˙γ˙γ||2L∼(ω(˙γ(t))f)2{[f1˙γ1−f3˙γ2f+f3˙γ3]2+(f1˙γ2)2}L2,asL→+∞, |
||˙γ||2L∼Lω(˙γ(t))2,asL→+∞, |
⟨∇L˙γ˙γ,˙γ⟩2L∼O(L2)asL→+∞. |
Therefore
||∇L˙γ˙γ||2L||˙γ||4L→{[f1˙γ1−f3˙γ2f+f3˙γ3)]2+(f1˙γ2)2}f2ω(˙γ(t))2,asL→+∞, |
⟨∇L˙γ˙γ,˙γ⟩2L||˙γ||6L→0,asL→+∞. |
So by (2.6), we have (2.13). (2.14) comes from (2.8) and
ddt(ω(˙γ(t)))=0. |
When ω(˙γ(t))=0 and ddt(ω(˙γ(t)))≠0,
we have
||∇L˙γ˙γ||2L∼L[ddt(ω(˙γ(t)))]2,asL→+∞, |
||˙γ||2L=(˙γ1f)2+˙γ23, |
⟨∇L˙γ˙γ,˙γ⟩2L=O(1)asL→+∞. |
By (2.6), we get (2.15).
We will say that a surface Σ⊂(G,gL) is regular if Σ is a Euclidean C2-smooth compact and oriented surface. In particular we will assume that there exists a Euclidean C2-smooth function u:G→R such that
Σ={(x1,x2,x3)∈G:u(x1,x2,x3)=0} |
and ux1∂x1+ux2∂x2+ux3∂x3≠0. Let ∇Hu=X1(u)X1+X2(u)X2. A point x∈Σ is called characteristic if ∇Hu(x)=0. We define the characteristic set C(Σ):={x∈Σ|∇Hu(x)=0}. Our computations will be local and away from characteristic points of Σ. Let us define first
p:=X1u,q:=X2u,andr:=˜X3u. |
We then define
l:=√p2+q2,lL:=√p2+q2+r2,¯p:=pl,¯q:=ql,¯pL:=plL,¯qL:=qlL,¯rL:=rlL. | (3.1) |
In particular, ¯p2+¯q2=1. These functions are well defined at every non-characteristic point. Let
vL=¯pLX1+¯qLX2+¯rL~X3,e1=¯qX1−¯pX2,e2=¯rL¯pX1+¯rL¯qX2−llL~X3, | (3.2) |
then vL is the Riemannian unit normal vector to Σ and e1,e2 are the orthonormal basis of Σ. On TΣ we define a linear transformation JL:TΣ→TΣ such that
JL(e1):=e2;JL(e2):=−e1. | (3.3) |
For every U,V∈TΣ, we define ∇Σ,LUV=π∇LUV where π:TG→TΣ is the projection. Then ∇Σ,L is the Levi-Civita connection on Σ with respect to the metric gL. By (2.11), (3.2) and
∇Σ,L˙γ˙γ=⟨∇L˙γ˙γ,e1⟩Le1+⟨∇L˙γ˙γ,e2⟩Le2, | (3.4) |
we have
∇Σ,L˙γ˙γ={¯q[(¨γ1−f2˙γ1˙γ3f−f′˙γ1+f3˙γ1˙γ3f2)+(f1L˙γ3−f2˙γ1f+f1Lω(˙γ(t)))ω(˙γ(t))]−¯p[(¨γ3+f2˙γ21f2+f3˙γ21f3)−(f1L˙γ1−f3Lω(˙γ(t))f)ω(˙γ(t))]}e1+{¯rL¯p[(¨γ1−f2˙γ1˙γ3f−f′˙γ1+f3˙γ1˙γ3f2)+(f1L˙γ3−f2˙γ1f+f1Lω(˙γ(t)))ω(˙γ(t))]+¯rL¯q[(¨γ3+f2˙γ21f2+f3˙γ21f3)−(f1L˙γ1f−f3Lω(˙γ(t))f)ω(˙γ(t))]−llLL12[f2˙γ21f2L−(f1˙γ1f+f3˙γ3f)ω(˙γ(t))+ddt(ω(˙γ(t)))]}e2. | (3.5) |
Moreover if ω(˙γ(t))=0, then
∇Σ,L˙γ˙γ={¯q[¨γ1−f2˙γ1˙γ3f−f′˙γ1+f3˙γ1˙γ3f2]−¯p[¨γ3+f2˙γ21f2+f3˙γ21f3]}e1+{¯rL¯p[¨γ1−f2˙γ1˙γ3f−f′˙γ1+f3˙γ1˙γ3f2]+¯rL¯q[¨γ3+f2˙γ21f2+f3˙γ21f3]−llLL12[f2˙γ21f2L−ddt(ω(˙γ(t)))]}e2. | (3.6) |
Definition 3.1. Let Σ⊂(G,gL) be a regular surface. Let γ:[a,b]→Σ be a Euclidean C2-smooth regular curve. The geodesic curvature kLγ,Σ of γ at γ(t) is defined as
kLγ,Σ:=√||∇Σ,L˙γ˙γ||2Σ,L||˙γ||4Σ,L−⟨∇Σ,L˙γ˙γ,˙γ⟩2Σ,L||˙γ||6Σ,L. | (3.7) |
Definition 3.2. Let Σ⊂(G,gL) be a regular surface. Let γ:[a,b]→Σ be a Euclidean C2-smooth regular curve. We define the intrinsic geodesic curvature k∞γ,Σ of γ at γ(t) to be
k∞γ,Σ:=limL→+∞kLγ,Σ, |
if the limit exists.
Lemma 3.3. Let Σ⊂(G,gL) be a regular surface. Let γ:[a,b]→Σ be a Euclidean C2-smooth regular curve. Then
k∞γ,Σ=|¯p(f1˙γ1−f3˙γ2f+f3˙γ3)+¯qf1˙γ2||f||ω(˙γ(t))|,ifω(˙γ(t))≠0, | (3.8) |
k∞γ,Σ=0,ifω(˙γ(t))=0,andddt(ω(˙γ(t)))=0, |
limL→+∞kLγ,Σ√L=|ddt(ω(˙γ(t)))|(¯q˙γ1f−¯p˙γ3)2,ifω(˙γ(t))=0andddt(ω(˙γ(t)))≠0. | (3.9) |
Proof. we know ˙γ(t)=˙γ1(t)∂x1+˙γ2(t)∂x2+˙γ3(t)∂x3, then by (2.2), ˙γ(t)=˙γ1(t)γ1(t)X1+γ3(t)X2+ω(˙γ(t))X3.
Let
˙γ(t)=λ1e1+λ2e2. |
Then
{˙γ1(t)γ1(t)=λ1¯q+λ2¯rL¯p˙γ3(t)=−λ1¯p+λ2¯rL¯qω(˙γ(t))=−λ2llLL−12 | (3.10) |
We have
{λ1=¯q˙γ1(t)γ1(t)−¯p˙γ3(t)λ2=−λ2lLlL12ω(˙γ(t)) | (3.11) |
Thus ˙γ∈TΣ, we have
˙γ=(¯q˙γ1f−¯p˙γ3)e1−lLlL12ω(˙γ(t))e2. | (3.12) |
By (3.6), we have
||∇Σ,L˙γ˙γ||2L,Σ={¯q[(¨γ1−f2˙γ1˙γ3f−f′˙γ1+f3˙γ1˙γ3f2)+(f1L˙γ3−f2˙γ1f+f1Lω(˙γ(t)))ω(˙γ(t))]−¯p[(¨γ3+f2˙γ21f2+f3˙γ21f3)−(f1L˙γ1−f3Lω(˙γ(t))f)ω(˙γ(t))]}2+{¯rL¯p[(¨γ1−f2˙γ1˙γ3f−f′˙γ1+f3˙γ1˙γ3f2)+(f1L˙γ3−f2˙γ1f+f1Lω(˙γ(t)))ω(˙γ(t))]+¯rL¯q[(¨γ3+f2˙γ21f2+f3˙γ21f3)−(f1L˙γ1f−f3Lω(˙γ(t))f)ω(˙γ(t))]−llLL12[f2˙γ21f2L−(f1˙γ1f+f3˙γ3f)ω(˙γ(t))+ddt(ω(˙γ(t)))]}2∼L2[¯p(f1˙γ1−f3˙γ2f+f3˙γ3)+¯qf1˙γ2]2ω(˙γ(t))2f2,asL→+∞. | (3.13) |
Similarly, we have that when ω(˙γ(t))≠0,
||˙γ||Σ,L=√(¯q˙γ1f−¯p˙γ3)2+(lLl)2Lω(˙γ(t))2∼L12|ω(˙γ(t))|,asL→+∞. | (3.14) |
By (3.6) and (3.12), we have
⟨∇Σ,L˙γ˙γ,˙γ⟩Σ,L=(¯q˙γ1f−¯p˙γ3)⋅{¯q[(¨γ1−f2˙γ1˙γ3f−f′˙γ1+f3˙γ1˙γ3f2)+(f1L˙γ3−f2˙γ1f+f1Lω(˙γ(t)))ω(˙γ(t))]−¯p[(¨γ3+f2˙γ21f2+f3˙γ21f3)−(f1L˙γ1−f3Lω(˙γ(t))f)ω(˙γ(t))]}−lLlL12ω(˙γ(t))⋅{¯rL¯p[(¨γ1−f2˙γ1˙γ3f−f′˙γ1+f3˙γ1˙γ3f2)+(f1L˙γ3−f2˙γ1f+f1Lω(˙γ(t)))ω(˙γ(t))]+¯rL¯q[(¨γ3+f2˙γ21f2+f3˙γ21f3)−(f1L˙γ1f−f3Lω(˙γ(t))f)ω(˙γ(t))]−llLL12[f2˙γ21f2L−(f1˙γ1f+f3˙γ3f)ω(˙γ(t))+ddt(ω(˙γ(t)))]}∼M0L, | (3.15) |
where M0 does not depend on L. By (3.7), (3.13)–(3.15), we get (3.8). When ω(˙γ(t))=0 and ddt(ω(˙γ(t)))=0,
we have
||∇Σ,L˙γ˙γ||2L,Σ=[¯q(¨γ1−f2˙γ1˙γ3f−f′˙γ1+f3˙γ1˙γ3f2)−¯p(¨γ3+f2˙γ21f2+f3˙γ21f3)]2+[¯rL¯p(¨γ1−f2˙γ1˙γ3f−f′˙γ1+f3˙γ1˙γ3f2)+¯rL¯q(¨γ3+f2˙γ21f2+f3˙γ21f3)−llLL12f2˙γ21f2L]2∼[¯q(¨γ1−f2˙γ1˙γ3f−f′˙γ1+f3˙γ1˙γ3f2)−¯p(¨γ3+f2˙γ21f2+f3˙γ21f3)]2 | (3.16) |
and
||˙γ||Σ,L=|¯q˙γ1f−¯p˙γ3|, | (3.17) |
⟨∇Σ,L˙γ˙γ,˙γ⟩Σ,L=(¯q˙γ1f−¯p˙γ3)⋅[¯q(¨γ1−f2˙γ1˙γ3f−f′˙γ1+f3˙γ1˙γ3f2)−¯p(¨γ3+f2˙γ21f2+f3˙γ21f3)] | (3.18) |
By (3.16)–(3.18) and (3.7), we get k∞γ,Σ=0. When ω(˙γ(t))=0 and ddt(ω(˙γ(t)))≠0,
we have
||∇Σ,L˙γ˙γ||2L,Σ∼L[ddt(ω(˙γ(t)))]2, |
⟨∇Σ,L˙γ˙γ,˙γ⟩Σ,L=O(1), |
so we get (3.9).
