
The (2+1)-dimensional Chaffee-Infante equation (CIE) is a significant model of the ion-acoustic waves in plasma. The primary objective of this paper was to establish and examine closed-form soliton solutions to the CIE using the modified extended direct algebraic method (m-EDAM), a mathematical technique. By using a variable transformation to convert CIE into a nonlinear ordinary differential equation (NODE), which was then reduced to a system of nonlinear algebraic equations with the assumption of a closed-form solution, the strategic m-EDAM was implemented. When the resulting problem was solved using the Maple tool, many soliton solutions in the shapes of rational, exponential, trigonometric, and hyperbolic functions were produced. By using illustrated 3D and density plots to evaluate several soliton solutions for the provided definite values of the parameters, it was possible to determine if the soliton solutions produced for CIE are cuspon or kink solitons. Additionally, it has been shown that the m-EDAM is a robust, useful, and user-friendly instrument that provides extra generic wave solutions for nonlinear models in mathematical physics and engineering.
Citation: Naveed Iqbal, Muhammad Bilal Riaz, Meshari Alesemi, Taher S. Hassan, Ali M. Mahnashi, Ahmad Shafee. Reliable analysis for obtaining exact soliton solutions of (2+1)-dimensional Chaffee-Infante equation[J]. AIMS Mathematics, 2024, 9(6): 16666-16686. doi: 10.3934/math.2024808
[1] | Zhiyuan Wang, Chu Zhang, Shaopei Xue, Yinjie Luo, Jun Chen, Wei Wang, Xingchen Yan . Dynamic coordinated strategy for parking guidance in a mixed driving parking lot involving human-driven and autonomous vehicles. Electronic Research Archive, 2024, 32(1): 523-550. doi: 10.3934/era.2024026 |
[2] | Xiaoying Zheng, Jing Wu, Xiaofeng Li, Junjie Huang . UAV search coverage under priority of important targets based on multi-location domain decomposition. Electronic Research Archive, 2024, 32(4): 2491-2513. doi: 10.3934/era.2024115 |
[3] | Yu Shen, Hecheng Li . A multi-strategy genetic algorithm for solving multi-point dynamic aggregation problems with priority relationships of tasks. Electronic Research Archive, 2024, 32(1): 445-472. doi: 10.3934/era.2024022 |
[4] | Sida Lin, Lixia Meng, Jinlong Yuan, Changzhi Wu, An Li, Chongyang Liu, Jun Xie . Sequential adaptive switching time optimization technique for maximum hands-off control problems. Electronic Research Archive, 2024, 32(4): 2229-2250. doi: 10.3934/era.2024101 |
[5] | Ismail Ben Abdallah, Yassine Bouteraa, Saleh Mobayen, Omar Kahouli, Ali Aloui, Mouldi Ben Amara, Maher JEBALI . Fuzzy logic-based vehicle safety estimation using V2V communications and on-board embedded ROS-based architecture for safe traffic management system in hail city. Electronic Research Archive, 2023, 31(8): 5083-5103. doi: 10.3934/era.2023260 |
[6] | Jian Gong, Yuan Zhao, Jinde Cao, Wei Huang . Platoon-based collision-free control for connected and automated vehicles at non-signalized intersections. Electronic Research Archive, 2023, 31(4): 2149-2174. doi: 10.3934/era.2023111 |
[7] | Hao Li, Zhengwu Wang, Shuiwang Chen, Weiyao Xu, Lu Hu, Shuai Huang . Integrated optimization of planning and operation of a shared automated electric vehicle system considering the trip selection and opportunity cost. Electronic Research Archive, 2024, 32(1): 41-71. doi: 10.3934/era.2024003 |
[8] | Wenjie Wang, Suzhen Wen, Shen Gao, Pengyi Lin . A multi-objective dynamic vehicle routing optimization for fresh product distribution: A case study of Shenzhen. Electronic Research Archive, 2024, 32(4): 2897-2920. doi: 10.3934/era.2024132 |
[9] | Yineng Ouyang, Zhaotao Liang, Zhihui Ma, Lei Wang, Zhaohua Gong, Jun Xie, Kuikui Gao . A class of constrained optimal control problems arising in an immunotherapy cancer remission process. Electronic Research Archive, 2024, 32(10): 5868-5888. doi: 10.3934/era.2024271 |
[10] | Michael Barg, Amanda Mangum . Statistical analysis of numerical solutions to constrained phase separation problems. Electronic Research Archive, 2023, 31(1): 229-250. doi: 10.3934/era.2023012 |
The (2+1)-dimensional Chaffee-Infante equation (CIE) is a significant model of the ion-acoustic waves in plasma. The primary objective of this paper was to establish and examine closed-form soliton solutions to the CIE using the modified extended direct algebraic method (m-EDAM), a mathematical technique. By using a variable transformation to convert CIE into a nonlinear ordinary differential equation (NODE), which was then reduced to a system of nonlinear algebraic equations with the assumption of a closed-form solution, the strategic m-EDAM was implemented. When the resulting problem was solved using the Maple tool, many soliton solutions in the shapes of rational, exponential, trigonometric, and hyperbolic functions were produced. By using illustrated 3D and density plots to evaluate several soliton solutions for the provided definite values of the parameters, it was possible to determine if the soliton solutions produced for CIE are cuspon or kink solitons. Additionally, it has been shown that the m-EDAM is a robust, useful, and user-friendly instrument that provides extra generic wave solutions for nonlinear models in mathematical physics and engineering.
