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Abstract: The (2+1)-dimensional Chaffee-Infante equation (CIE) is a significant model of the ion-
acoustic waves in plasma. The primary objective of this paper was to establish and examine closed-
form soliton solutions to the CIE using the modified extended direct algebraic method (m-EDAM), a
mathematical technique. By using a variable transformation to convert CIE into a nonlinear ordinary
differential equation (NODE), which was then reduced to a system of nonlinear algebraic equations
with the assumption of a closed-form solution, the strategic m-EDAM was implemented. When the
resulting problem was solved using the Maple tool, many soliton solutions in the shapes of rational,
exponential, trigonometric, and hyperbolic functions were produced. By using illustrated 3D and
density plots to evaluate several soliton solutions for the provided definite values of the parameters,
it was possible to determine if the soliton solutions produced for CIE are cuspon or kink solitons.
Additionally, it has been shown that the m-EDAM is a robust, useful, and user-friendly instrument that
provides extra generic wave solutions for nonlinear models in mathematical physics and engineering.
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1. Introduction

The intriguing quality of nonlinearity in nature has led many scientists to view nonlinear science
as the most significant area of research for a fundamental understanding of nature. The study of a
variety of classes of NODEs and nonlinear partial differential equations (NPDEs) is crucial to the
mathematical modelling of complex processes that vary over time. These models come from a wide
range of disciplines, including optical fibres, economics, solid state physics, plasma physics, infectious
disease epidemiology, elasticity, neural networks, and population ecology. Due to such applications,
the examination of soliton solutions of the before stated phenomena has been an exciting and extremely
dynamic topic of research for the past several decades, with the related issue of the construction of
closed-form wave solutions to a broad class of nonlinear differential equations, particularlyNPDEs.
For such situations, closed-form soliton solutions offer improved internal information. Thus, a great
deal of work has been done by mathematicians and physical scientists to obtain closed-form soliton
solutions of such NPDEs. A number of effective and powerful methods have been developed,
including the first integral method [1], Bäcklund transformation method [2], the modified simple
equation method [3], the (G′/G)-expansion method [4–6], the exp-function method [7], the sine-
cosine method [8], the homogeneous balance method [9], the modified Kudryashov method [10], the
F-expansion method [11], the bilinear method [12], the tanh-function method [13], the projective
Riccit equation method [14], and the (G′/G, 1/G)-expansion method [15] Riccati-Bernoulli Sub-
ODE [16], Poincaré-Lighthill-Kuo method [17], sub-equation method [18], Khater method [19],
Sardar sub-equation method [20], EDAM [21–25], Hirota bilinear method [26], planar dynamic
system method [27] and Bifurcation analysis method [28], among others [29, 30]. The computation
of complex standard eigenvalue problems for laminar-turbulent transition prediction, while the
investigates dynamically controlling terahertz wavefronts. In the third reference, structural reliability
analysis is performed using an improved wolf pack algorithm, while the fourth reference introduces a
class of digital integrators based on trigonometric quadrature rules [31–33]. Lastly, the fifth reference
focuses on opinion formation analysis in group decision-making systems. These references collectively
showcase the breadth and depth of research across various domains, highlighting the importance of
interdisciplinary approaches in addressing complex scientific and engineering challenges [34, 35].

One of the most significant, straightforward, and efficient algebraic techniques in the
aforementioned analytical methods for obtaining soliton solutions to NPDEs is the m-EDAM. The
strategic m-EDAM comprises converting CIE into a NODE by variable transformation, which is then
reduced to a set of nonlinear algebraic equations with the assumption of a closed-form solution [36–38].
Many soliton solutions in terms of exponential, rational, trigonometric, and hyperbolic functions are
produced when the resultant system is solved using the Maple tool. A soliton is a single, self-
reinforcing wave packet that moves across a medium without altering its shape or velocity. Since
soliton solutions to nonlinear fractional partial differential equations (NFPDEs) provide a higher level

AIMS Mathematics Volume 9, Issue 6, 16666–16686.