Definition 3.4. Let Σ⊂(G,gL) be a regular surface. Let γ:[a,b]→Σ be a Euclidean C2-smooth regular curve. The signed geodesic curvature kL,sγ,Σ of γ at γ(t) is defined as
kL,sγ,Σ:=⟨∇Σ,L˙γ˙γ,JL(˙γ)⟩Σ,L||˙γ||3Σ,L, | (3.19) |
where JL is defined by (3.3).
Definition 3.5. Let Σ⊂(G,gL) be a regular surface. Let γ:[a,b]→Σ be a Euclidean C2-smooth regular curve. We define the intrinsic geodesic curvature k∞γ,Σ of γ at the non-characteristic point γ(t) to be
k∞,sγ,Σ:=limL→+∞kL,sγ,Σ, |
if the limit exists.
Lemma 3.6. Let Σ⊂(G,gL) be a regular surface. Let γ:[a,b]→Σ be a Euclidean C2-smooth regular curve. Then
k∞,sγ,Σ=¯p(f1˙γ1−f3˙γ2f+f3˙γ3)+¯qf1˙γ2|fω(˙γ(t))|,ifω(˙γ(t))≠0, | (3.20) |
k∞,sγ,Σ=0,ifω(˙γ(t))=0,andddt(ω(˙γ(t)))=0, |
limL→+∞kL,sγ,Σ√L=(−¯q˙γ1f+¯p˙γ3)ddt(ω(˙γ(t)))|¯q˙γ1f−¯p˙γ3|3,ifω(˙γ(t))=0andddt(ω(˙γ(t)))≠0. | (3.21) |
Proof. By (3.3) and (3.12), we have
JL(˙γ)=lLlL12ω(˙γ(t))e1+(¯q˙γ1f−¯p˙γ3)e2. | (3.22) |
By (3.5) and (3.22), we have
⟨∇Σ,L˙γ˙γ,JL(˙γ)⟩L,Σ=lLlL12ω(˙γ(t)){¯q[(¨γ1−f2˙γ1˙γ3f−f′˙γ1+f3˙γ1˙γ3f2)+(f1L˙γ3−f2˙γ1f+f1Lω(˙γ(t)))ω(˙γ(t))]−¯p[(¨γ3+f2˙γ21f2+f3˙γ21f3)−(f1L˙γ1−f3Lω(˙γ(t))f)ω(˙γ(t))]}+(¯q˙γ1f−¯p˙γ3)⋅{¯rL¯p[(¨γ1−f2˙γ1˙γ3f−f′˙γ1+f3˙γ1˙γ3f2)+(f1L˙γ3−f2˙γ1f+f1Lω(˙γ(t)))ω(˙γ(t))]+¯rL¯q[(¨γ3+f2˙γ21f2+f3˙γ21f3)−(f1L˙γ1f−f3Lω(˙γ(t))f)ω(˙γ(t))]−llLL12[f2˙γ21f2L−(f1˙γ1f+f3˙γ3f)ω(˙γ(t))+ddt(ω(˙γ(t)))]},∼L32ω(˙γ(t))2¯p(f1˙γ1−f3˙γ2f+f3˙γ3)+¯qf1˙γ2fasL→+∞. | (3.23) |
So we get (3.20). When ω(˙γ(t))=0 and ddt(ω(˙γ(t)))=0, we get
⟨∇Σ,L˙γ˙γ,JL(˙γ)⟩L,Σ=(¯q˙γ1f−¯p˙γ3)⋅[¯rL¯p(¨γ1−f2˙γ1˙γ3f−f′˙γ1+f3˙γ1˙γ3f2)+¯rL¯q(¨γ3+f2˙γ21f2+f3˙γ21f3)−llLL−12f2˙γ21f2]∼M0L−12asL→+∞. | (3.24) |
So k∞,sγ,Σ=0. When ω(˙γ(t))=0 and ddt(ω(˙γ(t)))≠0,
we have
⟨∇Σ,L˙γ˙γ,JL(˙γ)⟩L,Σ∼L12(−¯q˙γ1f+¯p˙γ3)ddt(ω(˙γ(t)))asL→+∞. | (3.25) |
So we get (3.21).
In the following, we compute the sub-Riemannian limit of the Riemannian Gaussian curvature of surfaces in the generalized affine group. We define the second fundamental form IIL of the embedding of Σ into (G,gL):
IIL=(⟨∇Le1vL,e1⟩L,⟨∇Le1vL,e2⟩L⟨∇Le2vL,e1⟩L,⟨∇Le2vL,e2⟩L). | (3.26) |
Similarly to Theorem 4.3 in [3], we have
Theorem 3.7. The second fundamental form IIL of the embedding of Σ into (G,gL) is given by
IIL=(h11,h12h21,h22). | (3.27) |
where
h11=llL[X1(¯p)+X2(¯q)]−¯qL(f2+f3f)−¯q2f2¯rLL−12, |
h12=h21=−lLl⟨e1,∇H(¯rL)⟩L−f1√L2−¯p¯qf2L−12, |
h22=−l2l2L⟨e2,∇H(rl)⟩L+~X3(¯rL)−f1¯pL−¯qLf3f−¯rL¯P2f2L−12. |
Proof. By ei⟨VL,ej⟩L−⟨∇LeiVL,ej⟩L−⟨∇Leiej,VL⟩L=0 and ei⟨VL,ej⟩L=0, we have ⟨∇LeiVL,ej⟩L=−⟨∇Leiej,VL⟩L, i,j=1,2.
By lemma 2.1 and (3.2),
∇Le1e1=∇L(¯qX1−¯pX2)(¯qX1−¯pX2)=[¯qX1(¯q)−¯pX2(¯p)+¯p¯q(f2+f3f)]X1−[¯qX1(¯p)−¯pX2(¯p)−¯q2(f2+f3f)]X2+¯q2f3L−12~X3. | (3.28) |
Then
h11=−⟨∇Le1e1,VL⟩L=−¯pL[¯qX1(¯q)−¯pX2(¯p)]+¯qL[¯qX1(¯p)−¯pX2(¯p)]−¯qL(F2+F3¯fF)−¯pL(F1+F3fF)+¯rLL−12F3F=llL[X1(¯p)+X2(¯q)]−¯qL(F2+F3¯fF)−¯pL(F1+F3fF)+¯rLL−12F3F. | (3.29) |
Similarly,
∇Le1e2=∇L(¯qX1−¯pX2)(¯rL¯pX1+¯rL¯qX2−llL~X3)=[¯qX1(¯rL¯p)−¯pX2(¯rL¯p)+f1¯pL√L2−¯rL¯q2(f2+f3f)+¯qLf2L−12]X1+[¯qX1(¯q)−¯pX2(¯q)+f1¯qL√L2+¯rL¯pq(f2+f3f)]X2+[¯pX2(llL)−¯qX1(llL)+f1¯rL√L2+¯rL¯pqf3L−12]~X3. | (3.30) |
Then
h12=−⟨∇Le1e2,VL⟩L=−llL[¯qX1(¯rL)−¯pX2(¯rL)]+¯rL[¯qX1(llL)−¯pX2(llL)]−12L12(fF2−F1¯f+¯f′F−Ff′)=−lLl⟨e1,∇H(¯rL)⟩L−12L12(fF2−F1¯f+¯f′F−Ff′). | (3.31) |
Since
⟨∇Le2VL,e1⟩L=−⟨∇Le2e1,VL⟩L=−⟨∇Le1e2+[e2,e1],VL⟩L=−⟨∇Le1e2,VL⟩=⟨∇Le1VL,e2⟩L. | (3.32) |
Then,
h21=h12=−lLl⟨e1,∇H(¯rL)⟩L−12L12(fF2−F1¯f+¯f′F−Ff′). | (3.33) |
Since
∇Le2e2=∇L(¯rL¯pX1+¯rL¯qX2−llL~X3)(¯rL¯pX1+¯rL¯qX2−llL~X3)=[¯qX1(¯rL¯p)−¯pX2(¯rL¯p)+f1¯qL√L−¯rL2¯pq(f2+f3f)+¯rL¯pLf2L−12+(llL)2f1]X1+[¯qX1(¯q)−¯pX2(¯q)+f1¯pL√L+¯rL2¯pq(f2+f3f)+(llL)2f3fX2+[¯pX2(llL)−¯qX1(llL)+¯rL2¯pqf3fL−12+¯rL¯pLf1+¯rL¯qLf3f]~X3. | (3.34) |
Then,
h22=−⟨∇Le2e2,VL⟩L=−¯prlX1(¯rL)−¯qrlX2(¯rL)+~X3(¯rL)−¯pLfF3F−¯qL¯fF3F−¯rLF3FL−12=−l2l2L⟨e2,∇H(rl)⟩L+~X3(¯rL)−¯pLfF3F−¯qL¯fF3F−¯rLF3FL−12. | (3.35) |
The Riemannian mean curvature HL of Σ is defined by
HL:=tr(IIL). |
Let
KΣ,L(e1,e2)=−⟨RΣ,L(e1,e2)e1,e2⟩Σ,L,KL(e1,e2)=−⟨RL(e1,e2)e1,e2⟩L. | (3.36) |
By the Gauss equation, we have
KΣ,L(e1,e2)=KL(e1,e2)+det(IIL). | (3.37) |
Proposition 3.8. Away from characteristic points, the horizontal mean curvature H∞ of Σ⊂G is given by
H∞=limL→+∞HL=X1(¯p)+X2(¯q)−f1¯p−¯qf2−2¯qf3f. | (3.38) |
Proof. By
l2l2L⟨e2,∇H(rl)⟩L=¯prlX1(¯rL)+¯qrlX2(¯rL)=O(L−1) |
llL[X1(¯p)+X2(¯q)]→X1(¯p)+X2(¯q),~X3(¯rL)→0, |
¯q2f2¯rLL−12→O(L−1),¯qL→¯q, |
¯rL¯P2f2L−12→O(L−1),¯pL→¯p, |
we get (3.38).