We consider the system of Hamilton-Jacobi equations
{λu1(x)+H1(Du1(x))+B1(u1(x),u2(x))=0 in Tn,λu2(x)+H2(Du2(x))+B2(u1(x),u2(x))=0 in Tn, | (1.1) |
where λ>0 is a given constant, the functions Hi:Rn→R and Bi:R2→R, with i=1,2, are given continuous functions, and Tn denotes the n-dimensional flat torus Rn/Zn.
In a recent paper [6], the authors have investigated the vanishing discount problem for a nonlinear monotone system of Hamilton-Jacobi equations
{λu1(x)+G1(x,Du1(x),u1(x),u2(x),…,um(x))=0 in Tn,λu1(x)+G1(x,Du1(x),u1(x),u2(x)⋮λum(x)+Gm(x,Dum(x),u1(x),u2(x),…,um(x))=0 in Tn, | (1.2) |
and established under some hypotheses on the Gi∈C(Tn×Rn×Rm) that, when uλ=(uλ,1,…,uλ,m)∈C(Tn)m denoting the (viscosity) solution of (1.2), the whole family {uλ}λ>0 converges in C(Tn)m to some u0∈C(Tn)m as λ→0+. The constant λ>0 in the above system is the so-called discount factor.
The hypotheses on the system are the convexity, coercivity, and monotonicity of the Gi as well as the solvability of (1.2), with λ=0. Here the convexity of Gi is meant that the functions Rn×Rm∋(p,u)↦Gi(x,p,u) are convex. We refer to [6] for the precise statement of the hypotheses.
Prior to work [6], there have been many contributions to the question about the whole family convergence (in other words, the full convergence) under the vanishing discount, which we refer to [1,3,4,6,8,9,10] and the references therein.
In the case of the scalar equation, B. Ziliotto [11] has recently shown an example of the Hamilton-Jacobi equation having non-convex Hamiltonian in the gradient variable for which the full convergence does not hold. In Ziliotto's approach, the first step is to find a system of two algebraic equations
{λu+f(u−v)=0,λv+g(v−u)=0, | (1.3) |
with two unknowns u,v∈R and with a parameter λ>0 as the discount factor, for which the solutions (uλ,vλ) stay bounded and fail to fully converge as λ→0+. Here, an "algebraic" equation is meant not to be a functional equation. The second step is to interpolate the two values uλ and vλ to get a function of x∈T1 which satisfies a scalar non-convex Hamilton-Jacobi equation in T1.
In the first step above, Ziliotto constructs f,g based on a game-theoretical and computational argument, and the formula for f,g is of the minimax type and not quite explicit. In [5], the author has reexamined the system given by Ziliotto, with a slight generality, as a counterexample for the full convergence in the vanishing discount.
Our purpose in this paper is to present a system (1.3), with an explicit formula for f,g, for which the solution (uλ,vλ) does not fully converge to a single point in R2. A straightforward consequence is that (1.1), with B1(u1,u2)=f(u1−u2) and B2(u1,u2)=g(u2−u1), has a solution given by
(uλ,1(x),uλ.2(x))=(uλ,vλ) for x∈Tn, |
under the assumption that Hi(x,0)=0 for all x∈Tn, and therefore, gives an example of a discounted system of Hamilton-Jacobi equations, the solution of which fails to satisfy the full convergence as the discount factor goes to zero.
The paper consists of two sections. This introduction is followed by Section 2, the final section, which is divided into three subsections. The main results are stated in the first subsection of Section 2, the functions f,g, the key elements of (1.3), are contstructed in the second subsection, and the final subsection provides the proof of the main results.
Our main focus is now the system
{λu+f(u−v)=0λv+g(v−u)=0, | (2.1) |
where f,g∈C(R,R) are nondecreasing functions, to be constructed, and λ>0 is a constant, to be sent to zero. Notice that (2.1) above is referred as (1.3) in the previous section.
We remark that, due to the monotonicity assumption on f,g, the mapping (u,v)↦(f(u−v),g(v−u)),R2→R2 is monotone. Recall that, by definition, a mapping (u,v)↦(B1(u,v),B2(u,v)),R2→R2 is monotone if, whenever (u1,v1),(u2,v2)∈R2 satisfy u1−u2≥v1−v2 (resp., v1−v2≥u1−u2), we have B1(u1,v1)≥B1(u2,v2) (resp., B2(u1,v1)≥B2(u2,v2)).
Our main results are stated as follows.
Theorem 1. There exist two increasing functions f,g∈C(R,R) having the properties (a)–(c):
(a) For any λ>0 there exists a unique solution (uλ,vλ)∈R2 to (2.1),
(b) the family of the solutions (uλ,vλ) to (2.1), with λ>0, is bounded in R2,
(c) the family {(uλ,vλ)}λ>0 does not converge as λ→0+.
It should be noted that, as mentioned in the introduction, the above theorem has been somewhat implicitly established by Ziliotto [11]. In this note, we are interested in a simple and easy approach to finding functions f,g having the properties (a)–(c) in Theorem 1.
The following is an immediate consequence of the above theorem.
Corollary 2. Let Hi∈C(Rn,R), i=1,2, satisfy H1(0)=H2(0)=0. Let f,g∈C(R,R) be the functions given by Theorem 1, and set B1(u1,u2)=f(u1−u2) and B2(u1,u2)=g(u2−u1) for all (u1,u2)∈R2. For any λ>0, let (uλ,1,uλ,2) be the (viscosity) solution of (1.1). Then, the functions uλ,i are constants, the family of the points (uλ,1,uλ,2) in R2 is bounded, and it does not converge as λ→0+.