16668

of detail and coverage than traditional solutions, their study is still important from an academic
standpoint [39–41]. Their resilience and fermion stability make them valuable in many areas of
engineering and science. They make it possible for nonlinear systems to maintain long-distance
coherence and convey information efficiently [42, 43].

Numerous researchers have used the proposed m-EDAM to construct a new plethora of soliton
solutions for many NPDEs andNFPDEs. For example, Saima et al. in [44] constructed soliton
solutions for the (2+1)-dimensional Nizhnik-Novikov-Veselov model (NNVM) using a novel variant
of m-EDAM called r+mEDAM. Ikram et al. employed the suggested mEDAM to analyse front events
and solitons in the fractional Kolmogorov-Petrovskii-Piskunov equation [45]. Bilal et al. explored
the soliton phenomena in the nonlinear spatiotemporal fractional Higgs system analytically, using an
improved version of the ground-breaking analytical technique m-EDAM [46]. Lastly, Rashid et al.
investigated soliton solutions in fractional quantum mechanical equations of nonlinear systems using
the effective m-EDAM [47]. Overall, the m-EDAM research revealed that it is a reliable, practical, and
easy-to-use tool that offers more general wave solutions for nonlinear models in mathematical physics
and engineering.

Motivated by the ongoing research on soliton solutions, this research aims to extract and analyse
soliton solutions for (2+1)-dimensional CIE using the m-EDAM. This model is articulated as [48]:

ztx + (λz3 − zxx − λz)x + σzyy = 0, (1.1)

where z = z(x, y, t), σ is the degradation coefficient, while λ is the diffusion coefficient. In a physical
environment, the diffusion of a gas in a homogeneous medium is a significant phenomenon, and the CIE
offers a helpful model to investigate such phenomena. One famous response to the Duffing equation in
the physical sciences is the (2+1)-dimensional CIE [49].

Numerous scholars have addressed the CIE by employing various analytical approaches. Using the
Hirota bilinear approach, for example, Sualiman et al. produced lump soliton solutions for CIE with
variable coefficients [50]. To derive the kink and cuspon soliton solutions for CIE, Akbar et al. used
the first integral equation in [48]. Similarly, a number of new generalised solitonary solutions for the
CIE with unique physical structures have been constructed by Sakthivel and Chun [49] using the exp-
function method. Lastly, Demiray and Bayrakci created soliton solutions for CIE in [51] by applying
the sine-Gordon expansion approach. However, in this study, we aim to address CIE to construct
soliton solutions for it using m-EDAM. Our study reveals that the soliton solutions obtained for CIE
are either cuspon and kink soliton solutions, such as dark kink, bright kink, and bright-dark kink. A
kink soliton is a kind of solitary wave that is distinguished by an abrupt change or discontinuity in
the field or variable it represents. It is also referred to as a topological soliton or domain wall. Kink
solitons usually occur in systems that experience a phase transition of a scalar field. Conversely, a
cuspon soliton, also known as a cusped soliton, is a different kind of solitary wave that has a cusp, or
sharp peak, at the crest. It is a solution to a specific class of nonlinear wave equations in which the
propagating solitary wave keeps its shape.

The format of this article is as follows: Section 1 provides an introduction. Section 2 presents the
operational methodology of m-EDAM. In Section 3, we build some new families of soliton solutions
for CIE, and in Section 4, several illustrations and a graphical description are shown and analysed.
Finally, Section 5 provides the conclusion.
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2. The operational procedure of m-EDAM

We describe the operating methods of the m-EDAM in this portion of the paper, focusing on
addressing the subsequent general NPDE:

R(z, zt, zy1 , zy2 , zzy1 , . . .) = 0, (2.1)

where z = z(t, y1, y2, y3, . . . , y j).
The strategy taken to solve Eq (2.1) is given as follows:

(1). Commencing with a variable transformation of the framework z(t, y1, y2, y3, . . . , y j) = Z(ϑ), where
ϑ can be stated in a number of ways, Eq (2.1) proceeds through a transformation, resulting in the
post-NODE:

Q(Z,Z′Z,Z′, . . . ) = 0, (2.2)

where Z′ = dZ
dϑ . On some occasions, the NODE becomes vulnerable to the homogeneous balancing

principle due to the integration of Eq (2.2).
(2). Next, we suggest a series-based solution to the NODE in Eq (2.1) using the Riccati ODE, which
is as follows:

Z(ϑ) =

N∑
l=−N

ρl(ζ(ϑ))l. (2.3)

In this context, ρl(l = −N, ...,N) denotes the unknown parameters, and ζ(ϑ) is the solution to the
first-order Riccati ODE stated as:

ζ′(ϑ) = R(ζ(ϑ))2 + Qζ(ϑ) + P, (2.4)

where Q,R, and P are invariables.
(3). Applying a homogeneous balancing strategy to Eq (2.2) that involves balancing the greatest
nonlinear component and the highest-order derivative will yield the positive integer N utilised in (2.3).
(4). Following that, we place (2.3) into (2.2) or the equation that arises from integrating (2.2),
organising terms ζ(ϑ) with identical orders. An expression in ζ(ϑ) is produced by this process. A
set of algebraic equations representing the variables ρl (where l = −N, . . . ,N) and other pertinent
parameters is then expressed after the coefficients in this expression are equated to zero.
(5). This system of algebraic equations is then solved using Maple tool.
(6). Then, by calculating and entering the unknown values into Eq (2.3) together with the ζ(ϑ) (the
solution to (2.4)), analytical soliton solutions for (2.2) are obtained. We can get the resulting families
of soliton solutions by using the generic solution of Eq (2.4):
Family 1. For Φ < 0 & R , 0,

ζ1(ϑ) = −
Q
2R

+

√
−Φ tan

(
1
2

√
−Φϑ

)
2R

,

ζ2(ϑ) = −
Q
2R
−

√
−Φ cot

(
1
2

√
−Φϑ

)
2R

,

ζ3(ϑ) = −
Q
2R

+

√
−Φ

(
tan

(√
−Φϑ

)
+

(
sec

(√
−Φϑ

)))
2R

,
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ζ4(ϑ) = −
Q
2R
−

√
−Φ

(
cot

(√
−Φϑ

)
+

(
csc

(√
−Φϑ

)))
2R

,

and

ζ5(ϑ) = −
Q
2R

+

√
−Φ

(
tan

(
1
4

√
−Φϑ

)
− cot

(
1
4

√
−Φϑ

))
4R

.

Family 2. For Φ > 0 & R , 0,

ζ6(ϑ) = −
Q
2R
−

√
Φ tanh

(
1
2

√
Φϑ

)
2R

,

ζ7(ϑ) = −
Q
2R
−

√
Φ coth

(
1
2

√
Φϑ

)
2R

,

ζ8(ϑ) = −
Q
2R
−

√
Z

(
tanh

(√
Φϑ

)
+ i

(
sech

(√
Φϑ

)))
2R

,

ζ9(ϑ) = −
Q
2R
−

√
Φ

(
coth

(√
Φϑ

)
+

(
csch

(√
Φϑ

)))
2R

,

and

ζ10(ϑ) = −
Q
2R
−

√
Φ

(
tanh

(
1
4

√
Φϑ

)
− coth

(
1
4

√
Φϑ

))
4R

.