Define the curvature of a connection ∇ by
R(X,Y)Z=∇X∇YZ−∇Y∇XZ−∇[X,Y]Z. | (3.39) |
Then by Lemma 2.1 and (3.39), we have the following lemma,
Lemma 3.9. Let G be the affine group, then
RL(X1,X2)X1=[3Lf214+(f2+f3f)2]X2+[X1(−f12)−X2(f2L)+f21+f22L+f2f3Lf]X3,RL(X1,X2)X2=[−3Lf214+X2(f2+f3f)−(f2+f3f)2]X1+f1f3fX3,RL(X1,X2)X3=[X1(f1L2)+X2(f2)−f21L−f2(f2+f3f)]X1+[X2(f1Lf)−f1f3Lf]X2,RL(X1,X3)X1=−[X1(f1L2)+X3(f2+f3f)+f2f3f−f21L−f2(f2+f3f)]X2+[−f21L4+f21+f22L−X3(f2L)−X1(f1)+f3f(f2+f3f)]X3,RL(X1,X3)X2=[X1(f1L2)−f21L−f2(f2+f3f)+X3(f2+f3f)+f2f3f]X1+[−X1(f3f)+f1f2+f1f3f−f1(f2+f3f)−X3(f12)]X3,RL(X1,X3)X3=[X1(f1L)−f3Lf(f2+f3f)+X3(f2)+f21L24−f21L−f22]X1+[f1L(f2+f3f)+X1(f3Lf)−f1f2L−f1f3Lf+X3(f1L2)]X2,RL(X2,X3)X1=[−X2(f1L2)+f1f3Lf]X2+[X3(f12)−X2(f1)+f1f3f]X3,RL(X2,X3)X2=[X2(f1L2)−f1f3Lf]X1+[f23f2−f21L4−X2(f3f)]X3,RL(X2,X3)X3=[X2(f1L)−X3(f1L2)−f1f3Lf]X1+[X2(f3Lf)−f23Lf2+f21L24]X2. | (3.40) |
Proposition 3.10. Away from characteristic points, we have
KΣ,L(e1,e2)→A0+O(L−12),asL→+∞, | (3.41) |
where
A0:=−f1⟨e1,∇H(X3u|∇Hu|)⟩−f1f2¯p¯q−¯q2f21−34(X3u)2l2f21+¯p2X2(f3f)−¯p[X1(¯p)+X2(¯q)−¯q(f2+f3f)](f1¯p+¯qf3f)+2¯qX3ulf21+2¯qX3uX1(−f12)−2¯pX3ulf1f3f+¯q2X1(f1)−¯q2(f2+f3f)−2¯q¯pX1(f3f)−2¯q¯pX3(f12)−¯p2f23f2. | (3.42) |
Proof. By (3.2), we have
⟨RL(e1,e2)e1,e2⟩L=¯rL2⟨RL(X1,X2)X1,X2⟩L−2llL¯qL−12¯rL⟨RL(X1,X2)X1,X3⟩L+2llL¯pL−12¯rL⟨RL(X1,X2)X2,X3⟩L+(llL¯q)2L−1⟨RL(X1,X3)X1,X3⟩L−2(llL)2¯p¯qL−1⟨RL(X1,X3)X2,X3⟩L+(¯pllL)2L−1⟨RL(X2,X3)X2,X3⟩L. | (3.43) |
By Lemma 3.9, we have
KL(e1,e2)=14l2l2Lf21L−34Lf21¯rL2+2llL¯qL12¯rLf21−¯q2l2l2Lf21−¯rL2(f2+f3f)2+2llL¯qL12¯rLX1(−f12)−2llL¯qL12¯rLX2(−f2L)+2llL¯qL−12¯rLf22+2llL¯qL−12¯rLf2f3f−2¯pL12¯rLf1f3f−¯q2l2l2Lf22L+¯q2l2l2LX3(f2L)+¯q2l2l2LX1(f1)−¯q2l2l2L(f2+f3f)−2¯qpl2l2LX1(f3f)+2¯qpl2l2Lf1f2+2¯qpl2l2Lf1f3f−2¯qpl2l2Lf1(f2+f3f)−2¯qpl2l2LX3(f12)−¯p2l2l2Lf23f2+¯p2l2l2LX2(f3f). | (3.44) |
By (3.35) and
∇H(¯rL)=L−12∇H(X3u|∇Hu|)+O(L−1)asL→+∞ |
we get
det(IIL)=h11h22−h12h21=−f21L4−f1⟨e1,∇H(X3u|∇Hu|)⟩−f1f2¯p¯q−¯p[X1(¯p)+X2(¯q)−¯q(f2+f3f)](f1¯p+¯qf3f)+O(L−12). | (3.45) |
By (3.38), (3.44), (3.45) we get (3.41).
Let us first consider the case of a regular curve γ:[a,b]→(G,gL). We define the Riemannian length measure
dsL=||˙γ||Ldt. |
Lemma 4.1. Let γ:[a,b]→(G,gL) be a Euclidean C2-smooth and regular curve. Let
ds:=|ω(˙γ(t))|dt,d¯s:=121|ω(˙γ(t))|(˙γ21f2+˙γ23)dt. | (4.1) |
Then
limL→+∞1√L∫γdsL=∫bads. | (4.2) |
When ω(˙γ(t))≠0, we have
1√LdsL=ds+d¯sL−1+O(L−2)asL→+∞. | (4.3) |
When ω(˙γ(t))=0, we have
1√LdsL=1√L√˙γ21f2+˙γ23dt. | (4.4) |
Proof. We know that
||˙γ(t)||L=√(˙γ1f)2+˙γ23+Lω(˙γ(t))2, |
similar to the proof of Lemma 6.1 in [1], we can prove (4.2). When ω(˙γ(t))≠0, we have
1√LdsL=√L−1((˙γ1f)2+˙γ23)+ω(˙γ(t))2dt. |
Using the Taylor expansion, we can prove (4.3). From the definition of dsL and ω(˙γ(t))=0, we get (4.4).
Let Σ⊂(G,gL) be a Euclidean C2-smooth surface and Σ={u=0}. Let dσΣ,L denote the surface measure on Σ with respect to the Riemannian metric gL. Then similai to Proposition 4.2 in [7], we have
limL→+∞1√L∫ΣdσΣ,L=dσΣ:=(¯pω2−¯qω1)∧ω. | (4.5) |
Similar to the proof of Theorem 1.1 in $ [1] $, we have
Theorem 4.2. Let Σ⊂(G,gL) be a regular surface with finitely many boundary components (∂Σ)i, i∈{1,⋯,n}, given by Euclidean C2-smooth regular and closed curves γi:[0,2π]→(∂Σ)i. Let A0 be defined by (3.42) and dσΣ,d¯σΣ be defined by (4.5) and d¯s be defined by (4.1) and k∞,sγi,Σ be the sub-Riemannian signed geodesic curvature of γi relative to Σ. Suppose that the characteristic set C(Σ) satisfies H1(C(Σ))=0 where H1(C(Σ)) denotes the Euclidean 1-dimensional Hausdorff measure of C(Σ) and that ||∇Hu||−1H is locally summable with respect to the Euclidean 2-dimensional Hausdorff measure near the characteristic set C(Σ), then
∫ΣKΣ,∞dσΣ+n∑i=1∫γik∞,sγi,Σds=0. | (4.6) |
Example 4.3. Let f=x21+1, then G=R3. Let u=x21+x22+x23−1 and ∑=S2. ∑ is a regular surface. By (2.1), we get
X1(u)=2(x21+1)x1;X2(u)=2(x21+1)x2+2x3. | (4.7) |
Solve the equations X1(u)=X2(u)=0,
then we get
C(Σ)={(0,√22,−√22),(0,−√22,√22)} |
and H1(C(Σ))=0.
A parametrization of Σ is
x1=cos(ϕ)cos(θ),x2=cos(ϕ)sin(θ),x3=sin(ϕ),forϕ∈(−π2,π2),θ∈[0,2π). | (4.8) |
Then
‖∇Hu‖2H=X1(u)2+X2(u)2=4(x21+1)2x21+4(x21+1)2x22+4x23+8(x21+1)x2x3=4(cos(ϕ)2cos(θ)2+1)2cos(ϕ)2+4sin(ϕ)2+8(cos(ϕ)2cos(θ)2+1)sin(ϕ)cos(ϕ)sin(θ). | (4.9) |
By the definitions of wj for 1≤j≤3 and (4.5), we have
dσΣ=1‖∇Hu‖H[(X1(u))dx3−(x21+1)−1(X2(u))dx1]∧((x21+1)−1dx2−dx3)=−1‖∇Hu‖H2cos(ϕ)λ0dθ∧dϕ. | (4.10) |
where
λ0=cos(ϕ)2+2(cos(ϕ)2cos(θ)2+1)−1cos(ϕ)sin(ϕ)sin(θ)+(cos(ϕ)2cos(θ)2+1)−2sin(ϕ)2 |
is a bouned smooth function on Σ. By (4.9) and (4.10), we have ‖∇Hu‖−1H is locally summable around the isolated characteristic points with respect to the measure dσΣ.