Notice that the convexity of Hi in the above corollary is irrelevant, and, for example, one may take Hi(p)=|p|2 for i∈I, which are convex functions.
We remark that a claim similar to Corollary 2 is valid when one replaces Hi(p) by degenerate elliptic operators Fi(x,p,M) as far as Fi(x,0,0)=0, where M is the variable corresponding to the Hessian matrices of unknown functions. (See [2] for an overview on the viscosity solution approach to fully nonlinear degenerate elliptic equations.)
If f,g are given and (u,v)∈R2 is a solution of (2.1), then w:=u−v satisfies
λw+f(w)−g(−w)=0. | (2.2) |
Set
h(r)=f(r)−g(−r) for r∈R, | (2.3) |
which defines a continuous and nondecreasing function on R.
To build a triple of functions f,g,h, we need to find two of them in view of the relation (2.3). We begin by defining function h.
For this, we discuss a simple geometry on xy-plane as depicted in Figure 1 below. Fix 0<k1<k2. The line y=−12k2+k1(x+12) has slope k1 and crosses the lines x=−1 and y=k2x at P:=(−1,−12(k1+k2)) and Q:=(−12,−12k2), respectively, while the line y=k2x meets the lines x=−1 and x=−12 at R:=(−1,−k2) and Q=(−12,−12k2), respectively.
Choose k∗>0 so that 12(k1+k2)<k∗<k2. The line y=k∗x crosses the line y=−12k2+k1(x+12) at a point S:=(x∗,y∗) in the open line segment between the points P=(−12,−12(k1+k2)) and Q=(−12,−12k2). The line connecting R=(−1,−k2) and S=(x∗,y∗) can be represented by y=−k2+k+(x+1), with k+:=y∗+k2x∗+1>k2.
We set
ψ(x)={k2x for x∈(−∞,−1]∪[−1/2,∞),min{−k2+k+(x+1),−12k2+k1(x+12)} for x∈(−1,−12). |
It is clear that ψ∈C(R) and increasing on R. The building blocks of the graph y=ψ(x) are three lines whose slopes are k1<k2<k+. Hence, if x1>x2, then ψ(x1)−ψ(x2)≥k1(x1−x2), that is, the function x↦ψ(x)−k1x is nondecreasing on R.
Next, we set for j∈N,
ψj(x)=2−jψ(2jx) for x∈R. |
It is clear that for all j∈N, ψj∈C(R), the function x↦ψj(x)−k1x is nondecreasing on R, and
ψj(x){>k2x for all x∈(−2−j,−2−j−1),=k2x otherwise. |
We set
η(x)=maxj∈Nψj(x) for x∈R. |
It is clear that η∈C(R) and x↦η(x)−k1x is nondecreasing on R. Moreover, we see that
η(x)=k2x for all x∈(−∞,−12]∪[0,∞), |
and that if −2−j<x<−2−j−1 and j∈N,
η(x)=ψj(x)>k2x. |
Note that the point S=(x∗,y∗) is on the graph y=ψ(x) and, hence, that for any j∈N, the point (2−jx∗,2−jy∗) is on the graph y=η(x). Similarly, since the point S=(x∗,y∗) is on the graph y=k∗x and for any j∈N, the point (2−jx∗,2−jy∗) is on the graph y=k∗x. Also, for any j∈N, the point (−2−j,−k22−j) lies on the graphs y=η(x) and y=k2x.
Fix any d≥1 and define h∈C(R) by
h(x)=η(x−d). |
For the function h defined above, we consider the problem
λz+h(z)=0. | (2.4) |
Lemma 3. For any λ≥0, there exists a unique solution zλ∈R of (2.4).
Proof. Fix λ≥0. The function x↦h(x)+λx is increasing on R and satisfies
limx→∞(h(x)+λx)=∞ and limx→−∞(h(x)+λx)=−∞. |
Hence, there is a unique solution of (2.4).
For any λ≥0, we denote by zλ the unique solution of (2.4). Since h(d)=0, it is clear that z0=d.
For later use, observe that if λ>0, k>0, and (z,w)∈R2 is the point of the intersection of two lines y=−λx and y=k(x−d), then w=−λz=k(z−d) and
z=kdk+λ. | (2.5) |
Lemma 4. There are sequences {μj} and {νj} of positive numbers converging to zero such that
zμj=k2dk2+μj and zνj=k∗dk∗+νj. |
Proof. Let j∈N. Since (−2−j,−k22−j) is on the intersection of the graphs y=k2x and y=η(x), it follows that (−2−j+d,−k22−j) is on the intersection of the graphs y=k2(x−d) and y=h(x). Set
μj=k22−jd−2−j, | (2.6) |
and note that μj>0 and that
−μj(d−2−j)=−k22−j, |
which says that the point (d−2−j,−k22−j) is on the line y=−μjx. Combining the above with
−k22−j=h(d−2−j) |
shows that d−2−j is the unique solution of (2.4). Also, since (d−2−j,−μj(d−2−j))=(d−2−j,−k22−j) is on the line y=k2(x−d), we find by (2.5) that
zμj=k2dk2+μj. |
Similarly, since (2−jx∗,2−jy∗) is on the intersection of the graphs y=k∗x and y=η(x), we deduce that if we set
νj:=−2−jy∗d+2−jx∗=2−j|y∗|d−2−j|x∗|, | (2.7) |
then
zνj=k∗dk∗+νj. |
It is obvious by (2.6) and (2.7) that the sequences {μj}j∈N and {νj}j∈N are decreasing and converge to zero.