Family 3. For QP > 0 & Q = 0,

ζ11(ϑ) =

√
P
R

tan
(√

RPϑ
)
,

ζ12(ϑ) = −

√
P
R

cot
(√

RPϑ
)
,

ζ13(ϑ) =

√
P
R

(
tan

(
2
√

RPϑ
)

+
(
sec

(
2
√

RPϑ
)))

,

ζ14(ϑ) = −

√
P
R

(
cot

(
2
√

RPϑ
)

+
(
csc

(
2
√

RPϑ
)))

,

and

ζ15(ϑ) =
1
2

√
P
R

(
tan

(
1
2

√
RPϑ

)
− cot

(
1
2

√
RPϑ

))
.

Family 4. For RP < 0 and Q = 0,

ζ16(ϑ) = −

√
−

P
R

tanh
(√
−RPϑ

)
,

ζ17(ϑ) = −

√
−

P
R

coth
(√
−RPϑ

)
,
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ζ18(ϑ) = −

√
−

P
R

(
tanh

(
2
√
−RPϑ

)
+

(
isech

(
2
√
−RPϑ

)))
,

ζ19(ϑ) = −

√
−

P
R

(
coth

(
2
√
−RPϑ

)
+

(
csch

(
2
√
−RPϑ

)))
,

and

ζ20(ϑ) = −
1
2

√
−

P
R

(
tanh

(
1
2

√
−RPϑ

)
+ coth

(
1
2

√
−RPϑ

))
.

Family 5. For P = R & Q = 0,
ζ21(ϑ) = tan (Pϑ) ,

ζ22(ϑ) = − cot (Pϑ) ,

ζ23(ϑ) = tan (2 Pϑ) + (sec (2 Pϑ)) ,

ζ24(ϑ) = − cot (2 Pϑ) + (csc (2 Pϑ)) ,

and

ζ25(ϑ) =
1
2

tan
(
1
2

Pϑ
)
−

1
2

cot
(
1
2

Pϑ
)
,

Family 6. For R = −P & Q = 0,
ζ26(ϑ) = − tanh (Pϑ) ,

ζ27(ϑ) = − coth (Pϑ) ,

ζ28(ϑ) = − tanh (2 Pϑ) + (isech (2 Pϑ)) ,

ζ29(ϑ) = − coth (2 Pϑ) + (csch (2 Pϑ)) ,

and

ζ30(ϑ) = −
1
2

tanh
(
1
2

Pϑ
)
−

1
2

coth
(
1
2

Pϑ
)
.

Family 7. For Φ = 0,

ζ31(ϑ) = −2
P (2 + Qϑ )

Q2ϑ
.

Family 8. For Q = µ, P = pµ(p , 0) & R = 0,

ζ32(ϑ) = eµϑ − p.

Family 9. For Q = R = 0,
ζ33(ϑ) = Pϑ .

Family 10. For Q = P = 0,

ζ34(ϑ) = −
1

Rϑ
.

Family 11. For P = 0, R , 0 & Q , 0,

ζ35(ϑ) = −
Q

R (cosh (Qϑ) − sinh (Qϑ) + 1)
,
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and
ζ36(ϑ) = −

Q (cosh (Qϑ) + sinh (Qϑ))
R (1 + sinh (Qϑ) + cosh (Qϑ))

.

Family 12. For Q = µ, R = pµ(p , 0) & P = 0,

ζ37(ϑ) =
eµϑ

1 − peµϑ
,

where Φ = Q2 − 4RP.

3. The execution of m-EDAM

In this section of the study, soliton solutions for the CIE, as specified in Eq (1.1), are generated
using the mEDAM approach. First, apply the following variable transformation as part of the method:

z(x, y, t) = Z(ϑ), ϑ = y + x − ωt. (3.1)

The following NODE is obtained by applying this transformation to (1.1):

−ωZ′′ + (λ(Z3 − Z) − Z′′)′ + σZ′′ = 0. (3.2)

The following outcome can be obtained from a single integration on (3.2) with a zero integration
constant:

(σ − ω)Z′ + λ(Z3 − Z) − Z′′ = 0. (3.3)

After creating a homogeneous balancing condition between Z′′ and Z3, it is determined that N = 1.
Substituting N = 1 into Eq (2.3), we obtain the ensuing closed-form solution for (3.3):

Z(ϑ) =

1∑
l=−1

ρl(ζ(ϑ))l. (3.4)

We acquire an expression based on the terms ζ(ϑ) via including (3.4) in (3.3) and bringing together
terms with powers alike ζ(ϑ). By setting the coefficients to zero, this expression can be reduced to a
set of algebraic nonlinear equations. After using Maple to solve this system, the following two sets of
solutions are obtained:
Case 1.

