The proposed article introduces a novel three-parameter lifetime model called an exponentiated extended extreme-value (EEEV) distribution model. The EEEV distribution is characterized by increasing or bathtub-shaped hazard rates, which can be advantageous in the context of reliability. Various statistical properties of the distribution have been derived. The article discusses four estimation methods, namely, maximum likelihood, least squares, weighted least squares, and Cramér-von Mises, for EEEV distribution parameter estimation. A simulation study was carried out to examine the performance of the new model estimators based on the four estimation methods by using the average bias, mean squared errors, relative absolute biases, and root mean square error. The flexibility and significance of the EEEV distribution are demonstrated by analyzing three real-world datasets from the fields of medicine and engineering. The EEEV distribution exhibits high adaptability and outperforms several well-known statistical models in terms of performance.
Citation: M. G. M. Ghazal, Yusra A. Tashkandy, Oluwafemi Samson Balogun, M. E. Bakr. Exponentiated extended extreme value distribution: Properties, estimation, and applications in applied fields[J]. AIMS Mathematics, 2024, 9(7): 17634-17656. doi: 10.3934/math.2024857
[1] | Wenke Zhou, Guo Chen, Hongzhi Deng, Jianhua Tu . Enumeration of dissociation sets in grid graphs. AIMS Mathematics, 2024, 9(6): 14899-14912. doi: 10.3934/math.2024721 |
[2] | Jianhua Tu, Junyi Xiao, Rongling Lang . Counting the number of dissociation sets in cubic graphs. AIMS Mathematics, 2023, 8(5): 10021-10032. doi: 10.3934/math.2023507 |
[3] | Vu Dinh, Lam Si Tung Ho . Convergence of maximum likelihood supertree reconstruction. AIMS Mathematics, 2021, 6(8): 8854-8867. doi: 10.3934/math.2021513 |
[4] | Christophe Ndjatchi, Joel Alejandro Escareño Fernández, L. M. Ríos-Castro, Teodoro Ibarra-Pérez, Hans Christian Correa-Aguado, Hugo Pineda Martínez . On the packing number of 3-token graph of the path graph Pn. AIMS Mathematics, 2024, 9(5): 11644-11659. doi: 10.3934/math.2024571 |
[5] | Javad Tayyebi, Adrian Deaconu . Expanding maximum capacity path under weighted sum-type distances. AIMS Mathematics, 2021, 6(4): 3996-4010. doi: 10.3934/math.2021237 |
[6] | Yuni Listiana, Liliek Susilowati, Slamin Slamin, Fadekemi Janet Osaye . A central local metric dimension on acyclic and grid graph. AIMS Mathematics, 2023, 8(9): 21298-21311. doi: 10.3934/math.20231085 |
[7] | Jianwei Du, Xiaoling Sun . On symmetric division deg index of trees with given parameters. AIMS Mathematics, 2021, 6(6): 6528-6541. doi: 10.3934/math.2021384 |
[8] | Ying Wang, Fan Wang, Weisheng Zhao . Construction for trees without domination critical vertices. AIMS Mathematics, 2021, 6(10): 10696-10706. doi: 10.3934/math.2021621 |
[9] | Chao Yang, Bing Yao, Zhi-xiang Yin . A new vertex distinguishing total coloring of trees. AIMS Mathematics, 2021, 6(9): 9468-9475. doi: 10.3934/math.2021550 |
[10] | Akbar Ali, Sneha Sekar, Selvaraj Balachandran, Suresh Elumalai, Abdulaziz M. Alanazi, Taher S. Hassan, Yilun Shang . Graphical edge-weight-function indices of trees. AIMS Mathematics, 2024, 9(11): 32552-32570. doi: 10.3934/math.20241559 |
The proposed article introduces a novel three-parameter lifetime model called an exponentiated extended extreme-value (EEEV) distribution model. The EEEV distribution is characterized by increasing or bathtub-shaped hazard rates, which can be advantageous in the context of reliability. Various statistical properties of the distribution have been derived. The article discusses four estimation methods, namely, maximum likelihood, least squares, weighted least squares, and Cramér-von Mises, for EEEV distribution parameter estimation. A simulation study was carried out to examine the performance of the new model estimators based on the four estimation methods by using the average bias, mean squared errors, relative absolute biases, and root mean square error. The flexibility and significance of the EEEV distribution are demonstrated by analyzing three real-world datasets from the fields of medicine and engineering. The EEEV distribution exhibits high adaptability and outperforms several well-known statistical models in terms of performance.
Non-Newtonian fluids are defined as fluids with an extra-tension tensor that cannot be expressed as a linear, isotropic function of the components of the strain rate tensor.One of the goals of asymptotic analysis is to obtain and describe a two-dimensional problem from a three-dimensional problem, passing to the limit on the thickness of the domain assumed to be already thin. In this context, several previous studies have been conducted to deal with this problem.
The first study we mention is what the authors have done in [4], where they mainly examine the existence and behavior of weak solutions for a lubrication problem with Tresca law. In another study, the authors in [1] gave the nonlinear Reynolds equations for non-Newtonian thin-film fluid flows over a rough boundary. Suárez-Grau in [25] studied the asymptotic behavior of a non-Newtonian flow in a thin domain with Navier law on a rough boundary. The convergence stability of the solutions for the non-Newtonian fluid motion with large perturbation in R2 has been given in [9]. In [20], the authors presented an extension of the results related to the solutions of weakly compressible fluids with pressure-dependent viscosity. In contrast, the existence and uniqueness of stationary solutions of non-Newtonian viscous incompressible fluids were obtained in [11]. Other contexts and problems be found in the monographs such as in [21,27], and in the literature quoted within.
The Herschel-Bulkley fluid is a generalized model of a non-Newtonian fluid. The name is related to Winslow Herschel and Ronald Bulkley [15], and it was first mentioned, in 1926, where the relationship between the stress tensor σε and the symmetric deformation velocity d(uε) is given by:
σεij=−πεδij+μ|d(uε)|r−2d(uε)+δεd(uε)|d(uε)|, |
where, d(uε)=12(∇uε+(∇uε)T), uε is the velocity field, μ>0 is the viscosity constant, πε is the pressure, δε≥0 is the yield stress, 1<r≤2 is the power law exponent of the material and δij is the Kronecker symbol.
In this paper, we will adopt the constitutive law by considering that a Herschel-Bulkley incompressible fluid whose viscosity will follow the power law with a liquid-solid friction condition of Coulomb in three-dimensional domain Qε⊂ R3.
The Herschel-Bulkley fluid has been studied intensively by mathematicians, physicists, and engineers as intensively as the Navier-Stokes. For example, we mention the studies carried out in the fields of metal fluxes, plastic solids and some polymers. The literature concerning this topic is extensive; see e.g. [24,26] and many others references. More recently, the authors in [17], have studied the two-dimensional slow flow of non-Newtonian fluids of the Herschel-Bulkley type an inclined plane. In the context of the Bingham fluid, r=2, the authors in [8,22] proved the asymptotic convergence of this fluid in the isothermal and non-isothermal case with non linear friction law. In the case δε=0, with the particular conditions of Tresca, this problem has been studied by [5,6] respectively in both non-isothermal and isothermal study cases. Benseridi et al. in [3] studied theasymptotic analysis of a contact between two general Bingham fluids, however Saadallah et al. in [23] studied the analog of the problem presented in this work but in thevery particular case where the velocity on the surface Γb is null with the friction of the Tresca type. We can also mention others studies where authors gave the numerical solutions of the Herschel-Bulkley fluid but in other particular cases (see [14,16,18,19]).
In this study, the objective is to make an extension of our previous works [8,22,23] and to improve the result obtained in [5,6].
The novelty of our study can be summarized in following two major points. First, we take into account a generalized model of a non-Newtonian fluid (1<r≤2 and δε≠0). Second, we choose the Coulomb friction with the velocity of the lower surface Γb different to zero, since all previously mentioned works were restricted only to the particular friction of Tresca.
From our side, this choice will cause different difficulties in other parts of the study, especially with regard to Lemma 5.1, Theorems 4.2–4.4 and the uniqueness theorem.
Accordingly, this work makes the following new contributions by finding solutions to these problems:
The first contribution consists of finding the solution for the first difficulty coming from the fact that the integral on Γb has no clear meaning. In our study, we will replace the normal stress by some regularization as in [10]. The second contribution consists of dealing with the problem of choosing the test functions. In fact, we cannot choose the test functions as it was done in [5,6], their work does not contain the yield stress δε.
This remaining of our paper is organized as follows: Section 2 will summarize the description of the problem and the basic equations. Moreover, we introduce some notations and preliminaries that will be used in other sections. Section 3 will be reserved to the proof of the related weak formulation. We will also discussing the problem in transpose form. The corresponding main convergence results will be stated in Theorems (4.j), j=1 to 5 of Section 4. The mathematical proofs will be presented in Section 5.
We start by introducing some notations used in the paper. Motivated by lubrication problems, we consider:
Qε={y=(y′,y3)∈R3:y′=(y1,y2)∈Γb and 0<y3/ε<h(y′)}, |
the domain of the flow, where Γb is a non-empty bounded domain of R2 with a Lipschitz continuous boundary, h(.) is a Lipschitz continuous function defined on Γb such that 0<h⋆≤h(y′)≤h⋆, for all (y′,0) in Γb and ε is a small parameter that will tend to zero.