We consider some notation on the generalized BCV spaces. Let f(x2), ¯f(x1), F(x1,x2,x3) be smooth functions. The generalized BCV spaces M is the set
{(x1,x2,x3)∈R3∣F(x1,x2,x3)>0} |
Let
X1=F∂x1+f∂x3,X2=F∂x2+¯f∂x3,X3=∂x3. | (5.1) |
Then
∂x1=1F(X1−fX3),∂x2=1F(X2−¯fX3),∂x3=X3, | (5.2) |
and span{X1,X2,X3}=TM. Let H=span{X1,X2} be the horizontal distribution on M. Let ω1=1Fdx1,ω2=1Fdx2,ω=dx3−(fdx1+¯fdx2)F. Then H=Kerω. The generalized BCV spaces have some well-knowed special case. When F=1+λ4(x21+x22),f=−τx2,¯f=τx1, we get the BCV spaces. When F=1,f=f(x2),¯f=¯f(x1), we can the Heisenberg manifolds. When F=1,f=12x22,¯f=0, we get the Martinet distribution. When F=1x1,f=0,¯f=−2, we get the Welyczko's example (see [5]). For the constant L>0, let gL=ω1⊗ω1+ω2⊗ω2+Lω⊗ω,g=g1 be the Riemannian metric on M. Then X1,X2,~X3:=L−12X3 are orthonormal basis on TM with respect to gL. We have
[X1,X2]=−(F2+¯fF3F)X1+(F1+fF3F)X2+(F2f−F1¯f+F¯f′−Ff′)X3,[X2,X3]=−F3FX2+¯fF3FX3,[X1,X3]=−F3FX1+fF3FX3. | (5.3) |
where Fi=∂F∂xi, for 1≤i≤3, f′=∂f∂x2, ¯f′=∂¯f∂x1. Let ∇L be the Levi-Civita connection on M with respect to gL. Then we have the following lemma
Lemma 5.1. Let M be the generalized BCV spaces, then
∇LX1X1=(F2+F3¯fF)X2+F3LFX3,∇LX1X2=−(F2+F3¯fF)X1+12(fF2−F1¯f+F¯f′−Ff′)X3,∇LX1X3=−F3FX1−L2(fF2−F1¯f+F¯f′−Ff′)X2,∇LX2X1=−(F1+F3fF)X2−12(fF2−F1¯f+F¯f′−Ff′)X3,∇LX2X2=(F1+F3fF)X1+F3FLX3,∇LX2X3=L2(fF2−F1¯f+F¯f′−Ff′)X1−F3FX2,∇LX3X1=−L2(fF2−F1¯f+F¯f′−Ff′)X2−fF3FX3,∇LX3X2=L2(fF2−F1¯f+F¯f′−Ff′)X1−¯fF3FX3,∇LX3X3=LfF3FX1+L¯fF3FX2. | (5.4) |
Proof. By the Koszul formula, we have
2⟨∇LXiXj,Xk⟩L=⟨[Xi,Xj],Xk⟩L−⟨[Xj,Xk],Xi⟩L+⟨[Xk,Xi],Xj⟩L, | (5.5) |
where i,j,k=1,2,3. So lemma 5.1 holds.
Definition 5.2. Let γ:[a,b]→(M,gL) be a Euclidean C1-smooth curve. We say that γ(t) is a horizontal point of γ if
ω(˙γ(t))=−fF˙γ1(t)−¯fF˙γ2(t)+˙γ3(t)=0. |
where γ(t)=(γ1(t),γ2(t),γ3(t)) and ˙γi(t)=∂γi(t)∂t.
Similar to the definition 2.3 and definition 2.5, we can define kLγ and k∞γ for the generalized BCV spaces, we have
Lemma 5.3. Let γ:[a,b]→(M,gL) be a Euclidean C2-smooth regular curve in the Riemannian manifold (M,gL). Then
k∞γ={[−˙γ1F(F2f−F1¯f+F¯f′−Ff′)+F3¯fFω(˙γ(t))]2+[˙γ2F(F2f−F1¯f+F¯f′−Ff′)+F3fFω(˙γ(t))]2}12|ω(˙γ(t))|−1,ifω(˙γ(t))≠0. | (5.6) |
k∞γ={{[F′˙γ1−F¨γ1F2−˙γ1˙γ2F2(F2+F3¯fF)+˙γ22F2(F1+F3fF)]2+[F′˙γ2−F¨γ2F2+˙γ21F2(F2+F3¯fF)−˙γ1˙γ2F2(F1+F3fF)]2}[(˙γ21+˙γ22)F2]−2+{[F′˙γ21−F˙γ1¨γ1F3+F′˙γ22−F˙γ2¨γ2F3]2}[(˙γ21+˙γ22)F2]−3}−12ifω(˙γ(t))=0andddt(ω(˙γ(t)))=0, | (5.7) |
where F′=˙γ(F)=ddtF(γ(t)).
limL→+∞kLγ√L=|ddt(ω(˙γ(t)))|˙γ21F2+˙γ22F2,ifω(˙γ(t))=0andddt(ω(˙γ(t)))≠0. | (5.8) |
Proof. By (5.2), we have
˙γ(t)=˙γ1FX1+˙γ2FX2+ω(˙γ(t))X3. | (5.9) |
By Lemma 5.1 and (5.8), we have
∇L˙γX1=[˙γ1F(F2+F3¯fF)−˙γ2F(F1+F3fF)−L2(F2f−F1¯f+F¯f′−Ff′)ω(˙γ(t))]X2+[F3˙γ1LF2−˙γ22F(F2f−F1¯f+F¯f′−Ff′)−F3fF(ω(˙γ(t))]X3,∇L˙γX2=[−˙γ1F+(F2+F3¯fF)+˙γ2F(F1+F3fF)+L2(F2f−F1¯f+F¯f′−Ff′)ω(˙γ(t))]X1+[F3˙γ2LF2+˙γ12F(F2f−F1¯f+F¯f′−Ff′)−F3¯fF(ω(˙γ(t))]X3,∇L˙γX3=[−˙γ1F3F2+˙γ2L2F(F2f−F1¯f+F¯f′−Ff′)+LF3fFω(˙γ(t))]X1+[−˙γ1L2F(F2f−F1¯f+F¯f′−Ff′)−˙γ2F3F2+LF3¯fFω(˙γ(t))]X2. | (5.10) |
By (5.8) and (5.9), we have
∇L˙γ˙γ={F′˙γ1−F¨γ1F2−˙γ1˙γ2F2(F2+F3¯fF)+˙γ22F2(F1+F3fF)+[−F3˙γ1F2+˙γ2LF(F2f−F1¯f+F¯f′−Ff′)+fLF3Fω(˙γ(t))]ω(˙γ(t))}X1+{F′˙γ2−F¨γ2F2+˙γ21F2(F2+F3¯fF)−˙γ1˙γ2F2(F2+F3fF)+[−F3˙γ2F2−˙γ1LF(F2f−F1¯f+F¯f′−Ff′)+¯fLF3Fω(˙γ(t))]ω(˙γ(t))}X2+{(˙γ22+˙γ21)F3F3L−(F3f˙γ1+F3¯f˙γ2)F2ω(˙γ(t))+ddtω(˙γ(t))}X3. | (5.11) |
By (5.8) and (5.10), when ω(˙γ(t))≠0, we have
||∇L˙γ˙γ||2L∼{[˙γ2F(F2f−F1¯f+F¯f′−Ff′)+F3fFω(˙γ(t))]2+[−˙γ1F(F2f−F1¯f+F¯f′−Ff′)+F3¯fFω(˙γ(t))]2}ω(˙γ(t))2L2,asL→+∞,||˙γ||2L∼Lω(˙γ(t))2,asL→+∞,⟨∇L˙γ˙γ,˙γ⟩2L∼O(L2)asL→+∞. | (5.12) |
Therefore
||∇L˙γ˙γ||2L∼[˙γ2F(F2f−F1¯f+F¯f′−Ff′)+F3fFω(˙γ(t))]2ω(˙γ(t))2+[−˙γ1F(F2f−F1¯f+F¯f′−Ff′)+F3¯fFω(˙γ(t))]2ω(˙γ(t))2,asL→+∞, | (5.13) |
⟨∇L˙γ˙γ,˙γ⟩2L||˙γ||6L→0,asL→+∞. |
So by (2.6), we have (5.5). (5.6) comes from (5.8), (5.10), (2.6) and ω(˙γ(t))=0 and ddt(ω(˙γ(t)))=0. When ω(˙γ(t))=0 and ddt(ω(˙γ(t)))≠0, we have
||∇L˙γ˙γ||2L∼L[ddt(ω(˙γ(t)))]2,asL→+∞, |
||˙γ||2L=[˙γ21F2+˙γ22F2]2, |
⟨∇L˙γ˙γ,˙γ⟩2L=O(1)asL→+∞. |
By (2.6), we get (5.7).