We fix k0∈(0,k1) and define f,g∈C(R) by f(x)=k0(x−d) and
g(x)=f(−x)−h(−x). |
It is easily checked that g(x)−(k1−k0)x is nondecreasing on R, which implies that g is increasing on R, and that h(x)=f(x)−g(−x) for all x∈R. We note that
f(d)=h(d)=g(−d)=0. | (2.8) |
We fix f,g,h as above, and consider the system (2.1).
Lemma 5. Let λ>0. There exists a unique solution of (2.1).
The validity of the above lemma is well-known, but for the reader's convenience, we provide a proof of the lemma above.
Proof. By choice of f,g, the functions f,g are nondecreasing on R. We show first the comparison claim: if (u1,v1),(u2,v2)∈R2 satisfy
λu1+f(u1−v1)≤0,λv1+g(v1−u1)≤0, | (2.9) |
λu2+f(u2−v2)≥0,λv2+g(v2−u2)≥0, | (2.10) |
then u1≤u2 and v1≤v2. Indeed, contrary to this, we suppose that max{u1−u2,v1−v2}>0. For instance, if max{u1−u2,v1−v2}=u1−u2, then we have u1−v1≥u2−v2 and u1>u2, and moreover
0≥λu1+f(u1−v1)≥λu1+f(u2−v2)>λu2+f(u2−v2), |
yielding a contradiction. The other case when max{u1−u2,v1−v2}=v1−v2, we find a contradiction, 0>λv2+g(v2−u2), proving the comparison.
From the comparison claim, the uniqueness of the solutions of (2.1) follows readily.
Next, we may choose a constant C>0 so large that (u1,v1)=(−C,−C) and (u2,v2)=(C,C) satisfy (2.9) and (2.10), respectively. We write S for the set of all (u1,u2)∈R2 such that (2.9) hold. Note that (−C,−C)∈S and that for any (u,v)∈S, u≤C and v≤C. We set
u∗=sup{u:(u,v)∈S for some v},v∗=sup{v:(u,v)∈S for some u}. |
It follows that −C≤u∗,v∗≤C. We can choose sequences
{(u1n,v1n)}n∈N,{(u2n,v2n)}n∈N⊂S |
such that {u1n},{v2n} are nondecreasing,
limn→∞u1n=u∗ and limn→∞v2n=v∗. |
Observe that for all n∈N, u2n≤u∗, v1n≤v∗, and
0≥λu1n+f(u1n−v1n)≥λu1n+f(u1n−v∗), |
which yields, in the limit as n→∞,
0≥λu∗+f(u∗−v∗). |
Similarly, we obtain 0≥λv∗+g(v∗−u∗). Hence, we find that (u∗,v∗)∈S.
We claim that (u∗,v∗) is a solution of (2.1). Otherwise, we have
0>λu∗+f(u∗−v∗) or 0>λv∗+g(v∗−u∗). |
For instance, if the former of the above inequalities holds, we can choose ε>0, by the continuity of f, so that
0>λ(u∗+ε)+f(u∗+ε−v∗). |
Since (u∗,v∗)∈S, we have
0≥λv∗+g(v∗−u∗)≥λv∗+g(v∗−u∗−ε). |
Accordingly, we find that (u∗+ε,v∗)∈S, which contradicts the definition of u∗. Similarly, if 0>λv∗+g(v∗−u∗), then we can choose δ>0 so that (u∗,v∗+δ)∈S, which is a contradiction. Thus, we conclude that (u∗,v∗) is a solution of (2.1).
Theorem 6. For any λ>0, let (uλ,vλ) denote the unique solution of (2.1). Let {μj},{νj} be the sequences of positive numbers from Lemma 2.4. Then
limj→∞uμj=k0dk2 and limj→∞uνj=k0dk∗. |
In particular,
lim infλ→0uλ≤k0dk2<k0dk∗≤lim supλ→0uλ. |
With our choice of f,g, the family of solutions (uλ,vλ) of (2.1), with λ>0, does not converge as λ→0.
Proof. If we set zλ=uλ−vλ, then zλ satisfies (2.4). By Lemma 4, we find that
zμj=k2dk2+μj and zνj=k∗dk∗+νj. |
Since uλ satisfies
0=λuλ+f(zλ)=λuλ+k0(zλ−d), |
we find that
uμj=−k0(zμj−d)μj=−k0dμj(k2k2+μj−1)=−k0dμj−μjk2+μj=k0dk2+μj, |
which shows that
limj→∞uμj=k0dk2. |
A parallel computation shows that
limj→∞uνj=k0dk∗. |
Recalling that 0<k∗<k2, we conclude that
lim infλ→0uλ≤k0dk2<k0dk∗≤lim supλ→0uλ. |
We remark that, since
limλ→0zλ=d and vλ=uλ−zλ, |
limj→∞vμj=k0dk2−d and limj→∞vνj=k0dk∗−d. |
We give the proof of Theorem 1.
Proof of Theorem 1. Assertions (a) and (c) are consequences of Lemma 5 and Theorem 6, respectively.