We decompose the boundary of Qε as Γε=¯Γεu∪¯Γεl∪¯Γb with
¯Γb={(y′,y3)∈ˉQε:y3=0},¯Γεu={(y′,y3)∈ˉQε:(y′,0)∈Γb, y3/ε=h(y′)},¯Γεl={(y′,y3)∈ˉQε:y′∈∂Γb, 0<y3<εh(y′)}, |
where Γb is the bottom of the domain, Γεu is the upper surface and Γεl the lateral part of Γε. Let uε(y):Qε→R3 be the velocity and πε(y):Qε→R the pressure of the fluid. We denote by η=(η1,η2,η3) the unit outward normal to the boundary Γε, and we define the normal and tangential velocities of uε on Γε as:
uεη=uε.η, uετ=uε−uε.η. |
Similarly, for a regular tensor field σε, we denote by σεη and σετ the normal and tangential components of σε given by
σεη=3∑i=1(σεij.ηj).ηi, σετ=(3∑i=1σεij.ηj−(σεη).ηi)1≤i≤3. |
Let S be denotes the set of all symmetric 3×3 matrices and for η,ζ∈S, we define the scalar product and the corresponding norm by
(η:ζ)=3∑i,j=1ηijζij and |η|=(η:η)12. |
The boundary-value problem describing the stationary flow for generalized non-Newtonian and incompressible fluid is described by:
ProblemPε. Find the pressure πε:Qε→R and a velocity field uε:Qε→R3 such that
−div(σε)=fεin Qε, | (2.1) |
σεij=˜σεij−πεδij,˜σε=δεd(uε)|d(uε)|+μ|d(uε)|r−2d(uε) if d(uε)≠0,|˜σε|≤δε if d(uε)=0,}in Qε, | (2.2) |
div(uε)=0in Qε, | (2.3) |
uε=0on Γεu, | (2.4) |
uε=g with g3=0on Γεl | (2.5) |
uε.η=0on Γb, | (2.6) |
|σετ|<kε|σεη|⇒uετ=s |σετ|=kε|σεη|⇒∃β≥0:uετ=s−βσετ}on Γb, | (2.7) |
where, fε=(fεi)1≤i≤3 is the body forces, s is the velocity of the bottom boundary Γb. Furthermore, the Eq (2.1) represents the law of conservation of momentum. Relation (2.2) gives the law of behavior of the Herschel-Bulkley fluid. The formula (2.3) represents the incompressibility equation. Equations (2.4) and (2.5) represent the velocity on Γεu and Γεl respectively. On the other hand, Eq (2.6) justified the no-flux through on Γb. However, assuming that the friction is sufficiently large, the tangential velocity is unknown and satisfies the Coulomb boundary condition (2.7) on the part Γb, with kε is the friction coefficient. This law introduced by [2] is one of the most spread laws in mathematics and it is more realistic than the law of Tresca.
Suppose that the function g=(gi)1≤i≤3 is in (W1−1/r,r(Γε))3, the space of traces of functions from (W1,r(Qε))3 on Γε which will define in the next section. Due to ∫Γεg.ndσ=0 that there exists a function Gε ([10]):
Gε∈(W1,r(Qε))3 with div(Gε)=0 in Qε, Gε=g on Γε. |
Also, we suppose that g3=0 on Γε and g=s on Γb.
Before starting this study, we need to introduce the functional framework and the functional spaces that we use in the rest of this work: Let Lr(Qε) represents the Lebesgue space for the norm ‖.‖Lr(Qε) and W1,r(Qε) are the standard Sobolev spaces given by
(W1,r(Qε))3={v∈(Lr(Qε))3:∂vi∂yj∈Lr(Qε) for i,j=1,2,3}, |
for 1<r<∞, and W1,r0(Qε) is the closure of D(Qε) in W1,r(Qε). We denoted by W−1,q(Qε) the dual space of W1,r0(Qε), where r−1+q−1=1.
Moreover, we need the following functional spaces
Eε={v∈(W1,r(Qε))3:v=Gε on Γεl, v=0 on Γεu, v.η=0 on Γb}, Eεdiv={v∈Eε:div(v)=0}, Eq0(Qε)={v∈Lq(Qε):∫Qεv dy′dy3=0}. |
Assume that the problem (Pε) admits a solution denoted by (uε,πε), with sufficient regularity. Multiplying (2.1) by (v−uε)∈Eε and then using Green's formula, along with the boundary conditions (2.4)–(2.7), we obtain:
ProblemPεK. We are looking for the velocity uε∈Eεdiv and πε∈Eq0(Qε), which verify:
F(uε,v−uε)−(πε,divv)+˜j(uε,v)−˜j(uε,uε)≥(fε,v−uε), ∀v∈Eε | (3.1) |
where
F(uε,v)=μ∫Qε|d(uε)|r−2d(uε)d(v)dy′dy3, | (3.2) |
(πε,divv)=∫Qεπεdivvdy′dy3, | (3.3) |
˜j(uε,v)=∫Γbkε|σεη||v−s| dy′+√2δε∫Qε|d(v)|dy′dy3, | (3.4) |
(fε,v)=3∑i=1∫Qεfεivi dy′dy3. | (3.5) |
The integral ˜j(uε,v) has no meaning for uε∈Eε. Indeed, σεη is defined by duality as an element of W−12,r(Γb) and |σεη| is not well defined on Γb. So following [10], we replace σεη by some regularization R(σεη), where R is a regularization operator from W−12,r(Γb) into Lr(Γb) can be obtained by convolution with a positive regular function and defined by
∀τ∈W−12,r(Γb), R(τ)∈L2(Γb), R(τ)(x)=⟨τ,ϕ(x−t)⟩W−12,r(Γb),W12,r00(Γb) ∀x∈Γb, | (3.6) |
ϕ is a given positive function of class C∞ with compact support in Γb and W−12,r(Γb) is the dual space to W12,r00(Γb)={v|Γb:v∈W1,r(Qε),v=0 on Γεu∪Γεl}.
After the regularization, we get the new problem:
ProblemPε,rK. Find (uε,πε)∈Eεdiv ×Eq0(Qε), provided it verifies the problem:
F(uε,v−uε)−(πε,divv)+j(uε,v)−j(uε,uε)≥(fε,v−uε), ∀v∈Eε | (3.7) |
where
j(uε,v)=∫Γbkε|R(σεη)||v−s| dy′+√2δε∫Qε|d(v)|dy′dy3. |
Remark 3.1. If v∈Eεdiv the inequality (3.7) becomes
F(uε,v−uε)+j(uε,v)−j(uε,uε)≥(fε,v−uε), ∀v∈Eε. | (3.8) |
Theorem 3.1. For fε∈Lq(Qε)3 and kε>0 in L∞(Γb); then the problem Pε,rK admits a unique pair (uε,πε)∈Eεdiv×Eq0(Qε) verifying (3.7). Moreover, for a small value of the friction threshold kε, this solution becomes unique.
Proof. To show the existence and uniqueness result of (3.7), we define the following intermediate problem:
F(uε,v−uε)+∫ΓbY(|v−s|−|uε−s|) dy′+δEεdiv(v)−δEεdiv(uε)≥(fε,v−uε), ∀v∈W1,rdiv(Qε)3 | (3.9) |
where, Y defined from Lr(Γb) into Lr(Γb) as: Y→−kεR(σεη) and
W1,rdiv(Qε)3={v∈W1,r(Qε)3:div(v)=0},δEεdiv={0 for v∈Eεdiv, +∞ otherwise . |
By the analog of the techniques used in [16], it is easy to see that F(uε,v−uε) is bounded coercive hemicontinuous and strictly monotone.
Y+δEεdiv is a proper, convex and continuous function on Lr(Γb), then by Tichovo's fixed point theorem (as in [7]), we ensure the existence of a unique uε ∈Eεdiv verifying the variational inequality (3.9). The existence of the pressure πε∈Eq0(Qε) such that (uε,πε) satisfy (3.7) is found in [12].
In this subsection, we use the dilatation in the variable y3 given by y3=zε, then our problem will be defined on a domain Q does not depend on ε given by:
Q={(y′,z)∈R3:(y′,0)∈Γb,0<z<h(y′)}, |
and its boundary Γ=¯Γu∪¯Γl∪¯Γb.
After this change of scale following the third component, it is normal to give the new functions and the new data defined on the new fixed domain Q:
ˆuεi(y′,z)=uεi(y′,y3),i=1,2, ˆuε3(y′,z)=ε−1uε3(y′,y3) and ˆπε(y′,z)=εrπε(y′,y3). | (3.10) |
ˆf(y′,z)=εrfε(y′,y3), ˆδ=εr−1δε, ˆk=εr−1kε, | (3.11) |
ˆg(y′,z)=g(y′,y3),^Gi(y′,z)=Gεi(y′,y3), i=1,2, ^G3(y′,y3)=ε−1Gε3(y′,y3) also div(ˆG)=0 and ˆG=ˆg on Γ | (3.12) |
with all the new notations given in (3.11) and (3.12) do not depend on ε.
Also, we denote by:
E={ˆv∈(W1,r(Q))3:ˆv=ˆGon Γl,ˆv=0onΓu;ˆv.n=0 on Γb}, Ediv={ˆv∈E(Q):divˆv=0}, Ξ(E)={ˆv∈(W1,r(Q))2:ˆvi=ˆGi on Γl,ˆvi=0onΓu, i=1,2}, ˜Ξ(E)={ˆv∈Ξ(E):ˆvsatisfy (3.13)}, |
where the condition (3.13) is given by
∫Q(ˆv1∂ω∂y1+ˆv2∂ω∂y2)dy′dz=0, for all ˆv∈(Lr(Q))2 and ω∈C∞0(Q). | (3.13) |
Finally, the Banach space Θz and its linear subspace ˜Θz are denoted by:
Θz={ˆv∈(Lr(Q))2;∂ˆvi∂z∈Lr(Q), i=1,2:ˆv=0 on Γu}, |
˜Θz={ˆv∈Θz:ˆvsatisfy the condition (3.13)}, |
with the norm of Θz is given as follows:
‖ˆv‖rΘz=2∑i=1(‖ˆvi‖rLr(Q)+‖∂ˆvi∂z‖rLr(Q)). |
By introducing all these new notations into the variational inequality (3.7), and then multiplying all the terms deduced by εr−1 after this scaling, then the problem Pε,rK takes the following form:
Problem PK. Find (ˆuε,ˆπε)∈Ediv ×Eq0(Q), such that
ˆF(ˆuε,ˆv−ˆuε)−(ˆπε,div(ˆv−ˆuε))+ˆj(ˆuε,ˆv)−ˆj(ˆuε,ˆuε)≥(ˆf,ˆv−ˆuε), ∀ˆv∈E | (3.14) |
where
ˆF(ˆuε,ˆv−ˆuε)=2∑i,j=1∫Q[ε2μ|˜d(ˆuε)|r−2(12(∂ˆuεi∂yj+∂ˆuεj∂yi))]∂(ˆvi−ˆuεi)∂yjdy′dz+2∑i=1∫Qμ|˜d(ˆuε)|r−2(12(∂ˆuεi∂z+ε2∂ˆuε3∂yi))∂(ˆvi−ˆuεi)∂zdy′dz+∫Q(μ|˜d(ˆuε)|r−2ε2∂ˆuε3∂z)∂(ˆv3−ˆuε3)∂zdy′dz+2∑j=1∫Qε2μ|˜d(ˆuε)|r−2(12(ε2∂ˆuε3∂yj+∂ˆuεj∂z))∂(ˆv3−ˆuε3)∂yjdy′dz, |
(ˆπε,div(ˆv−ˆuε))=∫Qˆπεdiv(ˆv−ˆuε)dy′dz,ˆj(ˆuε,ˆv)=∫Γbˆk|R(ˆσεη)||ˆv−s|dy′+√2ˆδ∫Q|˜d(ˆv)|dy′dz,(ˆf,ˆv−ˆuε)=2∑i=1∫Qˆfi(ˆvi−ˆuεi)dy′dz+∫Qεˆf3(ˆv3−ˆuε3)dy′dz, |
|˜d(ˆuε)|=(142∑i,j=1ε2(∂ˆuεi∂yj+∂ˆuεj∂yi)2+122∑i=1(∂ˆuεi∂z+ε2∂ˆuε3∂yi)2+ε2(∂ˆuε3∂z)2)1/2. |
We introduce some results found in [4] which we will need to use in the rest of this work.