We will consider a regular surface Σ1⊂(M,gL) and regular curve γ⊂Σ1. We will assume that there exists a Euclidean C2-smooth function u:M→R such that
Σ1={(x1,x2,x3)∈M:u(x1,x2,x3)=0}. |
Similar to Section 3, we define p,q,r,l,lL,¯p,¯q,¯pL,¯qL,¯rL,vL,e1,e2,JL,kLγ,Σ1,k∞γ,Σ1,kL,sγ,Σ1,k∞,sγ,Σ1. By (3.4) and (5.10), we have
∇Σ1,L˙γ˙γ={¯q[F′˙γ1−F¨γ1F2−˙γ1˙γ2F2(F2+F3¯fF)+˙γ22F2(F1+F3fF)]+¯q[−F3˙γ1F2+˙γ2LF(F2f−F1¯f+F¯f′−Ff′)+fLF3Fω(˙γ(t))]ω(˙γ(t))−¯p[F′˙γ2−F¨γ2F2+˙γ21F2(F2+F3¯fF)−˙γ1˙γ2F2(F2+F3fF)]+¯p[−F3˙γ2F2−˙γ1LF(F2f−F1¯f+F¯f′−Ff′)+¯fLF3Fω(˙γ(t))]ω(˙γ(t))}e1+{¯rL¯p[F′˙γ1−F¨γ1F2−˙γ1˙γ2F2(F2+F3¯fF)+˙γ22F2(F1+F3fF)]+¯rL¯p[−F3˙γ1F2+˙γ2LF(F2f−F1¯f+F¯f′−Ff′)+fLF3Fω(˙γ(t))]ω(˙γ(t))+¯rL¯q[F′˙γ2−F¨γ2F2+˙γ21F2(F2+F3¯fF)−˙γ1˙γ2F2(F2+F3fF)]+¯rL¯q[−F3˙γ2F2−˙γ1LF(F2f−F1¯f+F¯f′−Ff′)+¯fLF3Fω(˙γ(t))]ω(˙γ(t))−llLL12[(˙γ22+˙γ21)F3F3L−(f˙γ1+¯f˙γ2)F3F2ω(˙γ(t))+ddt(ω(˙γ(t)))]}e2=B1e1+B2e2. | (6.1) |
By (5.8) and ˙γ(t)∈TΣ1, we have
˙γ(t)=[¯q˙γ1F−¯p˙γ2F]e1−lLlL12ω(˙γ(t))e2. | (6.2) |
We have
Lemma 6.1. Let Σ1⊂(M,gL) be a regular surface. Let γ:[a,b]→Σ1 be a Euclidean C2-smooth regular curve. Then
k∞γ,Σ1={[q˙γ2(F2f−F1¯f+F¯f′−Ff′)+F3f¯qω(˙γ(t))]+[¯P˙γ1(F2f−F1¯f+F¯f′−Ff′)−F3f¯Pω(˙γ(t))]}|Fω(˙γ(t))|−1,ifω(˙γ(t))≠0, | (6.3) |
k∞γ,Σ1=0,ifω(˙γ(t))=0,andddt(ω(˙γ(t)))=0, |
limL→+∞kLγ,Σ1√L=|ddt(ω(˙γ(t)))|[¯q˙γ1F−¯P˙γ2F]2,ifω(˙γ(t))=0andddt(ω(˙γ(t)))≠0. | (6.4) |
Proof. By (6.1), we have
||∇Σ1,L˙γ˙γ||2L,Σ1=B21+B22∼L2ω(˙γ(t))2{[¯q˙γ2F(F2f−F1¯f+F¯f′−Ff′)+F3f¯qFω(˙γ(t))]+[¯P˙γ1F(F2f−F1¯f+F¯f′−Ff′)−F3¯f¯PFω(˙γ(t))]}2,asL→+∞. | (6.5) |
By (6.2), we have that when ω(˙γ(t))≠0,
||˙γ||Σ1,L∼L12|ω(˙γ(t))|,asL→+∞. | (6.6) |
By (6.1) and (6.2), we have
⟨∇Σ1,L˙γ˙γ,˙γ⟩Σ1,L∼M0L, | (6.7) |
where M0 does not depend on L.
By (3.7), (6.5)–(6.7), we get (6.3). When ω(˙γ(t))=0 and ddt(ω(˙γ(t)))=0, we have
||∇Σ1,L˙γ˙γ||2L,Σ1∼C0:={¯q[F′˙γ1−F¨γ1F2−˙γ1˙γ2F2(F2+F3¯fF)+˙γ22F2(F1+F3fF)]−¯p[F′˙γ2−F¨γ2F2+˙γ21F2(F2+F3¯fF)−˙γ1˙γ2F2(F2+F3fF)]}2,asL→+∞. | (6.8) |
and
||˙γ||2Σ1,L=[¯q˙γ1F−¯P˙γ2F]2, | (6.9) |
⟨∇Σ1,L˙γ˙γ,˙γ⟩Σ1,L=[¯q˙γ1F−¯P˙γ2F]C0. | (6.10) |
By (6.8)–(6.10) and (3.7), we get k∞γ,Σ1=0. When ω(˙γ(t))=0 and ddt(ω(˙γ(t)))≠0, we have
||∇Σ1,L˙γ˙γ||2L,Σ1∼L[ddt(ω(˙γ(t)))]2, |
⟨∇Σ1,L˙γ˙γ,˙γ⟩Σ1,L=O(1), |
so we get (6.4).
Lemma 6.2. Let Σ1⊂(M,gL) be a regular surface. Let γ:[a,b]→Σ1 be a Euclidean C2-smooth regular curve. Then
k∞,sγ,Σ1={[q˙γ2(F2f−F1¯f+F¯f′−Ff′)+F3f¯qω(˙γ(t))]+[¯P˙γ1(F2f−F1¯f+F¯f′−Ff′)−F3f¯Pω(˙γ(t))]}|Fω(˙γ(t))|−1,ifω(˙γ(t))≠0, | (6.11) |
k∞,sγ,Σ1=0,ifω(˙γ(t))=0,andddt(ω(˙γ(t)))=0, |
limL→+∞kL,sγ,Σ1√L=|ddt(ω(˙γ(t)))|[¯q˙γ1F−¯P˙γ2F]2,ifω(˙γ(t))=0andddt(ω(˙γ(t)))≠0. | (6.12) |
Proof. By (3.3) and (6.2), we have
JL(˙γ)=lLlL12ω(˙γ(t))e1+[¯q˙γ1F−¯p˙γ2F]e2. | (6.13) |
By (6.1) and (6.13), we have
⟨∇Σ1,L˙γ˙γ,JL(˙γ)⟩L,Σ1=lLLL12ω(˙γ(t)){¯q[F′˙γ1−F¨γ1F2−˙γ1˙γ2F2(F2+F3¯fF)+˙γ22F2(F1+F3fF)]+¯q[−F3˙γ1F2+˙γ2LF(F2f−F1¯f+F¯f′−Ff′)+fLF3Fω(˙γ(t))]ω(˙γ(t))−¯p[F′˙γ2−F¨γ2F2+˙γ21F2(F2+F3¯fF)−˙γ1˙γ2F2(F2+F3fF)]+¯p[−F3˙γ2F2−˙γ1LF(F2f−F1¯f+F¯f′−Ff′)+¯fLF3Fω(˙γ(t))]ω(˙γ(t))}+[¯q˙γ1F−¯p˙γ2F]{¯rL¯p[F′˙γ1−F¨γ1F2−˙γ1˙γ2F2(F2+F3¯fF)+˙γ22F2(F1+F3fF)]+¯rL¯p[−F3˙γ1F2+˙γ2LF(F2f−F1¯f+F¯f′−Ff′)+fLF3Fω(˙γ(t))]ω(˙γ(t))+¯rL¯q[F′˙γ2−F¨γ2F2+˙γ21F2(F2+F3¯fF)−˙γ1˙γ2F2(F2+F3fF)]+¯rL¯q[−F3˙γ2F2−˙γ1LF(F2f−F1¯f+F¯f′−Ff′)+¯fLF3Fω(˙γ(t))]ω(˙γ(t))−llLL12[(˙γ22+˙γ21)F3F3L−(f˙γ1+¯f˙γ2)F3F2ω(˙γ(t))+ddt(ω(˙γ(t)))]} | (6.14) |
So by (3.17), (6.6) and (6.14), we get (6.11). When ω(˙γ(t))=0 and ddt(ω(˙γ(t)))=0, we get
⟨∇Σ1,L˙γ˙γ,JL(˙γ)⟩L,Σ1∼M0L−12asL→+∞. | (6.15) |
So k∞,sγ,Σ1=0. When ω(˙γ(t))=0 and ddt(ω(˙γ(t)))≠0, we have
⟨∇Σ1,L˙γ˙γ,JL(˙γ)⟩L,Σ1∼L12[¯P˙γ2F−¯q˙γ1F]ddt(ω(˙γ(t))),asL→+∞. | (6.16) |
So we get (6.12).