Recall (2.8). That is, we have f(d)=h(d)=g(−d)=0. Setting (u2,v2)=(d,0), we compute that for any λ>0,
λu2+f(u2−v2)>f(d)=0 and λv2+g(v2−u2)=g(−d)=0. |
By the comparison claim, proved in the proof of Lemma 5, we find that uλ≤d and vλ≤0 for any λ>0. Similarly, setting (u1,v1)=(0,−d), we find that for any λ>0,
λu1+f(u1−v1)=f(d)=0 and λv1+g(v1−u1)≤g(v1−u1)=g(−d)=0, |
which shows by the comparison claim that uλ≥0 and vλ≥−d for any λ>0. Thus, the sequence {(uλ,vλ)}λ>0 is bounded in R2, which proves assertion (b).
Proof of Corollary 2. For any λ>0, let (uλ,vλ)∈R2 be the unique solution of (2.1). Since H1(0)=H2(0)=0, it is clear that the constant function (uλ,1(x),uλ,2(x)):=(uλ,vλ) is a classical solution of (1.1). By a classical uniqueness result (see, for instance, [7,Theorem 4.7]), (uλ,1,uλ,2) is a unique viscosity solution of (1.1). The rest of the claims in Corollary 2 is an immediate consequence of Theorem 1.
Some remarks are in order. (ⅰ) Following [11], we may use Theorem 6 as the primary cornerstone for building a scalar Hamilton-Jacobi equation, for which the vanishing discount problem fails to have the full convergence as the discount factor goes to zero.
(ⅱ) In the construction of the functions f,g∈C(R,R) in Theorem 6, the author has chosen d to satisfy d≥1, but, in fact, one may choose any d>0. In the proof, the core step is to find the function h(x)=f(x)−g(−x), with the properties: (a) the function x↦h(x)−εx is nondecreasing on R for some ε>0 and (b) the curve y=h(x), with x<d, meets the lines y=p(x−d) and y=q(x−d), respectively, at Pj and Qj for all j∈N, where p,q,d are positive constants such that ε<p<q, and the sequences {Pj}j∈N,{Qj}j∈N converge to the point (d,0). Obviously, such a function h is never left-differentiable at x=d nor convex in any neighborhood of x=d. Because of this, it seems difficult to select f,g∈C(R,R) in Theorem 1, both smooth everywhere. In the proof of Theorem 6, we have chosen ε=k0, p=k∗, q=k2, Pj=(uνj,k∗(uνj−d)), and Qj=(uμj,k2(uμj−d))
Another possible choice of h among many other ways is the following. Define first η:R→R by η(x)=x(sin(log|x|)+2) if x≠0, and η(0)=0 (see Figure 2). Fix d>0 and set h(x)=η(x−d) for x∈R. we remark that η∈C∞(R∖{0}) and h∈C∞(R∖{d}). Note that if x≠0,
η′(x)=sin(log|x|)+cos(log|x|)+2∈[2−√2,2+√2], |
and that if we set xj=−exp(−2πj) and ξj=−exp(−2πj+π2), j∈N, then
η(xj)=2xj and η(ξj)=3ξj. |
The points Pj:=(xj+d,2xj) are on the intersection of two curves y=h(x) and y=2(x−d), while the points Qj:=(d+ξj,3ξj) are on the intersection of y=h(x) and y=3(x−d). Moreover, limPj=limQj=(d,0).
The author would like to thank the anonymous referees for their careful reading and useful suggestions. He was supported in part by the JSPS Grants KAKENHI No. 16H03948, No. 20K03688, No. 20H01817, and No. 21H00717.
The author declares no conflict of interest.
[1] |
A. Seadawy, A. Sayed, Soliton solutions of cubic-quintic nonlinear Schrödinger and variant Boussinesq equations by the first integral method, Filomat, 31 (2017), 4199–4208. http://dx.doi.org/10.2298/FIL1713199S doi: 10.2298/FIL1713199S
![]() |
[2] |
H. Yasmin, A. Alshehry, A. Ganie, A. Mahnashi, R. Shah, Perturbed Gerdjikov-Ivanov equation: soliton solutions via Backlund transformation, Optik, 298 (2024), 171576. http://dx.doi.org/10.1016/j.ijleo.2023.171576 doi: 10.1016/j.ijleo.2023.171576
![]() |
[3] |
A. Jawad, M. Petkovi, A. Biswas, Modified simple equation method for nonlinear evolution equations, Appl. Math. Comput., 217 (2010), 869–877. http://dx.doi.org/10.1016/j.amc.2010.06.030 doi: 10.1016/j.amc.2010.06.030
![]() |
[4] |
H. Khan, Shoaib, D. Baleanu, P. Kumam, J. Al-Zaidy, Families of travelling waves solutions for fractional-order extended shallow water wave equations, using an innovative analytical method, IEEE Access, 7 (2019), 107523–107532. http://dx.doi.org/10.1109/ACCESS.2019.2933188 doi: 10.1109/ACCESS.2019.2933188
![]() |
[5] |
H. Khan, S. Barak, P. Kumam, M. Arif, Analytical solutions of fractional Klein-Gordon and gas dynamics equations, via the (G'/G)-expansion method, Symmetry, 11 (2019), 566. http://dx.doi.org/10.3390/sym11040566 doi: 10.3390/sym11040566
![]() |
[6] |