‖∇vε‖Lr(Qε)≤C‖d(vε)‖Lr(Qε), | (3.15) |
‖vε‖Lr(Qε)≤εh⋆‖∂vε∂z‖Lr(Qε), | (3.16) |
αβ≤αrr+βqq, ∀(α,β)∈R2. | (3.17) |
The convergence results of (ˆuε,ˆπε) towards (u⋆,π⋆) as well as the limit problem independently of the parameter ε will be given in the next of this subsection.
Theorem 4.1. Assume that the assumptions of Theorem 3.1 hold, there exist π⋆∈Eq0(Q) and u⋆=(u⋆1,u⋆2)∈˜Θz satisfy the following convergences:
ˆuεi⇀u∗i in ˜Θz, 1≤i≤2, | (4.1) |
ε∂ˆuεi∂yj⇀0, in Lr(Q), 1≤i,j≤2, | (4.2) |
ε∂ˆuε3∂z⇀0, in Lr(Q), | (4.3) |
ε2∂ˆuε3∂yi⇀0, in Lr(Q), 1≤i≤2, | (4.4) |
εˆuε3⇀0, in Lr(Q), | (4.5) |
ˆπε⇀π⋆,in Eq0(Q), with π⋆ depend only of y′. | (4.6) |
Theorem 4.2. With the same assumptions as Theorem 4.1, the pair (u⋆,π⋆) satisfies:
ˆuεi→u⋆i, strongly in ˜Θz , i=1,2,∀ 1<r≤2, | (4.7) |
μ2∑i=1∫Q12(122∑i=1(∂u⋆i∂z)2)r−22∂(u⋆i)∂z∂(ˆvi−u⋆i)∂zdy′dz−∫Qπ⋆(y′) (∂ˆv1∂y1+∂ˆv2∂y2)dy′dz+ˆδ√22∫Q(|∂ˆv∂z|−|∂u⋆∂z|)dy′dz+∫Γbˆk|R(−π⋆)|(|ˆv−s|−|u⋆−s|)dy′≥ 2∑i=1∫Qˆfi(ˆvi−u⋆i)dy′dz,∀ˆv∈Ξ(E). | (4.8) |
Theorem 4.3. Suppose that the assumptions of the previous theorem hold, and if |∂u⋆∂z|≠0, the solution (u⋆,π⋆) satisfies
π⋆∈W1,q(Γb) | (4.9) |
−∂∂z[12μ(122∑i=1(∂u⋆i∂z)2)r−22∂u⋆∂z+ˆδ√22∂u⋆/∂z|∂u⋆/∂z|]=ˆf−∇π⋆, in Lq(Q)2. | (4.10) |
Theorem 4.4. Suppose that the assumptions of Theorem 4.2 hold, then τ⋆, s⋆ satisfy the inequality:
2∑i=1∫Γbˆk|R(ˆση(−π⋆))|ϕi(s⋆i−si)dy′−∫Γbˆμτ⋆ϕ|s⋆−s|dy′≥0, ∀ϕ∈Lr(Γb)2, | (4.11) |
and the limit form of Coulomb law:
μ|τ⋆|<ˆk|R(ˆση(−π⋆))|⟹s⋆=sμ|τ⋆|=ˆk|R(ˆση(−π⋆))|⟹∃β≥0:s⋆=s+βτ⋆} a.e. in Γb. | (4.12) |
Also, the solution (u⋆,π⋆) satisfies the weak generalized form:
∫Γb[h312∇π⋆+˜H+μh∫0y∫0B⋆(y′,ξξ)∂u⋆(y′,ξ)∂ξdξdy+ˆδh∫0y∫0∂u⋆/∂z|∂u⋆/∂z|(y′,ξ)dξdy].∇v(y′)dy′+∫Γb[−hμ2h∫0B⋆(y′,ξξ)∂u⋆(y′,ξ)∂ξdξ−ˆδh2h∫0∂u⋆/∂z|∂u⋆/∂z|(y′,ξ)dξ]∇v(y′)dy′,∀v∈W1,r(Γb), | (4.13) |
where
τ⋆=B⋆(y′,0)∂u⋆∂z(y′,0), s⋆=∂u⋆∂z(y′,0), B⋆(y′,ξ)=12(122∑i=1(∂u⋆∂z(y′,ξ))2)r−22˜H(y′,h)=∫h0H(y′,y)dy−h2H(y′,h), H(y′,y)=∫y0∫ξ0ˆf(y′,t)dtdξ. |
Theorem 4.5. For ˆf∈Lq(Q)3 and ˆk>0 in L∞(Γb); there exists ¯k>0 sufficiently small such that for ‖ˆk‖L∞(Γb)≤¯k, the solution (u⋆,π⋆) of the limiting problem (4.8) is unique in ˜Θz×(Eq0(Γb)∩W1,q(Γb))2.
Proof of Theorem 4.1. Before starting the proof of this theorem, we need the following estimates which can be considered as the key that allows us to make a passage to the limit when ε tends to zero.
Lemma 5.1. Assume that fε∈Lq(Qε)3 and let (uε,πε)∈Eεdiv×Eq0(Qε) be a solution of Pε,rK, where the friction coefficient kε>0 in L∞(Γb). Then there exists a constant C independent of ε such that
2∑i,j=1‖ε∂ˆuεi∂yj‖rLr(Q)+‖ε∂ˆuε3∂z‖rLr(Q)+2∑i=1(‖∂ˆuεi∂z‖rLr(Q)+‖ε2∂ˆuε3∂yi‖rLr(Q))≤C, | (5.1) |
‖∂ˆπε∂yi‖W−1,q(Q)≤C, for i=1,2, | (5.2) |
‖∂ˆπε∂z‖W−1,q (Q)≤εC. | (5.3) |
Proof of Lemma 5.1. Choosing v= Gε in (3.8) and using the fact that Gε=s on Γb, we find
F(uε,uε)≤F(uε,Gε)+(fε,uε)−(fε,Gε). | (5.4) |
By applying Korn's inequality, we ensure the existence of a constant CK>0 that does not depend on ε with:
F(uε,uε)≥2μCK‖∇uε‖rLr(Q). | (5.5) |
Now we apply Hölder's inequality and then Young's, the increase of the first term of (5.4) is given by
F(uε,Gε)≤μCK2∫Qεμ|d(uε)|q(r−1)dy′dy3+2(r−1) μr(qCK)r/q∫Qε|d(Gε)|rdy′dy3. | (5.6) |
By (3.15), the inequality (5.6) becomes
F(uε,v)≤‖∇uε‖rLr(Qε)+2(r−1) μr(qCK)r/q‖∇Gε‖rLr(Qε). | (5.7) |
We apply (3.16) and (3.17), we obtain the analogue of (5.7)
|(fε,uε)|≤μCK2‖∇uε‖rLr(Qε)+(εh⋆)qq(12μrCK)q/r‖fε‖qLq(Qε), | (5.8) |
|(fε,Gε)|≤μCK2‖∇Gε‖rLr(Qε)+(εh⋆)qq(μ2rCK)q/r‖fε‖qLq(Qε). | (5.9) |
Now, from (5.4)–(5.9), we obtain
μCK‖∇uε‖rLr(Q)≤(2(r−1)μr(qCK)r/q+μCK2)‖∇Gε‖rLr(Qε)+2(εh⋆)qq(μ2rCK)q/r‖fε‖qLq(Qε). | (5.10) |
We multiply (5.10) by εr−1 then using the fact that
εq‖fε‖qLq(Qε)=ε1−r‖ˆf‖qLq(Q) |
and
‖∂uεi∂x3‖rLr(Qε)=ε1−r‖∂ˆuεi∂z‖rLr(Q), |
for i=1,2, we deduce (5.1) with
C=1μCK[(2(r−1)μr(qCK)r/q+μCK2)‖∇ˆG‖rLr(Q)+2(εh⋆)qq(μ2rCK)q/r‖ˆf‖qLq(Q)]. |
For get the estimate (5.2), we choose in (3.14), ˆv=ˆuε+ϕ, with ϕ∈W1,r0(Q)3, we find
F(ˆuε,ϕ)−(ˆπε,divϕ)+ˆδ∫Q|˜d(ˆuε+ϕ)|dy′dz−ˆδ∫Q|˜d(ˆuε)|dy′dz≥(ˆfε,ϕ), |
then
(ˆπε,divϕ)≤a(ˆuε,ϕ)+√2ˆδ∫Q|˜d(ˆuε+ϕ)|dy′dz−√2ˆδ∫Q|˜d(ˆuε)|dy′dz−(ˆfε,ϕ), |
as
|˜d(ˆuε+ϕ)|≤√2|˜d(ˆuε)|+√2|˜d(ϕ)|, |
we obtain
(ˆπε,divϕ)≤a(ˆuε,ϕ)+2ˆδ∫Q|˜d(ϕ)|dy′dz+(2−√2)ˆδ∫Q|˜d(ˆuε)|dy′dz−∫Qˆfϕdy′dz. |
As
‖˜d(ϕ)‖Lr(Q)≤‖ϕ‖W1,r(Q)3 ,∀ε∈]0,1[. |
By Hölder's inequality, we get
(ˆπε,divϕ)≤μ‖d(ˆuε)‖rqLr(Q)‖ϕ‖W1,r(Q)3+2ˆδ|Q|1q‖ϕ‖W1,r(Q)3+(2−√2)ˆδ|Q|1q‖ˆuε‖W1,r(Q)3+‖ˆf‖Lq(Q)3‖ϕ‖W1,r(Q)3. | (5.11) |
We apply the results of (5.1), we have:
\begin{equation} \int_{\mathbb{Q}}\dfrac{\partial \widehat{\pi}^{\varepsilon}}{\partial y_{i}}\, \, \phi dy'dz\leq \mu C\left \Vert \phi \right \Vert _{_{W^{1, r}\left( \mathbb{Q} \right) \ \ ^{3}}} +2\hat{\delta}\left \vert \mathbb{Q} \right \vert ^{\frac{1}{q}}\left \Vert \phi \right \Vert _{_{W^{1, r}\left( \mathbb{Q} \right) \ \ ^{3}}}+\left( 2-\sqrt {2}\right) \hat{\delta}\left \vert \mathbb{Q} \right \vert ^{\frac{1}{q} }C+\left \Vert \hat{f}\right \Vert _{_{L^{q}\left( \mathbb{Q} \right) \ \ ^{3}} }\left \Vert \phi \right \Vert _{W^{1, r}\left( \mathbb{Q} \right) \ \ ^{3}}. \end{equation} | (5.12) |
The same, we choose in (3.14) : \hat{v} = \hat {u}^{\varepsilon}-\phi, \phi \in W_{0}^{1, r}\left(\mathbb{Q} \right) ^{3} , we obtain
\begin{equation} \begin{array} [c]{c} -\int_{\mathbb{Q}}\dfrac{\partial \widehat{\pi}^{\varepsilon}}{\partial y_{i} }\, \, \phi dy'dz\leq \mu \left \Vert d(\hat{u}^{\varepsilon})\right \Vert _{L^{r}\left( \mathbb{Q} \right) \ \ }^{\frac{r}{q}}\left \Vert \phi \right \Vert _{_{W^{1, r}\left( \mathbb{Q} \right) \ \ ^{3}}}+2\hat{\delta}\left \vert \mathbb{Q} \right \vert ^{\frac{1}{q}}\left \Vert \phi \right \Vert _{_{W^{1, r}\left( \mathbb{Q} \right) \ \ ^{3}}}\\ \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; +\left( 2-\sqrt{2}\right) \hat{\delta}\left \vert \mathbb{Q} \right \vert ^{\frac{1}{q}}C+\left \Vert \hat{f}\right \Vert _{_{L^{q}\left( \mathbb{Q} \right) \ \ ^{3}}}\left \Vert \phi \right \Vert _{W^{1, r}\left( \mathbb{Q} \right) \ \ ^{3}}\text{.} \end{array} \end{equation} | (5.13) |