In the following, we compute the sub-Riemannian limit of the Riemannian Gaussian curvature of surfaces in the generalized BCV spaces. Similarly to Theorem 4.3 in [3], we have
Theorem 6.3. The second fundamental form IIL1 of the embedding of Σ1 into (M,gL) is given by
IIL1=(h11,h12h21,h22), | (6.17) |
where
h11=llL[X1(¯p)+X2(¯q)]−¯qL(F2+F3¯fF)−¯pL(F1+F3fF)+¯rLL−12F3F, |
h12=h21=−lLl⟨e1,∇H(¯rL)⟩L−12L12(fF2−F1¯f+¯f′F−Ff′), |
h22=−l2l2L⟨e2,∇H(rl)⟩L+~X3(¯rL)−¯pLfF3F−¯qL¯fF3F−¯rLF3FL−12. |
Proof. By lemma 5.1 and (3.2),
∇Le1e1=∇L(¯qX1−¯pX2)(¯qX1−¯pX2)=[¯qX1(¯q)−¯pX2(¯p)+¯p¯q(F2+F3¯fF)+¯p2(F1+F3fF)]X1−[¯qX1(¯p)−¯pX2(¯p)−¯q2(F2+F3¯fF)−¯p¯q(F2+F3fF)]X2+F3FL−12~X3. | (6.18) |
Then
h11=−⟨∇Le1e1,VL⟩L=−¯pL[¯qX1(¯q)−¯pX2(¯p)]+¯qL[¯qX1(¯p)−¯pX2(¯p)]−¯qL(F2+F3¯fF)−¯pL(F1+F3fF)+¯rLL−12F3F=llL[X1(¯p)+X2(¯q)]−¯qL(F2+F3¯fF)−¯pL(F1+F3fF)+¯rLL−12F3F. | (6.19) |
Similarly,
∇Le1e2=∇L(¯qX1−¯pX2)(¯rL¯pX1+¯rL¯qX2−llL~X3)=[¯qX1(¯rL¯p)−¯pX2(¯rL¯p)+(fF2−F1¯f+F¯f′−Ff′)¯pL√L2−¯rL¯pq(F1+F3fF)−¯rL¯q2(F2+F3¯fF)+¯qLF3FL−12]X1+[¯qX1(¯q)−¯pX2(¯q)+(fF2−F1¯f+F¯f′−Ff′)¯qL√L2−¯rL¯pq(F2+F3¯fF)+¯rL¯p2(F1+F3fF)+¯pLF3FL−12]X2+[¯pX2(llL)−¯qX1(llL)+(fF2−F1¯f+F¯f′−Ff′)¯rL√L2]~X3. | (6.20) |
Then
h12=−⟨∇Le1e2,VL⟩L=−llL[¯qX1(¯rL)−¯pX2(¯rL)]+¯rL[¯qX1(llL)−¯pX2(llL)]−12L12(fF2−F1¯f+¯f′F−Ff′)=−lLl⟨e1,∇H(¯rL)⟩L−12L12(fF2−F1¯f+¯f′F−Ff′). | (6.21) |
Since
⟨∇Le2VL,e1⟩L=−⟨∇Le2e1,VL⟩L=−⟨∇Le1e2+[e2,e1],VL⟩L=−⟨∇Le1e2,VL⟩=⟨∇Le1VL,e2⟩L. | (6.22) |
Then,
h21=h12=−lLl⟨e1,∇H(¯rL)⟩L−12L12(fF2−F1¯f+¯f′F−Ff′). | (6.23) |
Since
∇Le2e2=∇L(¯rL¯pX1+¯rL¯qX2−llL~X3)(¯rL¯pX1+¯rL¯qX2−llL~X3)=[¯qX1(¯rL¯p)−¯pX2(¯rL¯p)+(fF2−F1¯f+¯f′F−Ff′)¯qL√L−¯rL2¯pq(F2+F3¯fF)+¯rL¯pLF3FL−12+¯rL2¯q2(F1+F3fF)+(llL)2F3fF]X1+[¯qX1(¯q)−¯pX2(¯q)+(fF2−F1¯f+¯f′F−Ff′)¯pL√L+¯rL2¯pq(F2+F3¯fF)−¯rL¯qLF3FL−12−¯rL2¯pq(F1+F3fF)+(llL)2F3¯fFX2+[¯pX2(llL)−¯qX1(llL)+¯rL2¯pqF3fFL−12+¯rL2¯q2F3FL−12+¯rL¯pLfF3F+¯rL¯qL¯fF3F]~X3. | (6.24) |
Then,
h22=−⟨∇Le2e2,VL⟩L=−¯prlX1(¯rL)−¯qrlX2(¯rL)+~X3(¯rL)−¯pLfF3F−¯qL¯fF3F−¯rLF3FL−12=−l2l2L⟨e2,∇H(rl)⟩L+~X3(¯rL)−¯pLfF3F−¯qL¯fF3F−¯rLF3FL−12. | (6.25) |
Similar to Proposition 3.8, we have
Proposition 6.4. Away from characteristic points, the horizontal mean curvature H1∞ of Σ1⊂M is given by
H1∞=−(¯pfF3F+¯q¯fF3F)+X1(¯p)+X2(¯q)−¯q(F2+F3¯fF)−¯p(F1+F3fF). | (6.26) |
By Lemma 5.1, we have
Lemma 6.5. Let M be the the generalized BCV spaces, then
RL(X1,X2)X1=[−X1(A)−X2(B)+3L4C2+F3LF2+A2+B2]X2+[−12X1(C)−X2(F3LF)+F3fCF]X3,RL(X1,X2)X2=[X1(A)+X2(B)−3L4C2−F23LF2−A2−B2]X1+[−12X2(C)+X1(F3LF)+F3¯fCF]X3,RL(X1,X2)X3=[12X2(LC)+X2(F3F)−F3fCLF]X1+[12X2(LC)−X1(F3F)−F3¯fCLF]X2,RL(X1,X3)X1=[−X1(LC2)−X3(B)+BF3F−F23f2F2]X2+[−LC24−X1(F3fF)−X3(F3LF)+F3¯fBF+F23LF2+F3f2F2]X3,RL(X1,X3)X2=[X1(LC2)+X3(B)−CF3fLF+F3¯f2F2+BF3F]X1+[−X1(F3¯fF)−12X3(C)+F3CF−fF3BF+F3f¯fF2]X3,RL(X1,X3)X3=[X1(LF3fF)+X3(F3F)−F3¯fLFB+L2C24−F23F2−LF23f2F2]X1+[X1(LF3¯fF)−LCF3F+X3(LC2)+F3fLFB−LF23f¯fF2]X2,RL(X2,X3)X1=[−X2(LC2)+X3(A)+F3¯fLCF+fF23F2−AF3F]X2+[−X2(fF3F)−CF3F+X3(C2)−F3¯fAF+F23f¯fF2]X3,RL(X2,X3)X2=[X2(LC2)−X3(A)−F3¯fLCF−fF23F2+AF3F]X1+[−X2(¯fF3F)+AfF3F−X3(F3FL)−LC24+F23F2L+F23¯f2F2]X3,RL(X2,X3)X3=[X2(LF3f2)−X3(LC2)+AF3¯fLF−Lf¯fF23F2+LCF3F]X2+[X2(LF3¯f2)+X3(F3F)−AF3fLF+L2C24+LF23¯f2F2−F23F2]X3. | (6.27) |
where
(F1+F3fF)=A,(F2+F3¯fF)=B,(F2f−F1¯f+F¯f′−Ff′)=C. |
Proposition 6.6. Away from characteristic points, we have
KΣ1,∞(e1,e2)=−C⟨e1,∇H(X3u|∇Hu|)⟩+¯N+O(L−12). | (6.28) |
where ¯N=N0+N,
N=−(¯pfF3F+¯q¯fF3F)[X1(¯p)+X2(¯q)−¯q(F2+F3¯fF)−¯p(F1+F3fF)], |
N0=2¯q[−12X1(C)+F3CfF]−2¯p[X1(−12X2(C)+F3C¯fF]+¯p2[X2(F3¯fF)−F3AfF−F23¯f2F2]−2¯p¯q[X1(F3¯fF)−12X3(C)+F3BfF−F3CF]+¯q2[X1(F3fF)−F3B¯fF−F23¯f2F2]. |
Proof. By (3.43) and Lemma 6.5, we have
KM,L(e1,e2)=¯rL2[X1(A)+X2(B)−3LC24−F23F2L−A2−B2]+2llL¯q¯rLL12[−12X1(C)−X2(F3FL)+F3CfF]−2llL¯p¯rLL12[X1(F3FL)−12X2(C)+F3C¯fF]−2l2l2L¯p¯q[X1(F3¯fF)−12X3(C)+F3BfF−F3CF]+l2l2L¯q2[LC24+X1(F3fF)−F3B¯fF+X3(F3FL)−F23F2L−F23¯f2F2]+l2l2L¯p2[LC24+X2(F3¯fF)−F3AfF+X3(F3FL)−F23F2L−F23¯f2F2]∼LC24+N0,asL→+∞. | (6.29) |
Similar to (3.45), we have
det(IIL1)=h11h22−h12h21=−LC24−C⟨e1,∇H(X3u|∇Hu|)⟩+N+O(L−12)asL→+∞. | (6.30) |
By (6.21) and (6.22), we have (6.20).
Similar to (4.2) and (4.5), for the generalized BCV spaces, we have
limL→+∞1√LdsL=ds,limL→+∞1√LdσΣ1,L=dσΣ1. | (6.31) |
By (6.20), (6.23) and Lemma 6.2, similar to the proof of Theorem 1 in [1], we have
Theorem 6.7. Let Σ1⊂(M,gL) be a regular surface with finitely many boundary components (∂Σ1)i, i∈{1,⋯,n}, given by Euclidean C2-smooth regular and closed curves γi:[0,2π]→(∂Σ1)i. Suppose that the characteristic set C(Σ1) satisfies H1(C(Σ1))=0 and that ||∇Hu||−1H is locally summable with respect to the Euclidean 2-dimensional Hausdorff measure near the characteristic set C(Σ1), then
∫Σ1KΣ1,∞dσΣ1+n∑i=1∫γik∞,sγi,Σ1ds=0. | (6.32) |
Example 6.8. Let F=1,f=−x22,¯f=x21. Consider M={(x1,x2,x3)∈R3∣F>0}=R3, let u=x21+x22+x23−1 and ∑1=S2. ∑1 is a regular surface. By (4.1), we get
X1(u)=2x1−2x22x3;X2(u)=2x2+2x21x3. | (6.33) |
Solve the equations X1(u)=X2(u)=0, then we get C(Σ)={(0,0,1),(0,0,−1)} and H1(C(Σ1))=0. A parametrization of Σ is
x1=cos(ϕ)cos(θ),x2=cos(ϕ)sin(θ),x3=sin(ϕ),forϕ∈(−π2,π2),θ∈[0,2π). | (6.34) |
Then
‖∇Hu‖2H=X1(u)2+X2(u)2=4(x21+x22)+4(x41+x42)x23=4cos(ϕ)2+4sin(ϕ)2cos(ϕ)4(cos(θ)4+sin(θ)4). | (6.35) |
By the definitions of wj for 1≤j≤3 and (6.23), we have
dσΣ1=1‖∇Hu‖H[(X1(u))dx2−(X2(u))dx1]∧(dx3+x22dx1−x21dx2)=1‖∇Hu‖H[2cos(ϕ)3+2sin(ϕ)2cos(ϕ)5(cos(θ)4+sin(θ)4)−4cos(ϕ)4sin(θ)2sin(ϕ)cos(θ)+4cos(ϕ)4sin(θ)sin(ϕ)cos(θ)2]dθ∧dϕ. | (6.36) |
By (6.27) and (6.28), we have ‖∇Hu‖−1H is locally summable around the isolated characteristic points with respect to the measure dσΣ1.
Firstly, We give some basic definitions of two kinds of spaces, such as 2.3, 2.4 and 2.5. By computation, we get sub-Riemannian limits of Gaussian curvature for a Euclidean C2-smooth surface in the generalized affine group and the generalized BCV spaces away from characteristic points and signed geodesic curvature for Euclidean C2-smooth curves on surfaces, respectively. Then, by the second fundamental form IIL and the Gauss equation KΣ,L(e1,e2)=KL(e1,e2)+det(IIL), we find the gauss curvature on the surface is convergent in two cases. Therefore, a good result is obtained. Finally, we give the proof of Gauss-Bonnet theorems in the generalized affine group and the generalized BCV spaces.
The second author was supported in part by NSFC No.11771070. The authors are deeply grateful to the referees for their valuable comments and helpful suggestions.
The authors declare no conflict of interest.