H. Khan, R. Shah, J. Gomez-Aguilar, Shoaib, D. Baleanu, P. Kumam, Travelling waves solution for fractional-order biological population model, Math. Model. Nat. Phenom., 16 (2021), 32. http://dx.doi.org/10.1051/mmnp/2021016 doi: 10.1051/mmnp/2021016
![]() |
[7] |
K. Nisar, O. Ilhan, S. Abdulazeez, J. Manafian, S. Mohammed, M. Osman, Novel multiple soliton solutions for some nonlinear PDEs via multiple Exp-function method, Results Phys., 21 (2021), 103769. http://dx.doi.org/10.1016/j.rinp.2020.103769 doi: 10.1016/j.rinp.2020.103769
![]() |
[8] |
E. Yusufolu, A. Bekir, Solitons and periodic solutions of coupled nonlinear evolution equations by using the sine-cosine method, Int. J. Comput. Math., 83 (2006), 915–924. http://dx.doi.org/10.1080/00207160601138756 doi: 10.1080/00207160601138756
![]() |
[9] |
E. Fan, H. Zhang, A note on the homogeneous balance method, Phys. Lett. A, 246 (1998), 403–406. http://dx.doi.org/10.1016/S0375-9601(98)00547-7 doi: 10.1016/S0375-9601(98)00547-7
![]() |
[10] |
Z. Rahman, M. Zulfikar Ali, H. Roshid, Closed-form soliton solutions of three nonlinear fractional models through proposed improved Kudryashov method, Chinese Phys. B, 30 (2021), 050202. http://dx.doi.org/10.1088/1674-1056/abd165 doi: 10.1088/1674-1056/abd165
![]() |
[11] |
M. Ozisik, A. Secer, M. Bayram, On solitary wave solutions for the extended nonlinear Schrödinger equation via the modified F-expansion method, Opt. Quant. Electron., 55 (2023), 215. http://dx.doi.org/10.1007/s11082-022-04476-z doi: 10.1007/s11082-022-04476-z
![]() |
[12] |
Z. Lan, S. Dong, B. Gao, Y. Shen, Bilinear form and soliton solutions for a higher order wave equation, Appl. Math. Lett., 134 (2022), 108340. http://dx.doi.org/10.1016/j.aml.2022.108340 doi: 10.1016/j.aml.2022.108340
![]() |
[13] |
H. Hussein, H. Ahmed, W. Alexan, Analytical soliton solutions for cubic-quartic perturbations of the Lakshmanan-Porsezian-Daniel equation using the modified extended tanh function method, Ain Shams Eng. J., 15 (2024), 102513. http://dx.doi.org/10.1016/j.asej.2023.102513 doi: 10.1016/j.asej.2023.102513
![]() |
[14] |
G. Akram, M. Sadaf, S. Arshed, F. Sameen, Bright, dark, kink, singular and periodic soliton solutions of Lakshmanan-Porsezian-Daniel model by generalized projective Riccati equations method, Optik, 241 (2021), 167051. http://dx.doi.org/10.1016/j.ijleo.2021.167051 doi: 10.1016/j.ijleo.2021.167051
![]() |
[15] |
L. Li, E. Li, M. Wang, The (G'/G, 1/G)-expansion method and its application to travelling wave solutions of the Zakharov equations, Appl. Math. J. Chin. Univ., 25 (2010), 454–462. http://dx.doi.org/10.1007/s11766-010-2128-x doi: 10.1007/s11766-010-2128-x
![]() |
[16] |
X. Yang, Z. Deng, Y. Wei, A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application, Adv. Differ. Equ., 2015 (2015), 117. http://dx.doi.org/10.1186/s13662-015-0452-4 doi: 10.1186/s13662-015-0452-4
![]() |
[17] |
S. Dai, Poincare-Lighthill-Kuo method and symbolic computation, Appl. Math. Mech., 22 (2001), 261–269. http://dx.doi.org/10.1007/BF02437964 doi: 10.1007/BF02437964
![]() |
[18] |
H. Durur, A. Kurt, O. Tasbozan, New travelling wave solutions for KdV6 equation using sub equation method, Applied Mathematics and Nonlinear Sciences, 5 (2020), 455–460. http://dx.doi.org/10.2478/amns.2020.1.00043 doi: 10.2478/amns.2020.1.00043
![]() |
[19] |
S. Bibi, S. Mohyud-Din, U. Khan, N. Ahmed, Khater method for nonlinear Sharma Tasso-Olever (STO) equation of fractional order, Results Phys., 7 (2017), 4440–4450. http://dx.doi.org/10.1016/j.rinp.2017.11.008 doi: 10.1016/j.rinp.2017.11.008
![]() |
[20] |
H. Ur Rehman, R. Akber, A. Wazwaz, H. Alshehri, M. Osman, Analysis of Brownian motion in stochastic Schrödinger wave equation using Sardar sub-equation method, Optik, 289 (2023), 171305. http://dx.doi.org/10.1016/j.ijleo.2023.171305 doi: 10.1016/j.ijleo.2023.171305
![]() |
[21] |
M. Alqhtani, K. Saad, R. Shah, W. Hamanah, Discovering novel soliton solutions for (3+1)-modified fractional Zakharov-Kuznetsov equation in electrical engineering through an analytical approach, Opt. Quant. Electron., 55 (2023), 1149. http://dx.doi.org/10.1007/s11082-023-05407-2 doi: 10.1007/s11082-023-05407-2
![]() |
[22] |
M. Al-Sawalha, S. Mukhtar, R. Shah, A. Ganie, K. Moaddy, Solitary waves propagation analysis in nonlinear dynamical system of fractional coupled Boussinesq-Whitham-Broer-Kaup equation, Fractal Fract., 7 (2023), 889. http://dx.doi.org/10.3390/fractalfract7120889 doi: 10.3390/fractalfract7120889