From (5.12) and (5.13) , we deduce
\begin{equation} \begin{array} [c]{c} \left \vert \int_{\mathbb{Q}}\dfrac{\partial \widehat{\pi}^{\varepsilon}}{\partial x_{i}}\, \, \phi dy'dz\right \vert \leq \mu \left \Vert d(\hat{u}^{\varepsilon})\right \Vert _{L^{r}\left( \mathbb{Q} \right) \ \ }^{\frac{r}{q}}\left \Vert \phi \right \Vert _{_{W^{1, r}\left( \mathbb{Q} \right) \ \ ^{3}}}+2\hat{\delta}\left \vert \mathbb{Q} \right \vert ^{\frac{1}{q}}\left \Vert \phi \right \Vert _{_{W^{1, r}\left( \mathbb{Q} \right) \ \ ^{3}}}\\ \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; +\left( 2-\sqrt{2}\right) \hat{\delta}\left \vert \mathbb{Q} \right \vert ^{\frac{1}{q}}C+\left \Vert \hat{f}\right \Vert _{_{L^{q}\left( \mathbb{Q} \right) \ \ ^{3}}}\left \Vert \phi \right \Vert _{W^{1, r}\left( \mathbb{Q} \right) \ \ ^{3}}\text{.} \end{array} \end{equation} | (5.14) |
Choosing \phi = \left(\phi_{1}, 0, 0\right) then \phi = \left(0, \phi_{2}, 0\right) , in (5.14) , we find
\begin{equation} \left \vert \int_{\mathbb{Q}}\dfrac{\partial \widehat{\pi}^{\varepsilon}}{\partial x_{i}}\, \, \phi dy'dz\right \vert \leq \left( \mu C+2\hat{\delta}\left \vert \mathbb{Q} \right \vert ^{\frac{1}{q}}+\left \Vert \hat {f}_{i}\right \Vert _{_{L^{q}\left( \mathbb{Q} \right) }}\right) \left \Vert \phi \right \Vert _{_{W^{1, r}\left( \mathbb{Q} \right) \ \ ^{3}}}+\left( 2-\sqrt {2}\right) \hat{\delta}\left \vert \mathbb{Q} \right \vert ^{\frac{1}{q}} C\text{.}\nonumber \end{equation} |
Then (5.2) follows for i = 1, 2 .
For get (5.3) , we take in the inequality (5.14) , \phi = \left(0, 0, \phi_{3}\right), we find
\begin{align*} &\dfrac{1}{\varepsilon}\left \vert \int_{\mathbb{Q}}\dfrac{\partial \widehat {p}^{\varepsilon}}{\partial z}\, \, \phi dy'dz\right \vert \\ \leq & \left( C+2\hat{\delta}\left \vert \mathbb{Q} \right \vert ^{\frac{1}{q}}+\left \Vert \hat {f}_{3}\right \Vert _{_{L^{q}\left( \mathbb{Q} \right) }}\right) \left \Vert \phi \right \Vert _{_{W^{1, r}\left( \mathbb{Q} \right) \ \ ^{3}}}+\left( \sqrt {2}-1\right) \hat{\delta}\left \vert \mathbb{Q} \right \vert ^{\frac{1}{q}}C\text{.} \end{align*} |
Which completes the proof of Lemma 5.1.
Now, the convergence (4.1) – (4.6) of Theorem 4.1 are a direct result of inequalities (5.1) – (5.3) . Indeed, by (5.1) , \exists C > 0 not related to \varepsilon , and verifying
\begin{equation} \left \Vert \dfrac{\partial \hat{u}_{i}^{\varepsilon}}{\partial z}\right \Vert _{_{L^{r}\left( \mathbb{Q} \right) }}\leq C\text{, for }i = 1, 2. \end{equation} | (5.15) |
It is clear that (4.1) deduces directly from (5.15) and the using of the Poincaré's inequality in the fixed domain \mathbb{Q} . Also (4.2) – (4.4) follows from (5.1) . The obtaining of (4.5) is done as in [6]. Finally, it is easy (4.6) follows from (5.2) and (5.3) .
In order to proceed to the proof of strong convergence (4.7) of Theorem 4.2, it suffices to demonstrate the strong convergence of the integral term defined on \Gamma_b .
Lemma 5.2. Let R is a regularization operator from W^{-\frac{1}{2}, r}(\Gamma_b) into L^{r}(\Gamma_b) , then the choice of R ensures the existence of a subsequence of R(\widehat{\sigma}_{\eta}^{\varepsilon}\left(\hat{u}^{\varepsilon }, \widehat{\pi}^{\varepsilon}\right)) strongly converges to R\left(-\pi^{\star}\right) in L^{r}\left(\Gamma_b \right) .
Proof of Lemma 5.2. From the equilibrium Eq (2.1) , we have
\begin{array} [b]{cc} -\operatorname{div}\left( \sigma^{\varepsilon}\right) = f^{\varepsilon} & \text{in }\mathbb{Q}^{\varepsilon}\text{, } \end{array} |
with f^{\varepsilon}\in \left(L^{q}\left(\mathbb{Q} \right) \right) ^{3} . By the results of Theorem 4.1, we deduce that \left(\hat {u}^{\varepsilon}, \widehat{\pi}^{\varepsilon}\right) are bounded in \widetilde\Theta _{z} \times E_{0}^{q}(\mathbb{Q}) , then \widehat {\sigma}^{\varepsilon} is bounded in
H_{\operatorname{div}} = \left \{ v\in \left( L^{r}\left( \mathbb{Q} \right) \right) ^{3}:\operatorname{div}(v)\in L^{q}\left( \mathbb{Q} \right) \right \} \text{, } |
which shows that there exists a subsequence converging weakly towards \sigma^{\star} . Now, we show that \widehat{\sigma}_{\eta} (\widehat{u}^{\varepsilon}, \widehat{\pi}^{\varepsilon}) converges weakly to \left(-\pi^{\star}\right) in W^{\frac{-1}{2}, r}(\Gamma_b) .
Indeed, as \sigma_{\eta}^{\varepsilon} = \sigma_{ij}^{\varepsilon}\eta_{i}\eta_{j}, 1\leq i, j\leq3 , we have
\begin{array} [c]{c} \widehat{\sigma}_{\eta}(\widehat{u}^{\varepsilon}, \widehat{\pi}^{\varepsilon} ) = \underset{i = 1}{\overset{2}{\sum\limits}}\left( \varepsilon^{2} \mu \left \vert \tilde{d}\left( \hat{u}^{\varepsilon}\right) \right \vert ^{r-2}\dfrac{\partial \hat{u}_{i}^{\varepsilon}}{\partial y_{i}}+\varepsilon \hat{\delta}\left( \left \vert \tilde{d}\left( \hat{u}^{\varepsilon}\right) \right \vert \right) ^{-1}\dfrac{\partial \hat{u}_{i}^{\varepsilon}}{\partial x_{i}}-\pi ^{\varepsilon }\right) \\ \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; +\left( \varepsilon^{2} \mu \left \vert \tilde{d}\left( \hat{u}^{\varepsilon}\right) \right \vert ^{r-2}\dfrac{\partial \hat{u}_{3}^{\varepsilon}}{\partial z}+\varepsilon \hat{\delta}\left( \left \vert \tilde{d}\left( \hat{u}^{\varepsilon}\right) \right \vert \right) ^{-1}\dfrac{\partial \hat{u}_{3}^{\varepsilon}}{\partial z}-\pi ^{\varepsilon }\right). \end{array} |
Since \widehat{\sigma}^{\varepsilon} is bounded in H_{div} (\mathbb{Q}) , then there exists a subsequence converging weakly towards \sigma^{\star} in H_{div}(\mathbb{Q}) . Using the fact that the trace operator is continuous from H_{div}(\mathbb{Q}) into W^{\frac{-1}{2}, r}(\Gamma_b) , we therefore obtain the weakly convergence of \widehat {\sigma}_{\eta}(\widehat{u}^{\varepsilon}, \widehat{\pi}^{\varepsilon}) to \widehat{\sigma}_{\eta}(u^{\star}, \pi^{\star}) in W^{\frac{-1}{2}, r}(\Gamma_b) . We apply now the results of Theorem 4.1 in the formula of \widehat{\sigma}_{\eta}(\widehat{u}^{\varepsilon}, \widehat{\pi}^{\varepsilon}) , we obtain the desired result.