[1] | Ghoushchi SJ (2018) Qualitative and quantitative analysis of Green Supply Chain Management (GSCM) literature from 2000 to 2015. Int J Supply Chain Manag 7: 77–86. |
[2] |
Galvin R, Healy N (2020) The Green New Deal in the United States: What it is and how to pay for it. Energy Res Soc Sci 67: 101529. https://doi.org/10.1016/j.erss.2020.101529 doi: 10.1016/j.erss.2020.101529
![]() |
[3] |
Howard M, Hopkinson P, Miemczyk J (2019) The regenerative supply chain: A framework for developing circular economy indicators. Int J Prod Res 57: 7300–7318. https://doi.org/10.1080/00207543.2018.1524166 doi: 10.1080/00207543.2018.1524166
![]() |
[4] |
Choudhury NA, Ramkumar M, Schoenherr T, et al. (2023) The role of operations and supply chain management during epidemics and pandemics: Potential and future research opportunities. Transport Res E-Log 175: 103139. https://doi.org/10.1016/j.tre.2023.103139 doi: 10.1016/j.tre.2023.103139
![]() |
[5] |
Govindan K, Kaliyan M, Kannan D, et al. (2014) Barriers analysis for green supply chain management implementation in Indian industries using analytic hierarchy process. Int J Prod Econ 147: 555–568. https://doi.org/10.1016/j.ijpe.2013.08.018 doi: 10.1016/j.ijpe.2013.08.018
![]() |
[6] |
Alhamali RM (2019) Critical success factors for green supply chain management practices: An empirical study on data collected from food processing companies in Saudi Arabia. Afr J Bus Manag 13: 160–167. https://doi.org/10.5897/AJBM2018.8709 doi: 10.5897/AJBM2018.8709
![]() |
[7] |
Ghoushchi SJ, Asghari M, Mardani A, et al. (2023) Designing an efficient humanitarian supply chain network during an emergency: A scenario-based multi-objective model. Socio-Econ Plan Sci 90: 101716. https://doi.org/10.1016/j.seps.2023.101716 doi: 10.1016/j.seps.2023.101716
![]() |
[8] |
Davis KF, Downs S, Gephart JA (2021) Towards food supply chain resilience to environmental shocks. Nat Food 2: 54–65. https://doi.org/10.1038/s43016-020-00196-3 doi: 10.1038/s43016-020-00196-3
![]() |
[9] |
Baloch N, Rashid A (2022) Supply chain networks, complexity, and optimization in developing economies: A systematic literature review and meta-analysis. South Asian J Oper Log 1: 1–13. https://doi.org/10.57044/SAJOL.2022.1.1.2202 doi: 10.57044/SAJOL.2022.1.1.2202
![]() |
[10] |
Azam W, Khan I, Ali SA (2023) Alternative energy and natural resources in determining environmental sustainability: A look at the role of government final consumption expenditures in France. Environ Sci Pollut R 30: 1949–1965. https://doi.org/10.1007/s11356-022-22334-z doi: 10.1007/s11356-022-22334-z
![]() |
[11] |
Feng Y, Lai KH, Zhu Q (2022) Green supply chain innovation: Emergence, adoption, and challenges. Int J Prod Econ 248: 108497. https://doi.org/10.1016/j.ijpe.2022.108497 doi: 10.1016/j.ijpe.2022.108497
![]() |
[12] |
Lis A, Sudolska A, Tomanek M (2020) Mapping research on sustainable supply-chain management. Sustainability 12: 3987. https://doi.org/10.3390/su12103987 doi: 10.3390/su12103987
![]() |
[13] |
Ghadge A, Jena SK, Kamble S, et al. (2021) Impact of financial risk on supply chains: A manufacturer-supplier relational perspective. Int J Prod Res 59: 7090–7105. https://doi.org/10.1080/00207543.2020.1834638 doi: 10.1080/00207543.2020.1834638
![]() |
[14] |
Ngo VM, Quang HT, Hoang TG, et al. (2024) Sustainability‐related supply chain risks and supply chain performances: The moderating effects of dynamic supply chain management practices. Bus Strateg Environ 33: 839–857. https://doi.org/10.1002/bse.3512 doi: 10.1002/bse.3512
![]() |
[15] |
Eftekharzadeh S, Ghoushchi S, Momayezi F (2024) Enhancing safety and risk management through an integrated spherical fuzzy approach for managing laboratory errors. Decision Sci Lett 13: 545–564. https://doi.org/10.5267/j.dsl.2024.5.006 doi: 10.5267/j.dsl.2024.5.006
![]() |
[16] |
Soleimani H, Mohammadi M, Fadaki M, et al. (2021) Carbon-efficient closed-loop supply chain network: An integrated modeling approach under uncertainty. Environ Sci Pollut R 1–16. https://doi.org/10.1007/s11356-021-15100-0 doi: 10.1007/s11356-021-15100-0
![]() |
[17] |
Azarkamand S, niloufar S (2014) Investigating green supply chain management in Isfahan iron smelting industry and its impact on the development of green performance. Appl Stud Manag Develop Sci 4: 15–28. https://doi.org/10.1016/j.spc.2024.06.006 doi: 10.1016/j.spc.2024.06.006
![]() |
[18] |
Alinejad A, Javad K (2014) Presenting a combined method of ANP and VIKOR in the green supply chain under the gray environment in order to prioritize customers (Case of Study: Fars Oil Products Distribution Company). Bus Manag 10. https://doi.org/10.1007/s11356-020-09092-6 doi: 10.1007/s11356-020-09092-6
![]() |
[19] |
Soon A, Heidari A, Khalilzadeh M, et al. (2022) Multi-objective sustainable closed-loop supply chain network design considering multiple products with different quality levels. Systems 10: 94. https://doi.org/10.3390/systems10040094 doi: 10.3390/systems10040094
![]() |
[20] |
Hafezalkotob A (2015) Competition of two green and regular supply chains under environmental protection and revenue seeking policies of government. Comput Ind Eng 82: 103–114. https://doi.org/10.1016/j.cie.2015.01.016 doi: 10.1016/j.cie.2015.01.016
![]() |
[21] |
Sheng X, Chen L, Yuan X, et al. (2023) Green supply chain management for a more sustainable manufacturing industry in China: A critical review. Environ Dev Sustain 25: 1151–1183. https://doi.org/10.1007/s10668-022-02109-9 doi: 10.1007/s10668-022-02109-9
![]() |
[22] |
Oudani M, Sebbar A, Zkik K, et al. (2023) Green Blockchain based IoT for secured supply chain of hazardous materials. Comput Ind Eng 175: 108814. https://doi.org/10.1016/j.cie.2022.108814 doi: 10.1016/j.cie.2022.108814
![]() |
[23] |
Esfahbodi A, Zhang Y, Watson G (2016) Sustainable supply chain management in emerging economies: Trade-offs between environmental and cost performance. Int J Prod Econ 181: 350–366. https://doi.org/10.1016/j.ijpe.2016.02.013 doi: 10.1016/j.ijpe.2016.02.013
![]() |
[24] |
Alghababsheh M, Butt AS, Moktadir MA (2022) Business strategy, green supply chain management practices, and financial performance: A nuanced empirical examination. J Clean Prod 380: 134865. https://doi.org/10.1016/j.jclepro.2022.134865 doi: 10.1016/j.jclepro.2022.134865
![]() |
[25] |
Falcó JM, García ES, Tudela LAM, et al. (2023) The role of green agriculture and green supply chain management in the green intellectual capital-sustainable performance relationship: A structural equation modeling analysis applied to the Spanish wine industry. Agriculture 13: 425. https://doi.org/10.3390/agriculture13020425 doi: 10.3390/agriculture13020425
![]() |
[26] |
Ecer F, Ögel İY, Krishankumar R, et al. (2023) The q-rung fuzzy LOPCOW-VIKOR model to assess the role of unmanned aerial vehicles for precision agriculture realization in the Agri-Food 4.0 era. Artif Intell Rev 56: 13373–13406. https://doi.org/10.1007/s10462-023-10476-6 doi: 10.1007/s10462-023-10476-6
![]() |
[27] |
Karimi A, Ghoushchi SJ, Bonab MM (2020) Presenting a new model for performance measurement of the sustainable supply chain of Shoa Panjereh Company in different provinces of Iran (case study). Int J Sys Assur Eng 11: 140–154. https://doi.org/10.1007/s13198-019-00932-4 doi: 10.1007/s13198-019-00932-4
![]() |
[28] |
Chatterjee K, Pamucar D, Zavadskas EK (2018) Evaluating the performance of suppliers based on using the R'AMATEL-MAIRCA method for green supply chain implementation in electronics industry. J Clean Prod 184: 101–129. https://doi.org/10.1016/j.jclepro.2018.02.186 doi: 10.1016/j.jclepro.2018.02.186
![]() |
[29] |
Mondal A, Giri BK, Roy SK, et al. (2024) Sustainable-resilient-responsive supply chain with demand prediction: An interval type-2 robust programming approach. Eng Appl Artif Intel 133: 108133. https://doi.org/10.1016/j.engappai.2024.108133 doi: 10.1016/j.engappai.2024.108133
![]() |
[30] |
Riese J, Fasel H, Pannok M, Lier S. (2024) Decentralized production concepts for bio-based polymers-implications for supply chains, costs, and the carbon footprint. Sustain Prod Consump 46: 460–475. https://doi.org/10.1016/j.spc.2024.03.001 doi: 10.1016/j.spc.2024.03.001
![]() |
[31] |
Ferreira IA, Oliveira J, Antonissen J, et al. (2023) Assessing the impact of fusion-based additive manufacturing technologies on green supply chain management performance. J Manuf Technol Mana 34: 187–211. https://doi.org/10.1108/JMTM-06-2022-0235 doi: 10.1108/JMTM-06-2022-0235
![]() |
[32] |
Hiloidhari M, Sharno MA, Baruah D, et al. (2023) Green and sustainable biomass supply chain for environmental, social and economic benefits. Biomass Bioenerg 175: 106893. https://doi.org/10.1016/j.biombioe.2023.106893 doi: 10.1016/j.biombioe.2023.106893
![]() |
[33] |
Zhang Z, Yu L (2023) Dynamic decision-making and coordination of low-carbon closed-loop supply chain considering different power structures and government double subsidy. Clean Technol Envir 25: 143–171. https://doi.org/10.1007/s10098-022-02394-y doi: 10.1007/s10098-022-02394-y
![]() |
[34] |