![]() |
[23] |
H. Yasmin, A. Alshehry, A. Ganie, A. Shafee, R. Shah, Noise effect on soliton phenomena in fractional stochastic Kraenkel-Manna-Merle system arising in ferromagnetic materials, Sci. Rep., 14 (2024), 1810. http://dx.doi.org/10.1038/s41598-024-52211-3 doi: 10.1038/s41598-024-52211-3
![]() |
[24] |
H. Yasmin, N. Aljahdaly, A. Saeed, R. Shah, Investigating symmetric soliton solutions for the fractional coupled Konno-Onno system using improved versions of a novel analytical technique, Mathematics, 11 (2023), 2686. http://dx.doi.org/10.3390/math11122686 doi: 10.3390/math11122686
![]() |
[25] |
S. El-Tantawy, H. Alyousef, R. Matoog, R. Shah, On the optical soliton solutions to the fractional complex structured (1+1)-dimensional perturbed Gerdjikov-Ivanov equation, Phys. Scr., 99 (2024), 035249. http://dx.doi.org/10.1088/1402-4896/ad241b doi: 10.1088/1402-4896/ad241b
![]() |
[26] |
L. Li, C. Duan, F. Yu, An improved Hirota bilinear method and new application for a nonlocal integrable complex modified Korteweg-de Vries (MKdV) equation, Phys. Lett. A, 383 (2019), 1578–1582. http://dx.doi.org/10.1016/j.physleta.2019.02.031 doi: 10.1016/j.physleta.2019.02.031
![]() |
[27] |
T. Han, Y. Jiang, Bifurcation, chaotic pattern and traveling wave solutions for the fractional Bogoyavlenskii equation with multiplicative noise, Phys. Scr., 99 (2024), 035207. http://dx.doi.org/10.1088/1402-4896/ad21ca doi: 10.1088/1402-4896/ad21ca
![]() |
[28] |
T. Han, Y. Jiang, J. Lyu, Chaotic behavior and optical soliton for the concatenated model arising in optical communication, Results Phys., 58 (2024), 107467. http://dx.doi.org/10.1016/j.rinp.2024.107467 doi: 10.1016/j.rinp.2024.107467
![]() |
[29] |
R. Ali, E. Tag-eldin, A comparative analysis of generalized and extended (G'/G)-Expansion methods for travelling wave solutions of fractional Maccari's system with complex structure, Alex. Eng. J., 79 (2023), 508–530. http://dx.doi.org/10.1016/j.aej.2023.08.007 doi: 10.1016/j.aej.2023.08.007
![]() |
[30] |
R. Ali, A. Hendy, M. Ali, A. Hassan, F. Awwad, E. Ismail, Exploring propagating soliton solutions for the fractional Kudryashov-Sinelshchikov equation in a mixture of liquid-gas bubbles under the consideration of heat transfer and viscosity, Fractal Fract., 7 (2023), 773. http://dx.doi.org/10.3390/fractalfract7110773 doi: 10.3390/fractalfract7110773
![]() |
[31] |
Y. Shi, C. Song, Y. Chen, H. Rao, T. Yang, Complex standard eigenvalue problem derivative computation for Laminar-Turbulent transition prediction, AIAA J., 61 (2023), 3404–3418. http://dx.doi.org/10.2514/1.J062212 doi: 10.2514/1.J062212
![]() |
[32] |
X. Cai, R. Tang, H. Zhou, Q. Li, S. Ma, D. Wang, et al., Dynamically controlling terahertz wavefronts with cascaded metasurfaces, Advanced Photonics, 3 (2021), 036003. http://dx.doi.org/10.1117/1.AP.3.3.036003 doi: 10.1117/1.AP.3.3.036003
![]() |
[33] |
A. She, L. Wang, Y. Peng, J. Li, Structural reliability analysis based on improved wolf pack algorithm AK-SS, Structures, 57 (2023), 105289. http://dx.doi.org/10.1016/j.istruc.2023.105289 doi: 10.1016/j.istruc.2023.105289
![]() |
[34] |
T. Ali, Z. Xiao, H. Jiang, B. Li, A class of digital integrators based on trigonometric quadrature rules, IEEE T. Ind. Electron., 71 (2024), 6128–6138. http://dx.doi.org/10.1109/TIE.2023.3290247 doi: 10.1109/TIE.2023.3290247
![]() |
[35] |
J. Dong, J. Hu, Y. Zhao, Y. Peng, Opinion formation analysis for expressed and private opinions (EPOs) models: reasoning private opinions from behaviors in group decision-making systems, Expert Syst. Appl., 236 (2024), 121292. http://dx.doi.org/10.1016/j.eswa.2023.121292 doi: 10.1016/j.eswa.2023.121292
![]() |
[36] |
C. Zhu, M. Al-Dossari, S. Rezapour, S. Shateyi, On the exact soliton solutions and different wave structures to the modified Schrödinger's equation, Results Phys., 54 (2023), 107037. http://dx.doi.org/10.1016/j.rinp.2023.107037 doi: 10.1016/j.rinp.2023.107037
![]() |
[37] |
C. Zhu, M. Al-Dossari, N. El-Gawaad, S. Alsallami, S. Shateyi, Uncovering diverse soliton solutions in the modified Schrödinger's equation via innovative approaches, Results Phys., 54 (2023), 107100. http://dx.doi.org/10.1016/j.rinp.2023.107100 doi: 10.1016/j.rinp.2023.107100