For the rest of proof, using the same techniques as in [2,13], we get the result.
Proof of Theorem 4.2. For u^{\varepsilon} the solution on (3.8) , we obtain for v \in E_{div}^{\varepsilon }
\begin{align*} &F(u^{\varepsilon}, u^{\varepsilon}-v)-F(v, u^{\varepsilon} -v)-j(u^{\varepsilon}, v)+j\left( u^{\varepsilon}, u^{\varepsilon }\right) \\ \leq& (f^{\varepsilon}, v-u^{\varepsilon})+F(v , u^{\varepsilon}-v)\text{.} \end{align*} |
Using the inequality as ([24])
\begin{equation} \left( \left \vert a\right \vert ^{r-2}a-\left \vert b\right \vert ^{r-2} b, a-b\right) \geq \left( r-1\right) \left( \left \vert a\right \vert +\left \vert b\right \vert \right) ^{r-2}\left \vert a-b\right \vert ^{2} , \text{ for } \ a, b\in \mathbb{R}^{n} \text{ and } \ r\in \left] 1, 2\right[ \end{equation} | (5.16) |
and by using the Korn's inequality, we find
\begin{array} [c]{c} \left( r-1\right) \mu C_{K} { \sum \limits_{i, j = 1}^{3}} \int_{\mathbb{Q}^{\varepsilon}}\left( \left \vert \frac{\partial u_{i} ^{\varepsilon}}{\partial y_{j}}\right \vert ^{r-2}+\left \vert \frac {\partial v_{i}}{\partial y_{j}}\right \vert ^{r-2}\right) \left( \left \vert \frac{\partial}{\partial y_{j}}(u_{i}^{\varepsilon}-v _{i})\right \vert ^{2}\right) dy'dy_{3}\\ -j(u^{\varepsilon}, v)+j\left( u^{\varepsilon}, u^{\varepsilon}\right) \leq(f^{\varepsilon}, u^{\varepsilon}-v)+F(v, u^{\varepsilon }-v)\text{.} \end{array} |
We multiply the last formula by \varepsilon^{r-1} , as well as the convergence of Theorem 4.1, we get in the fixed domain \mathbb{Q}
\begin{array} [c]{c} \left( r-1\right) \mu C_{K} { \sum \limits_{i = 1}^{2}} \left \Vert \dfrac{\partial}{\partial z}\left( \hat{u}_{i}^{\varepsilon }-\widehat{v}_{i}\right) \right \Vert _{L^{r}(\mathbb{Q})}^{r} dy'dz-\widehat{j}(\hat{u}^{\varepsilon}, \widehat{v})+\widehat{j}\left( \hat{u}^{\varepsilon}, \hat{u}^{\varepsilon}\right) \\ \leq \underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\hat{f}_{i}(\hat{u} _{i}^{\varepsilon}-\hat{v}_{i})dy'dz+a(\widehat{v}, \hat {u}^{\varepsilon}-\widehat{v})\text{.} \end{array} |
We pose, \overline{u}^{\varepsilon} = (\hat{u}_{1}^{\varepsilon}, \hat{u}_{2}^{\varepsilon}), u^{\star} = (u_{1}^{\star}, u_{2}^{\star}), \overline{v} = (\widehat{v}_{1}, \widehat{v}_{2}) , so \overline{v}\in \widetilde{\Xi}(E) and
\begin{align*} & \lim\limits_{\varepsilon \rightarrow0}\sup \left[ \left( r-1\right) \mu C_{K}\left \Vert \frac{\partial}{\partial z}\left( \overline{u}^{\varepsilon }-\widehat{v}_{i}\right) \right \Vert _{L^{r}(\mathbb{Q})}^{r} dy'dz-\widehat{j}(\overline{u}^{\varepsilon}, \overline{v})+\widehat {j}\left( \overline{u}^{\varepsilon}, \overline{u}^{\varepsilon}\right) \right] \\ & \leq \mu \int_{\mathbb{Q}}\left( \frac{1}{2}\underset{i = 1}{\overset{2}{\sum\limits} }\left( \dfrac{\partial \widehat{v}_{i}}{\partial z}\right) ^{2}\right) ^{\frac{r-2}{2}}\frac{\partial \overline{v}}{\partial z}\frac{\partial}{\partial z}\left( \overline{v}-u^{\star}\right) dy'dz+\underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\hat{f}_{i}(u_{i}^{\star }-\hat{v}_{i})dy'dz. \end{align*} |
Consequently,
\begin{align*} & \left( r-1\right) \mu C_{K}\left \Vert \frac{\partial}{\partial z}\left( \overline{u}^{\varepsilon}-\overline{v}\right) \right \Vert _{L^{r}(\mathbb{Q})}^{r}dy'dz-\widehat{j}(\overline{u}^{\varepsilon}, \overline {v})+\widehat{j}\left( \overline{u}^{\varepsilon}, \overline {u}^{\varepsilon}\right) \\ & \leq \mu \int_{\mathbb{Q}}\left( \frac{1}{2}\underset{i = 1}{\overset{2}{\sum\limits} }\left( \dfrac{\partial \widehat{v}_{i}}{\partial z}\right) ^{2}\right) ^{\frac{r-2}{2}}\frac{\partial \overline{v}}{\partial z}\frac{\partial}{\partial z}\left( \overline{v}-u^{\star}\right) dy'dz+\underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\hat{f}_{i}(u_{i}^{\star }-\hat{v}_{i})dy'dz+\eth, \end{align*} |
for \varepsilon < \varepsilon(\eth) , where \eth > 0 is arbitrary.
Therefore, \exists \overline{v}\in \widetilde{\Xi}(E):\overline{v}\rightarrow u^{\star} in \widetilde\Theta _{z} , which gives
\left( r-1\right) \mu C_{K}\left \Vert \frac{\partial}{\partial z}\left( \overline{u}^{\varepsilon}-u^{\star}\right) \right \Vert _{L^{r}(\mathbb{Q})}^{r}dy'dz+\widehat{j}\left( \overline{u}^{\varepsilon }, \overline{u}^{\varepsilon}\right) -\widehat{j}(\overline{u}^{\varepsilon }, u^{\star})\leq \eth \text{, }\forall \varepsilon < \varepsilon(\eth)\text{.} |
Now, since \lim \inf \widehat{j}\left(\overline{u}^{\varepsilon }\right) \geq \widehat{j}\left(u^{\star}\right) , we deduce: \overline{u}^{\varepsilon}\rightharpoonup u^{\star} in \widetilde\Theta _{z} . Furthermore, \widehat{j}\left(\overline{u}^{\varepsilon }, \overline{u}^{\varepsilon}\right) \rightarrow \widehat{j}(\overline {u}^{\varepsilon}, u^{\star}) for \varepsilon \rightarrow0 , which gives the convergence (4.7) .
If r = 2 , we follow the same techniques but (5.16) we will be replaced by
\begin{equation} \left( \left \vert a\right \vert ^{r-2}a-\left \vert b\right \vert ^{r-2} b, a-b\right) \geq \left( 1/2\right) ^{r-1}\left \vert a-b\right \vert ^{r}, \text{ for } \ a, b\in \mathbb{R}^{n}. \end{equation} | (5.17) |
For the proof of the inequality (4.8) , we introduce in (3.14) the condition of incompressibility of the fluid ( \operatorname{div}\left(\hat{u}^{\varepsilon}\right) = 0 in \mathbb{Q} ), then by the application of Minty's Lemma, we deduce:
\begin{align*} & F(\hat{v}, \hat{v}-\hat{u}^{\varepsilon})-\underset {i = 1}{\overset{2}{\sum\limits}}\left( \widehat{\pi}^{\varepsilon}\, , \frac{\partial \hat{v}_{i}}{\partial y_{i}}\right) -\left( \widehat{\pi}^{\varepsilon }\, , \frac{\partial \hat{v}_{3}}{\partial z}\right) +\widehat{j}(\hat {u}^{\varepsilon}, \hat{v})-\widehat{j}\left( \hat{u}^{\varepsilon} , \hat{u}^{\varepsilon}\right) \\ & \geq \underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\hat{f}_{i}(\hat{v }_{i}-\hat{u}_{i}^{\varepsilon})dy'dz+\int_{\mathbb{Q}}\varepsilon \hat{f}_{3} (\hat{v}_{3}-\hat{u}_{3}^{\varepsilon})dy'dz\text{, }\forall \hat{v }\in E. \end{align*} |
We apply the convergence of Theorem 4.1, Lemma 5.2 and the fact \widehat{j} is convex and lower semi-continuous, we obtain
\begin{align*} & \mu \underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\dfrac{1}{2}\left( \dfrac{1} {2}\underset{i = 1}{\overset{2}{\sum\limits}}\left( \dfrac{\partial \hat{v}_{i} }{\partial z}\right) ^{2}\right) ^{\frac{r-2}{2}}\dfrac{\partial \hat {v}_{i}}{\partial z}{\dfrac{\partial(\hat{v}_{i}-u_{i}^{\star} )}{\partial z}}dy'dz \\ &- \int_{\mathbb{Q}}\pi^{\star}\left( \dfrac{\partial \hat{v}_{1}}{\partial y_{1}}+\dfrac{\partial \hat{v}_{2}}{\partial y_{2}}\right) dy'dz+\hat{\delta}\frac{\sqrt{2}}{2}\int_{\mathbb{Q}}\left( \left \vert \dfrac{\partial \hat{v}}{\partial z}\right \vert -\left \vert \dfrac{\partial u^{\star}}{\partial z}\right \vert \right) dy'dz\\ & +\int_{\Gamma_b}\hat{k}\left \vert R(-\pi^{\star})\right \vert \left( |\hat{v}-s|-|u^{\star}-s|\right) dy'\\ & \geq \ \underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\hat{f}_{i} (\hat{v}_{i}-u_{i}^{\star})dy'dz\; \text{.} \end{align*} |
From [5,Lemma 5.1] , \pi^{\star} independent of z , then applying Minty's lemma for the second time, we deduce (4.8) .