de Souza V, Ruwaard JB, Borsato M (2019) Towards regenerative supply networks: A design framework proposal. J Clean Prod 221: 145–156. https://doi.org/10.1016/j.jclepro.2019.02.178 doi: 10.1016/j.jclepro.2019.02.178
![]() |
[35] |
Khalilpourazari S, Soltanzadeh S, Weber GW, et al. (2020) Designing an efficient blood supply chain network in crisis: Neural learning, optimization and case study. Ann Oper Res 289: 123–152. https://doi.org/10.1007/s10479-019-03437-2 doi: 10.1007/s10479-019-03437-2
![]() |
[36] |
Fragkos P (2022) Analysing the systemic implications of energy efficiency and circular economy strategies in the decarbonisation context. AIMS Energy 10. https://doi.org/10.3934/energy.2022011 doi: 10.3934/energy.2022011
![]() |
[37] |
Tirkolaee EB, Torkayesh AE (2022) A cluster-based stratified hybrid decision support model under uncertainty: Sustainable healthcare landfill location selection. Appl Intell 52: 13614–13633. https://doi.org/10.1007/s10489-022-03335-4 doi: 10.1007/s10489-022-03335-4
![]() |
[38] |
Tirkolaee EB, Sadeghi S, Mooseloo FM, et al. (2021) Application of machine learning in supply chain management: A comprehensive overview of the main areas. Math Probl Eng 2021: 1–14. https://doi.org/10.1155/2021/1476043 doi: 10.1155/2021/1476043
![]() |
[39] |
Bai C, Rezaei J, Sarkis J (2017) Multicriteria green supplier segmentation. IEEE T Eng Manage 64: 515–528. https://doi.org/10.1109/TEM.2017.2723639 doi: 10.1109/TEM.2017.2723639
![]() |
[40] |
Muthuswamy M, Ali AM (2023) Sustainable supply chain management in the age of machine intelligence: Addressing challenges, capitalizing on opportunities, and shaping the future landscape. Sustain Machine Intell J 3: 1–14. https://doi.org/10.61185/SMIJ.2023.33103 doi: 10.61185/SMIJ.2023.33103
![]() |
[41] |
Kumar V, Pallathadka H, Sharma SK, et al. (2022) Role of machine learning in green supply chain management and operations management. Mater Today Proc 51: 2485–2489. https://doi.org/10.1016/j.matpr.2021.11.625 doi: 10.1016/j.matpr.2021.11.625
![]() |
[42] |
Wu T, Zuo M (2023) Green supply chain transformation and emission reduction based on machine learning. Sci Prog 106. https://doi.org/10.1177/00368504231165679 doi: 10.1177/00368504231165679
![]() |
[43] |
Priore P, Ponte B, Rosillo R (2018) Applying machine learning to the dynamic selection of replenishment policies in fast-changing supply chain environments. Int J Prod Res 57. https://doi.org/10.1080/00207543.2018.1552369 doi: 10.1080/00207543.2018.1552369
![]() |
[44] |
Ali SS, Kaur R, Ersö z F, et al. (2020) Measuring carbon performance for sustainable green supply chain practices: A developing country scenario. Cent Eur J Oper Res 28: 1389–1416. https://doi.org/10.1007/s10100-020-00673-x doi: 10.1007/s10100-020-00673-x
![]() |
[45] |
Barman H, Pervin M, Roy SK, et al. (2023) Analysis of a dual-channel green supply chain game-theoretical model under carbon policy. Int J Syst Sci-Oper 10: 2242770. https://doi.org/10.1080/23302674.2023.2242770 doi: 10.1080/23302674.2023.2242770
![]() |
[46] |
Lotfi R, Kargar B, Hoseini SH, et al. (2021) Resilience and sustainable supply chain network design by considering renewable energy. Int J Energ Res 45: 17749–17766. https://doi.org/10.1002/er.6943 doi: 10.1002/er.6943
![]() |
[47] |
Goli A, Tirkolaee EB, Golmohammadi AM, et al. (2023) A robust optimization model to design an IoT-based sustainable supply chain network with flexibility. Cent Eur J Oper Res 1–22. https://doi.org/10.1007/s10100-023-00870-4 doi: 10.1007/s10100-023-00870-4
![]() |
[48] |
Aytekin A, Okoth BO, Korucuk S, et al. (2022) A neutrosophic approach to evaluate the factors affecting performance and theory of sustainable supply chain management: Application to textile industry. Manage Decis 61: 506–529. https://doi.org/10.1108/MD-05-2022-0588 doi: 10.1108/MD-05-2022-0588
![]() |
[49] | Thakur AS (2022) Contextualizing urban sustainability: Limitations, tensions in Indian sustainable-smart urbanism perceived through intranational, international comparisons, and district city Ambala study, Sustainable Urbanism in Developing Countries, CRC. Press, 19–39. https://doi.org/10.1201/9781003131922 |
[50] |
Dhull S, Narwal M (2016) Drivers and barriers in green supply chain management adaptation: A state-of-art review. Uncertain Supply Chain Manag 4: 61–76. https://doi.org/10.5267/j.uscm.2015.7.003 doi: 10.5267/j.uscm.2015.7.003
![]() |
[51] |
Bag S, Viktorovich DA, Sahu AK, et al. (2020) Barriers to adoption of blockchain technology in green supply chain management. J Glob Oper Strateg 14: 104–133. https://doi.org/10.1108/JGOSS-06-2020-0027 doi: 10.1108/JGOSS-06-2020-0027
![]() |
[52] |
Rahman T, Ali SM, Moktadir MA, et al. (2020) Evaluating barriers to implementing green supply chain management: An example from an emerging economy. Prod Plan Control 31: 673–698. https://doi.org/10.1080/09537287.2019.1674939 doi: 10.1080/09537287.2019.1674939
![]() |
[53] | Alfina KN, Ratnayake RC, Wibisono D, et al. (2022) Analyzing barriers towards implementing circular economy in healthcare supply chains, In: 2022 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), IEEE 827–831. https://doi.org/10.1109/IEEM55944.2022.9989999 |
[54] | Khiewnavawongsa S, Schmidt EK (2013) Barriers to green supply chain implementation in the electronics industry, In: 2013 IEEE international conference on industrial engineering and engineering management, IEEE 226–230. https://doi.org/10.1109/IEEM.2013.6962408 |
[55] |
Heeres TJ, Tran TM, Noort BA (2023) Drivers and barriers to implementing the internet of things in the health care supply chain: Mixed methods multicase study. J Med Internet Res 25: e48730. https://doi.org/10.2196/48730 doi: 10.2196/48730
![]() |
[56] |
Li J, Sarkis J (2022) Product eco-design practice in green supply chain management: A china-global examination of research. Nankai Bu Rev Int 13: 124–153. https://doi.org/10.1108/NBRI-02-2021-0006 doi: 10.1108/NBRI-02-2021-0006
![]() |
[57] |
Okanlawon TT, Oyewobi LO, Jimoh RA (2023) Evaluation of the drivers to the implementation of blockchain technology in the construction supply chain management in Nigeria. J Financ Manag Prop 28: 459–476. https://doi.org/10.1108/JFMPC-11-2022-0058 doi: 10.1108/JFMPC-11-2022-0058
![]() |
[58] |
Shrivastav M (2021) Barriers related to AI implementation in supply chain management. J Glob Inf Manag 30: 1–19. https://doi.org/10.4018/JGIM.296725 doi: 10.4018/JGIM.296725
![]() |
[59] |
Mathiyazhagan K, Datta U, Bhadauria R, et al. (2018) Identification and prioritization of motivational factors for the green supply chain management adoption: Case from Indian construction industries. Opsearch 55: 202–219. https://doi.org/10.1007/s12597-017-0316-7 doi: 10.1007/s12597-017-0316-7
![]() |
[60] |
Bey N, Hauschild MZ, McAloone TC (2013) Drivers and barriers for implementation of environmental strategies in manufacturing companies. Cirp Ann 62: 43–46. https://doi.org/10.1016/j.cirp.2013.03.001 doi: 10.1016/j.cirp.2013.03.001
![]() |
[61] |
Zadeh LA (1965) Fuzzy sets. Inf Control 8: 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
![]() |
[62] |
Wang F (2021) Preference degree of triangular fuzzy numbers and its application to multi-attribute group decision making. Expert Syst App 178: 114982. https://doi.org/10.1016/j.eswa.2021.114982 doi: 10.1016/j.eswa.2021.114982
![]() |
[63] |
Tešić D, Božanić D, Khalilzadeh M (2024) Enhancing multi-criteria decision-making with fuzzy logic: An advanced defining interrelationships between ranked Ⅱ method incorporating triangular fuzzy numbers. J Intel Manag Decis 3: 56–67. https://doi.org/10.56578/jimd030105 doi: 10.56578/jimd030105
![]() |
[64] |
Zadeh LA (2011) A note on Z-numbers. Inf Sci 181: 2923–2932. https://doi.org/10.1016/j.ins.2011.02.022 doi: 10.1016/j.ins.2011.02.022
![]() |
[65] |
Tian Y, Mi X, Ji Y, et al. (2021) ZE-numbers: A new extended Z-numbers and its application on multiple attribute group decision making. Eng Appl Artif Intel 101: 104225. https://doi.org/10.1016/j.engappai.2021.104225 doi: 10.1016/j.engappai.2021.104225
![]() |
[66] |
Stanujkic D, Karabasevic D, Zavadskas EK (2015) A framework for the selection of a packaging design based on the SWARA method. Eng Econ 26: 181–187. https://doi.org/10.5755/j01.ee.26.2.8820 doi: 10.5755/j01.ee.26.2.8820
![]() |
[67] |
Roy SK, Maity G, Weber GW (2017) Multi-objective two-stage grey transportation problem using utility function with goals. Cent Eur J Oper Res 25: 417–439. https://doi.org/10.1007/s10100-016-0464-5 doi: 10.1007/s10100-016-0464-5
![]() |
[68] |
Savku E, Weber GW (2018) A stochastic maximum principle for a Markov regime-switching jump-diffusion model with delay and an application to finance. J Optimiz Theory App 179: 696–721. https://doi.org/10.1007/s10957-017-1159-3 doi: 10.1007/s10957-017-1159-3
![]() |
[69] |
Özmen A, Kropat E, Weber GW (2017) Robust optimization in spline regression models for multi-model regulatory networks under polyhedral uncertainty. Optimization 66: 2135–2155. https://doi.org/10.1080/02331934.2016.1209672 doi: 10.1080/02331934.2016.1209672
![]() |