![]() |
[38] |
C. Zhu, S. Abdallah, S. Rezapour, S. Shateyi, On new diverse variety analytical optical soliton solutions to the perturbed nonlinear Schrödinger equation, Results Phys., 54 (2023), 107046. http://dx.doi.org/10.1016/j.rinp.2023.107046 doi: 10.1016/j.rinp.2023.107046
![]() |
[39] |
C. Zhu, S. Idris, M. Abdalla, S. Rezapour, S. Shateyi, B. Gunay, Analytical study of nonlinear models using a modified Schrödinger's equation and logarithmic transformation, Results Phys., 55 (2023), 107183. http://dx.doi.org/10.1016/j.rinp.2023.107183 doi: 10.1016/j.rinp.2023.107183
![]() |
[40] |
S. Lin, J. Zhang, C. Qiu, Asymptotic analysis for one-stage stochastic linear complementarity problems and applications, Mathematics, 11 (2023), 482. http://dx.doi.org/10.3390/math11020482 doi: 10.3390/math11020482
![]() |
[41] |
Y. Kai, Z. Yin, On the Gaussian traveling wave solution to a special kind of Schrödinger equation with logarithmic nonlinearity, Mod. Phys. Lett. B, 36 (2022), 2150543. http://dx.doi.org/10.1142/S0217984921505436 doi: 10.1142/S0217984921505436
![]() |
[42] |
Y. Kai, J. Ji, Z. Yin, Study of the generalization of regularized long-wave equation, Nonlinear Dyn., 107 (2022), 2745–2752. http://dx.doi.org/10.1007/s11071-021-07115-6 doi: 10.1007/s11071-021-07115-6
![]() |
[43] |
Y. Kai, Z. Yin, Linear structure and soliton molecules of Sharma-Tasso-Olver-Burgers equation, Phys. Lett. A, 452 (2022), 128430. http://dx.doi.org/10.1016/j.physleta.2022.128430 doi: 10.1016/j.physleta.2022.128430
![]() |
[44] |
S. Noor, A. Alshehry, A. Khan, I. Khan, Analysis of soliton phenomena in (2+1)-dimensional Nizhnik-Novikov-Veselov model via a modified analytical technique, AIMS Mathematics, 8 (2023), 28120–28142. http://dx.doi.org/10.3934/math.20231439 doi: 10.3934/math.20231439
![]() |
[45] |
I. Ullah, K. Shah, T. Abdeljawad, Study of traveling soliton and fronts phenomena in fractional Kolmogorov-Petrovskii-Piskunov equation, Phys. Scr., 99 (2024), 055259. http://dx.doi.org/10.1088/1402-4896/ad3c7e doi: 10.1088/1402-4896/ad3c7e
![]() |
[46] |
M. Bilal, J. Iqbal, R. Ali, F. Awwad, E. Ismail, Exploring families of solitary wave solutions for the fractional coupled higgs system using modified extended direct algebraic method, Fractal Fract., 7 (2023), 653. http://dx.doi.org/10.3390/fractalfract7090653 doi: 10.3390/fractalfract7090653
![]() |
[47] |
R. Ali, Z. Zhang, H. Ahmad, Exploring soliton solutions in nonlinear spatiotemporal fractional quantum mechanics equations: an analytical study, Opt. Quant. Electron., 56 (2024), 838. http://dx.doi.org/10.1007/s11082-024-06370-2 doi: 10.1007/s11082-024-06370-2
![]() |
[48] |
M. Akbar, N. Ali, J. Hussain, Optical soliton solutions to the (2+1)-dimensional Chaffee-Infante equation and the dimensionless form of the Zakharov equation, Adv. Differ. Equ., 2019 (2019), 446. http://dx.doi.org/10.1186/s13662-019-2377-9 doi: 10.1186/s13662-019-2377-9
![]() |
[49] |
R. Sakthivel, C. Chun, New soliton solutions of Chaffee-Infante equations using the exp-function method, Z. Naturforsch. A, 65 (2010), 197–202. http://dx.doi.org/10.1515/zna-2010-0307 doi: 10.1515/zna-2010-0307
![]() |
[50] |
T. Sulaiman, A. Yusuf, M. Alquran, Dynamics of lump solutions to the variable coefficients (2+1)-dimensional Burger's and Chaffee-infante equations, J. Geom. Phys., 168 (2021), 104315. http://dx.doi.org/10.1016/j.geomphys.2021.104315 doi: 10.1016/j.geomphys.2021.104315
![]() |
[51] |
S. Demiray, U. Bayrakcı, Construction of soliton solutions for Chaffee-Infante equation, AKU J. Sci. Eng., 21 (2021), 1046–1051. http://dx.doi.org/10.35414/akufemubid.946217 doi: 10.35414/akufemubid.946217
![]() |
[52] |
A. Seadawy, A. Ali, A. Altalbe, A. Bekir, Exact solutions of the (3+1)-generalized fractional nonlinear wave equation with gas bubbles, Sci. Rep., 14 (2024), 1862. http://dx.doi.org/10.1038/s41598-024-52249-3 doi: 10.1038/s41598-024-52249-3
![]() |
1. | Yuandong Chen, Jinhao Pang, Yuchen Gou, Zhiming Lin, Shaofeng Zheng, Dewang Chen, Research on the A* Algorithm for Automatic Guided Vehicles in Large-Scale Maps, 2024, 14, 2076-3417, 10097, 10.3390/app142210097 |