Proof of Theorem 4.3. Choosing \hat{v} in (4.8) (as in [3]) by: \hat{v}_{i} = u_{i}^{\star }+\phi_{i}, i = 1, 2 , with \phi_{i}\in W_{0}^{1, r}(\mathbb{Q}) , we find
\begin{align*} & \mu \underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\dfrac{1}{2}\left( \dfrac{1} {2}\left( \dfrac{\partial u_{1}^{\star} }{\partial z}+\dfrac{\partial u_{2}^{\star} }{\partial z}\right) ^{2}\right) ^{\frac{r-2}{2}}\dfrac{\partial u_{i}^{\star}}{\partial z}{\dfrac{\partial \phi_{i}}{\partial z}} dy'dz-\int_{\mathbb{Q}}\pi^{\star}\left(\dfrac {\partial \phi_{1}}{\partial y_1}+\dfrac {\partial \phi_{2}}{\partial y_2}\right)dy'dz\\ & = \ \underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\hat{f}_{i}\phi _{i}dy'dz. \end{align*} |
By using Green's formula, and choosing in the first step \phi_{1} = 0 and \phi_{2} \in W_{0}^{1, r}(\mathbb{Q}) then reversing this choice in the second step, we find (4.9) .
Now, for the prove of (4.10) , we cannot choose the test function as in [5,6], since their works do not contain the term \hat{\delta}\frac{\sqrt{2}}{2}\int_{\mathbb{Q}}\partial \hat{v}/\partial z dy'dz . For this, we use the following techniques. Firstly, we choose \hat{v} in (4.8) by v = u^{\star}+\lambda \phi then v = u^{\star}-\lambda \phi , \phi \in W_{0}^{1, r}\left(\mathbb{Q} \right) ^{2} , we obtain
\begin{align} & \mu \underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\dfrac{1}{2}\left( \dfrac{1} {2}\left( \dfrac{\partial u_{1}^{\star} }{\partial z}+\dfrac{\partial u_{2}^{\star} }{\partial z}\right) ^{2}\right) ^{\frac{r-2}{2}}\dfrac{\partial u_{i}^{\star}}{\partial z}{\dfrac{\partial(\lambda \phi_{i})}{\partial z} }dy'dz-\underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\pi^{\star}\left( y'\right) \dfrac{\partial(\lambda \phi_{i})}{\partial y_{i}}dy'dz \end{align} | (5.18) |
\begin{align} & +\hat{\delta}\frac{\sqrt{2}}{2}\int_{\mathbb{Q}}\left( \left \vert \dfrac{\partial \left( u^{\star}+\lambda \phi \right) }{\partial z}\right \vert -\left \vert \dfrac{\partial u^{\star}}{\partial z}\right \vert \right) dy'dz\geq \ \underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\hat{f} _{i}(\lambda \phi_{i})dy'dz, \; \ \ \ \ \forall \phi \in W_{0}^{1, r}\left( \mathbb{Q} \right) ^{2}.\ \\ & \mu \underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\dfrac{1}{2}\left( \dfrac{1} {2}\underset{i = 1}{\overset{2}{\sum\limits}}\left( \dfrac{\partial u_{i}^{\star} }{\partial z}\right) ^{2}\right) ^{\frac{r-2}{2}}\dfrac{\partial u_{i}^{\star}}{\partial z}{\dfrac{\partial \phi_{i}}{\partial z}} dy'dz-\underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\pi^{\star}\left( y'\right) \dfrac{\partial(\lambda \phi_{i})}{\partial y_{i}}dy'dz \end{align} | (5.19) |
\begin{align} & -\hat{\delta}\frac{\sqrt{2}}{2}\int_{\mathbb{Q}}\left( \left \vert \dfrac{\partial (u^{\star}-\lambda \phi)}{\partial z}\right \vert -\left \vert \dfrac{\partial u^{\star}}{\partial z}\right \vert \right) dy'dz\leq \ \underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\hat{f}_{i}(\lambda \phi _{i})dy'dz, \ \ \ \ \forall \phi \in W_{0}^{1, r}\left( \mathbb{Q} \right) ^{2}\text{.}\nonumber \end{align} |
Secondly, dividing \left(5.18\right) \; and \left(5.19\right) by \lambda and the passage to the limit when \lambda tends to zero, we find
\begin{equation} \begin{array} [c]{c} \mu \underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\dfrac{1}{2}\left( \dfrac{1} {2}\underset{i = 1}{\overset{2}{\sum\limits}}\left( \dfrac{\partial u_{i}^{\star} }{\partial z}\right) ^{2}\right) ^{\frac{r-2}{2}}\dfrac{\partial u_{i}^{\star}}{\partial z}{\dfrac{\partial \phi_{i}}{\partial z}} dy'dz-\underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\pi^{\star}\left( y'\right) \dfrac{\partial \phi_{i}}{\partial y_{i}}dy'dz\\ +\hat{\delta}\frac{\sqrt{2}}{2}\underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q} }\left( \left \vert \dfrac{\partial u^{\star}}{\partial z}\right \vert \right) ^{-1}\dfrac{\partial u^{\star}}{\partial z}\dfrac{\partial \phi_{i}}{\partial z}dy'dz\geq \ \underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\hat{f} _{i}\phi_{i}dy'dz, \; \ \forall \phi \in W_{0}^{1, r}\left( \mathbb{Q} \right) ^{2}\text{, } \end{array} \end{equation} | (5.20) |
\begin{equation} \begin{array} [c]{c} \mu \underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\dfrac{1}{2}\left( \dfrac{1} {2}\underset{i = 1}{\overset{2}{\sum\limits}}\left( \dfrac{\partial u_{i}^{\star} }{\partial z}\right) ^{2}\right) ^{\frac{r-2}{2}}\dfrac{\partial u_{i}^{\star}}{\partial z}{\dfrac{\partial \phi_{i}}{\partial z}} dy'dz-\underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\pi^{\star}\left( y'\right) \dfrac{\partial \phi_{i}}{\partial y_{i}}dy'dz\\ +\hat{\delta}\frac{\sqrt{2}}{2}\underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q} }\left( \left \vert \dfrac{\partial u^{\star}}{\partial z}\right \vert \right) ^{-1}\dfrac{\partial u^{\star}}{\partial z}\dfrac{\partial \phi_{i}}{\partial z}dy'dz\leq \ \underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\hat{f} _{i}\phi_{i}dy'dz, \; \forall \phi \in W_{0}^{1, r}\left( \mathbb{Q} \right) ^{2}\text{.} \end{array} \end{equation} | (5.21) |
So the last two formulas, we give:
\begin{equation} \begin{array} [c]{c} \mu \underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\dfrac{1}{2}\left( \dfrac{1} {2}\underset{i = 1}{\overset{2}{\sum\limits}}\left( \dfrac{\partial u_{i}^{\star} }{\partial z}\right) ^{2}\right) ^{\frac{r-2}{2}}\dfrac{\partial u_{i}^{\star}}{\partial z}{\dfrac{\partial \phi_{i}}{\partial z}} dy'dz-\underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\pi^{\star}\left( y'\right) \dfrac{\partial \phi_{i}}{\partial y_{i}}dy'dz\\ +\hat{\delta}\frac{\sqrt{2}}{2}\underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q} }\left( \left \vert \dfrac{\partial u^{\star}}{\partial z}\right \vert \right) ^{-1}\dfrac{\partial u^{\star}}{\partial z}\dfrac{\partial \phi_{i}}{\partial z}dy'dz = \ \underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\hat{f}_{i} \phi_{i}dy'dz, \; \ \forall \phi \in W_{0}^{1, r}\left( \mathbb{Q} \right) ^{2}\text{.} \end{array} \end{equation} | (5.22) |
By the Green's formula, we get (4.10) .
Proof of Theorem 4.4. We take in (4.8) , \hat{v} _{i} = u_{i}^{\star}+\lambda \phi_{i} for i = 1, 2 , where \phi_{i}\in W_{\Gamma_{u}\cup \Gamma_{l}}^{1, r}\left(\mathbb{Q} \right) and
W_{\Gamma_{u}\cup \Gamma_{l}}^{1, r}\left( \mathbb{Q} \right) = \{ \phi \in W^{1, r}\left( \mathbb{Q} \right) :\phi_{i} = 0\text{ on }\Gamma_{u}\cup \Gamma _{l}\}, |
then
\begin{align*} & \mu \underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\dfrac{1}{2}\left( \dfrac{1} {2}\underset{i = 1}{\overset{2}{\sum\limits}}\left( \dfrac{\partial u_{i}^{\star} }{\partial z}\right) ^{2}\right) ^{\frac{r-2}{2}}\dfrac{\partial u_{i}^{\star}}{\partial z}\dfrac{\partial(\lambda \phi_{i})}{\partial z} dy'dz-\underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\pi^{\star}\left( y'\right) \frac{\partial(\lambda \phi_{i})}{\partial y_i}dy'dz\\ & +\hat{\delta}\frac{\sqrt{2}}{2}\underset{i = 1}{\overset{2}{\sum\limits}} \int_{\mathbb{Q}}\left( \left \vert \dfrac{\partial \left( \lambda \phi+u^{\star }\right) }{\partial z}\right \vert -\left \vert \dfrac{\partial u^{\star} }{\partial z}\right \vert \right) dy'dz+\int_{\Gamma_b}\hat{k}\left \vert R(-\pi^{\star})\right \vert \left( |\lambda \phi+s^{\star}-s|-|s^{\star }-s|\right) dy'\\ & \geq \ \underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\hat{f}_{i} (\hat{v}_{i}-u_{i}^{\star})dy'dz\text{.} \end{align*} |
Dividing the last inequality by \lambda and the passage to the limit when \lambda tends to zero, we find
\begin{equation} \begin{array} [c]{c} \mu \underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\dfrac{1}{2}\left( \dfrac{1} {2}\underset{i = 1}{\overset{2}{\sum\limits}}\left( \dfrac{\partial u_{i}^{\star} }{\partial z}\right) ^{2}\right) ^{\frac{r-2}{2}}\dfrac{\partial u_{i}^{\star}}{\partial z}\dfrac{\partial \phi_{i}}{\partial z}dy'dz\\ -\underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\pi^{\star}\left( y'\right) \dfrac{\partial \phi_{i}}{\partial y_i}dy'dz+\hat{\delta}\frac{\sqrt{2}} {2}\underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\left( \left \vert \dfrac{\partial u^{\star}}{\partial z}\right \vert \right) ^{-1} \dfrac{\partial u^{\star}}{\partial z}\dfrac{\partial \phi_{i}}{\partial z}dy'dz\\ +\underset{i = 1}{\overset{2}{\sum\limits}}\int_{\Gamma_b}\hat{k}\left \vert R(-p^{\star })\right \vert \dfrac{\phi_{i}\left( s_{i}^{\star}-s_{i}\right) }{|s^{\star }-s|}dy'\geq \ \underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\hat{f} _{i}(\hat{v}_{i}-u_{i}^{\star})dy'dz\text{.} \end{array} \end{equation} | (5.23) |
Finally, using the Green formula in (5.23) and from (4.10) , we find
\underset{i = 1}{\overset{2}{\sum\limits}}\int_{\Gamma_b}\widehat{k}\left \vert R(\widehat{\sigma}_{\eta}({-}\pi^{\star}))\right \vert \phi_{i}(s_{i}^{\star }-s_{i})dy'-\int_{\Gamma_b}\widehat{\mu}\tau^{\star}\phi \left \vert s^{\star }-s\right \vert dy'\geq0, \ \forall \phi \in \left( W_{\Gamma_{u}\cup \Gamma_{l}}^{1, r}\left( \mathbb{Q} \right) \right) ^{2}\text{.} |
This last formula holds for any \phi \in D(\Gamma_b)^{2} , but given the density of D(\Gamma_b) in L^{r}(\Gamma_b) , we find the desired result (4.11) . For the proof of (4.12) , we follow the same techniques as in [4].
To establish \left(4.13\right) , we integrate twice (4.10) from 0 to z , we get
\begin{equation} \begin{array} [c]{c} -\int_{0}^{z} \mu B^{\star}\left( y', \xi \right) \dfrac{\partial u^{\star}}{\partial \xi}\left( y';\xi \right) d\xi-\hat{\delta}\frac{\sqrt{2}}{2}\int_{0}^{z}\dfrac{\partial u^{\star}/\partial z}{\left \vert \partial u^{\star}/\partial z\right \vert }d\xi+ \mu \tau^{\star}\left( y'\right) z\\ +\hat{\delta}\frac{\sqrt{2}}{2}\dfrac{s^{\star}\left( y'\right) }{\left \vert s^{\star}\left( y'\right) \right \vert } \ z = \int_{0}^{z}\int_{0}^{\xi }\hat{f}\left( y', t\right) dtd\xi-\dfrac{z^{2}}{2}\nabla \pi^{\star}(y'). \end{array} \end{equation} | (5.24) |
Substituting z by h in (4.24) , we get
\begin{equation} \begin{array} [c]{c} -\int_{0}^{h} \mu B^{\star}\left( y', \xi \right) \dfrac{\partial u^{\star}}{\partial \xi}\left( y';\xi \right) d\xi-\hat{\delta}\frac{\sqrt{2}}{2}\int_{0}^{h}\dfrac{\partial u^{\star}/\partial z}{\left \vert \partial u^{\star}/\partial z\right \vert }d\xi+ \mu \tau^{\star}\left( y'\right) h\\ +\hat{\delta}\frac{\sqrt{2}}{2}\dfrac{s^{\star}\left( y'\right) }{\left \vert s^{\star}\left( y'\right) \right \vert } \ h = \int_{0}^{h}\int_{0}^{\xi }\hat{f}\left( y', t\right) dtd\xi-\dfrac{h^{2}}{2}\nabla \pi^{\star}(y'). \end{array} \end{equation} | (5.25) |
We integrate (5.24) from 0 to z , it comes:
\begin{equation} \begin{array} [c]{c} -\int_{0}^{h}\int_{0}^{y} \mu B^{\star}\left( y', \xi \right) \dfrac{\partial u^{\star}}{\partial z}\left( y';\xi \right) d\xi dy-\hat{\delta}\frac{\sqrt{2}}{2}\int_{0}^{h}\int_{0} ^{y}\dfrac{\partial u^{\star}/\partial z}{\left \vert \partial u^{\star }/\partial z\right \vert }d\xi dy+ \mu \tau^{\star}\left( y'\right) \dfrac{h^{2}}{2}\\ +\hat{\delta}\frac{\sqrt{2}}{4}\dfrac{s^{\star}\left( y'\right) }{\left \vert s^{\star}\left( y'\right) \right \vert }h^{2} = \int_{0}^{h}\int_{0}^{y}\int _{0}^{\xi}\hat{f}\left( y', t\right) dtd\xi dy-\dfrac{h^{3}}{6}\nabla \pi^{\star}(y')\text{.} \end{array} \end{equation} | (5.26) |
From (5.25), we deduce
\begin{equation} \begin{array} [c]{c} \left[ \mu \tau^{\star}\left( y'\right) +\hat{\delta}\frac{\sqrt{2}}{4}\dfrac{s^{\star }\left( y'\right) }{\left \vert s^{\star}\left( y'\right) \right \vert }\right] \dfrac{h^{2}}{2} = \dfrac{ \mu h}{2}\int_{0}^{h}B^{\star}\left( y', \xi \right) \dfrac{\partial u^{\star} }{\partial \xi}\left( y';\xi \right) d\xi\\ +\hat{\delta}h\dfrac{\sqrt{2}}{4}\int_{0}^{h}\frac{\partial u^{\star}/\partial z}{\left \vert \partial u^{\star}/\partial z\right \vert }d\xi+\dfrac{h}{2} \int_{0}^{h}\int_{0}^{y}\hat{f}\left( y', \xi \right) d\xi dy-\dfrac{h^{3}} {4}\nabla \pi^{\star}(y')\text{.} \end{array} \end{equation} | (5.27) |
By (5.26) and (5.27) , we deduce \left(4.13\right) .
Proof of Theorem 4.5. Suppose that the boundary value problem (4.8) admits two solutions which we denote by \left(u^{\star, 1}, \pi^{\star, 1}\right) and \left(u^{\star, 2}, \pi^{\star, 2}\right) . Taking \hat{v} = u^{\star, 2} and \hat{v} = u^{\star, 1} respectively, as test function in \left(4.8\right) then by summing two inequalities, we get
\begin{equation} \begin{array} [c]{c} \mu \underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\left( \dfrac{1}{2}\right) ^{\frac{r}{2}}\left( \underset{i = 1}{\overset{2}{\sum\limits}}\left( \dfrac{\partial u_{i}^{\star, 1}}{\partial z}\right) ^{2}\right) ^{\frac{r-2}{2}} \dfrac{\partial u_{i}^{\star, 1}}{\partial z}{\dfrac{\partial}{\partial z} }(u_{i}^{\star, 1}-u_{i}^{\star, 2})dy'dz\\ \; \; \; \; \; \; \; \; \; \; \; \; \; - \mu \underset{i = 1}{\overset{2}{\sum\limits}}\int_{\mathbb{Q}}\left( \dfrac{1}{2}\right) ^{\frac{r}{2}}\left( \underset{i = 1}{\overset{2}{\sum\limits}}\left( \dfrac{\partial u_{i}^{\star, 2}}{\partial z}\right) ^{2}\right) ^{\frac{r-2}{2}} \dfrac{\partial u_{i}^{\star, 2}}{\partial z}{\dfrac{\partial}{\partial z} }(u_{i}^{\star, 1}-u_{i}^{\star, 2})dy'dz\\ -\int_{\Gamma_b}\hat{k}\left \vert R(-\pi^{\star, 1})-R(-\pi^{\star, 2})\right \vert |u_{i}^{\star, 1}-u_{i}^{\star, 2}|dy'\leq0. \end{array} \end{equation} | (5.28) |
We apply (5.16) and (5.17) , we obtain
\begin{equation} {\mu} \left \Vert \dfrac{\partial }{\partial z}\left( u^{\star , 1}-u^{\star , 2}\right) \right \Vert _{(L^{r}\left( \mathbb{Q})\right)^2}^{r} \leq \Vert \widehat{k}\Vert _{L^{\infty }(\Gamma _{b})}\int_{\Gamma _{b}}\left \vert R(-\pi ^{\star , 1})-R(-\pi ^{\star , 2})\right \vert |u^{\star , 1}-u^{\star , 2}|dy^{\prime }. \end{equation} | (5.29) |
By the inequality (3.16) , then we apply the Hölder inequality on the second term of (5.29) , we have
\begin{align*} &\left \Vert \dfrac{\partial }{\partial z}\left( u^{\star , 1}-u^{\star , 2}\right) \right \Vert _{(L^{r}\left( \mathbb{Q})\right)^2 }^{r} \\ \leq& h^{\star}\Vert \widehat{k}\Vert_{L^{\infty}(\Gamma_b)}C_{0}\left( \int_{\Gamma_b}\left \vert R(-\pi^{\star, 1})-R(-\pi^{\star, 2})\right \vert ^{q}dy'\right) ^{1/q}\left \Vert \dfrac{\partial }{\partial z}\left( u^{\star , 1}-u^{\star , 2}\right) \right \Vert _{(L^{r}\left( \mathbb{Q})\right)^2 } \end{align*} |
whence
\begin{equation} \left \Vert \dfrac{\partial }{\partial z}\left( u^{\star , 1}-u^{\star , 2}\right) \right \Vert _{(L^{r}\left( \mathbb{Q})\right)^2 }^{r-1}\leq \frac{h^{\star}\Vert \widehat{k} \Vert_{L^{\infty}(\Gamma_b)}C_{0}}{ \mu }\left \Vert R(-\pi^{\star, 1})-R(-\pi^{\star, 2})\right \Vert _{L^{q}\left( \Gamma_b \right) }. \end{equation} | (5.30) |
Using the fact that R is a linear continuous operator W^{-\frac{1}{2}, r}(\Gamma_b) into L^{r}(\Gamma_b) , there exists a constant C_{1} depending on R , such that
\begin{equation} \left \Vert R(-\pi^{\star, 1})-R(-\pi^{\star, 2})\right \Vert _{L^{q}\left( \Gamma_b \right) }\leq C_{1}\left \Vert \pi^{\star, 1}-\pi^{\star, 2}\right \Vert _{L^{q}\left( \Gamma_b \right) }. \end{equation} | (5.31) |
Combining (5.30) and (5.31) we deduce that if \Vert \widehat{k} \Vert_{L^{\infty}(\Gamma_b)}\leq \overline{k} for sufficiently small \overline{k} , then we have
\left \Vert \dfrac{\partial }{\partial z}\left( u^{\star , 1}-u^{\star , 2}\right) \right \Vert _{(L^{r}\left( \mathbb{Q})\right)^2 } = 0. |
Using Poincaré's inequality, we get
\left \Vert u^{\star , 1}-u^{\star , 2} \right \Vert _{\widetilde\Theta _{z}} = 0. |
The uniqueness of the \pi ^{\ast } in the E_{0}^{q}\left(\Gamma_b \right) follows from (4.13) , in fact we take first in the Reynolds equation (4.13) the pressure value \pi ^{\ast } = \pi^{\star, 1} then \pi ^{\ast } = \pi^{\star, 2} respectively, at the end by subtracting the equations obtained, it becomes:
\begin{equation*} \int_{\Gamma_b }\frac{h^{3}}{12}\nabla \left( \pi^{\star, 1}-\pi^{\star, 2}\right) \nabla v dy' = 0\text{.} \end{equation*} |
Choosing v = \pi^{\star, 1}-\pi^{\star, 2} , and by Poincaré's inequality, we find
\begin{equation*} \pi^{\star, 1} = \pi^{\star, 2}\text{, almost everywhere in }\Gamma_b \text{.} \end{equation*} |
This ends the proof of the Theorem 4.5.
The aim of this study is to examine the strong convergence of the velocity of a non-Newtonian incompressible fluid whose viscosity follows the power law with Coulomb friction, where we give in a first step the description of the problem and basic equations. Then, we present the functional framework. The following paragraph is reserved for the main convergence results. Finally, we give the detail of the proofs of these results. In the future work we will extend and develop our work to new space.
Researchers would like to thank the Deanship of Scientific Research, Qassim University for funding publication of this project.
The authors declares that they have no conflicts of interest.
[1] |
C. D. Lai, M. Xie, D. N. P. Murthy, A modified Weibull distribution, IEEE Trans. Reliab., 52 (2003), 33–37. https://doi.org/10.1109/TR.2002.805788 doi: 10.1109/TR.2002.805788
![]() |
[2] |
A. M. Sarhan, J. Apaloo, Exponentiated modified Weibull extension distribution, Reliab. Eng. Syst. Saf., 112 (2013), 137–144. https://doi.org/10.1016/j.ress.2012.10.013 doi: 10.1016/j.ress.2012.10.013
![]() |
[3] |
B. He, W. Cui, X. Du, An additive modified Weibull distribution, Reliab. Eng. Syst. Saf., 145 (2016), 28–37. https://doi.org/10.1016/j.ress.2015.08.010 doi: 10.1016/j.ress.2015.08.010
![]() |
[4] |
A. A. Ahmad, M. G. M. Ghazal, Exponentiated additive Weibull distribution, Reliab. Eng. Syst. Saf., 193 (2020), 106663. https://doi.org/10.1016/j.ress.2019.106663 doi: 10.1016/j.ress.2019.106663
![]() |
[5] |
E. A. Hussein, H. M. Aljohani, A. Z. Afify, The extended Weibull–Fréchet distribution: Properties, inference, and applications in medicine and engineering, AIMS Mathematics, 7 (2022), 225–246. https://doi.org/10.3934/math.2022014 doi: 10.3934/math.2022014
![]() |
[6] |
M. G. M. Ghazal, H. M. M. Radwan, A reduced distribution of the modified Weibull distribution and its applications to medical and engineering data, Math. Biosci. Eng., 19 (2022), 13193–13213. https://doi.org/10.3934/mbe.2022617 doi: 10.3934/mbe.2022617
![]() |
[7] |
L. C. Méndez-González, L. A. Rodríguez-Picón, I. J. C. Pérez-Olguin, L. A. Pérez- Domínguez, D. L. Cruz, The alpha power Weibull transformation distribution applied to describe the behavior of electronic devices under voltage stress profile, Qual. Technol. Quant. Manag., 19 (2022), 692–721. https://doi.org/10.1080/16843703.2022.2071526 doi: 10.1080/16843703.2022.2071526
![]() |
[8] |
M. G. M. Ghazal, A new extension of the modified Weibull distribution with applications for engineering data, Probab. Eng. Mech., 74 (2023), 103523. https://doi.org/10.1016/j.probengmech.2023.103523 doi: 10.1016/j.probengmech.2023.103523
![]() |
[9] |
N. Alotaibi, A. S. Al-Moisheer, I. Elbatal, S. A. Alyami, A. M. Gemeay, E. M. Almetwally, Bivariate step-stress accelerated life test for a new three-parameter model under progressive censored schemes with application in medical, AIMS Mathematics, 9 (2024), 3521–3558. https://doi.org/10.3934/math.2024173 doi: 10.3934/math.2024173
![]() |
[10] |
A. Xu, S. Zhou, Y. Tang, A unified model for system reliability evaluation under dynamic operating conditions, IEEE Trans. Reliab., 70 (2021), 65–72. https://doi.org/10.1109/TR.2019.2948173 doi: 10.1109/TR.2019.2948173
![]() |
[11] | W. Wang, Z. Cui, R. Chen, Y. Wang, X. Zhao, Regression analysis of clustered panel count data with additive mean models, Stat. Papers, 70 (2023). https://doi.org/10.1007/s00362-023-01511-3 |
[12] | A. Xu, B. Wang, D. Zhu, J. Pang, X. Lian, Bayesian reliability assessment of permanent magnet brake under small sample size, IEEE Trans. Reliab., 2024. https://doi.org/10.1109/TR.2024.3381072 |
[13] | J. F. Lawless, Statistical models and methods for lifetime data, 2 Eds., Hoboken: John Wiley & Sons, 2002. |
[14] | W. Q. Meeker, L. A. Escobar, F. G. Pascual, Statistical methods for reliability data, 2 Eds., New York: Wiley, 2021. |
[15] | Y. S. Cho, S. B. Kang, J. T. Han, The exponentiated extreme value distribution, J. Korean Data Inf. Sci. Soc., 20 (2009), 719–731. |
[16] |
J. M. F. Carrasco, E. M. M. Ortega, G. M. Cordeiro, A generalized modified Weibull distribution for lifetime modeling, Comput. Stat. Data Anal., 53 (2008), 450–462. https://doi.org/10.1016/j.csda.2008.08.023 doi: 10.1016/j.csda.2008.08.023
![]() |
[17] |
M. A. W. Mahmoud, M. G. M. Ghazal, H. M. M. Radwan, Modified generalized linear exponential distribution: Properties and applications, Stat., Optim. Inf. Comput., 12 (2024), 231–255. https://doi.org/10.19139/soic-2310-5070-1103 doi: 10.19139/soic-2310-5070-1103
![]() |
[18] | G. Casella, R. L. Berger, Statistical Inference, Pacific Grove: Duxbury, 2002. |
[19] |
J. Shao, Ordinary and weighted least-squares estimators, Can. J. Stat., 18 (1990), 327–336. https://doi.org/10.2307/3315839 doi: 10.2307/3315839
![]() |
[20] |
J. J. Swain, S. Venkatraman, J. R. Wilson, Least-squares estimation of distribution functions in johnson's translation system, J. Stat. Comput. Simul., 29 (1988), 271–297. https://doi.org/10.1080/00949658808811068 doi: 10.1080/00949658808811068
![]() |
[21] |
A. Luceo, Fitting the generalized Pareto distribution to data using maximum goodness-of-fit estimators, Comput. Stat. Data Anal., 51 (2006), 904–917. https://doi.org/10.1016/j.csda.2005.09.011 doi: 10.1016/j.csda.2005.09.011
![]() |
[22] |
J. W. Boag, Maximum likelihood estimates of the proportion of patients cured by cancer therapy, J. R. Stat. Soc. Ser. B, 11 (1949), 15–44. https://doi.org/10.1111/j.2517-6161.1949.tb00020.x doi: 10.1111/j.2517-6161.1949.tb00020.x
![]() |
[23] |
M. V. Aarset, How to identify a bathtub hazard rate, IEEE Trans. Reliab., 36 (1987), 106–108. https://doi.org/10.1109/TR.1987.5222310 doi: 10.1109/TR.1987.5222310
![]() |
[24] | D. P. Murthy, M. Xie, R. Jiang, Weibull Models, New York: John Wiley & Sons, 2004. |
[25] |
W. A. Weibull, A statistical distribution function of wide applicability, J. Appl. Mech., 18 (1951), 293–297. https://doi.org/10.1115/1.4010337 doi: 10.1115/1.4010337
![]() |
[26] |
T. Dimitrakopoulou, K. Adamidis, S. Loukas, A lifetime distribution with an upside-down bathtub-shaped hazard function, IEEE Trans. Reliab., 56 (2007), 308–311. https://doi.org/10.1109/TR.2007.895304 doi: 10.1109/TR.2007.895304
![]() |
[27] |
A. J. Lemonte, A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function, Comput. Stat. Data Anal., 62 (2013), 149–170. https://doi.org/10.1016/j.csda.2013.01.011 doi: 10.1016/j.csda.2013.01.011
![]() |
[28] |
M. Nassar, Ahmed Z. Afify, S. Dey, D. Kumar, A new extension of Weibull distribution: Properties and different methods of estimation, J. Comput. Appl. Math., 336 (2018), 439–457. https://doi.org/10.1016/j.cam.2017.12.001 doi: 10.1016/j.cam.2017.12.001
![]() |
[29] |
F. A. Peña-Ramírez, R. R. Guerra, D. R. Canterle, G. M. Cordeiro, The logistic nadarajah-haghighi distribution and its associated regression model for reliability applications, Reliab. Eng. Syst. Saf., 204 (2020), 107196. https://doi.org/10.1016/j.ress.2020.107196 doi: 10.1016/j.ress.2020.107196
![]() |
1. | Abla Boulaouad, Youcef Djenaihi, Salah Boulaaras, Hamid Benseridi, Mourad Dilmi, Study of a boundary value problem governed by the general elasticity system with a new boundary conditions in a thin domain, 2024, 1072-947X, 10.1515/gmj-2024-2044 |