ρ0 =
Q
√

Φ
, ρ1 = 2

R
√

Φ
, ρ−1 = 0, ω = σ, λ = Φ, σ = σ. (3.5)

Case 2.

ρ0 =
1
2

Q
√

Φ
+

1
2
, ρ1 = 0, ρ−1 =

P
√

Φ
, ω = σ − 3

√
Φ, λ = 2 Φ, σ = σ. (3.6)

By considering Case 1 and using (3.1), (3.4), and the corresponding general solution to (2.4), we
construct the ensuing families of soliton solutions for CIE given in (1.1):
Family 1.1. When Φ < 0, R , 0,

z1,1(x, y, t) =
Q
√

Φ
+

2R
√

Φ

−1
2

Q
R

+
1
2

√
−Φ tan

(
1
2

√
−Φϑ

)
R

 , (3.7)
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z1,2(x, y, t) =
Q
√

Φ
+

2R
√

Φ

−1
2

Q
R
−

1
2

√
−Φ cot

(
1
2

√
−Φϑ

)
R

 , (3.8)

z1,3(x, y, t) =
Q
√

Φ
+

2R
√

Φ

−1
2

Q
R

+
1
2

√
−Φ

(
tan

(√
−Φϑ

)
+ sec

(√
−Φϑ

))
R

 , (3.9)

z1,4(x, y, t) =
Q
√

Φ
+

2R
√

Φ

−1
2

Q
R
−

1
2

√
−Φ

(
cot

(√
−Φϑ

)
+ csc

(√
−Φϑ

))
R

 , (3.10)

and

z1,5(x, y, t) =
Q
√

Φ
+

2R
√

Φ

−1
2

Q
R

+
1
4

√
−Φ

(
tan

(
1
4

√
−Φϑ

)
− cot

(
1
4

√
−Φϑ

))
R

 . (3.11)

Family 1.2. When Φ > 0, R , 0,

z1,6(x, y, t) =
Q
√

Φ
+

2R
√

Φ

−1
2

Q
R
−

1
2

√
Φ tanh

(
1
2

√
Φϑ

)
R

 , (3.12)

z1,7(x, y, t) =
Q
√

Φ
+

2R
√

Φ

−1
2

Q
R
−

1
2

√
Φ coth

(
1
2

√
Φϑ

)
R

 , (3.13)

z1,8(x, y, t) =
Q
√

Φ
+

2R
√

Φ

−1
2

Q
R
−

1
2

√
Φ

(
tanh

(√
Φϑ

)
+ isech

(√
Φϑ

))
R

 , (3.14)

z1,9(x, y, t) =
Q
√

Φ
+

2R
√

Φ

−1
2

Q
R
−

1
2

√
Φ

(
coth

(√
Φϑ

)
+ csch

(√
Φϑ

))
R

 , (3.15)

and

z1,10(x, y, t) =
Q
√

Φ
+

2R
√

Φ

−1
2

Q
R
−

1
4

√
Φ

(
tanh

(
1
4

√
Φϑ

)
− coth

(
1
4

√
Φϑ

))
R

 . (3.16)

Family 1.3. When RP > 0 and Q = 0,

z1,11(x, y, t) = − i tan
(√

RPϑ
)
, (3.17)

z1,12(x, y, t) =i cot
(√

RPϑ
)
, (3.18)

z1,13(x, y, t) = − i
(
tan

(
2
√

RPϑ
)

+ sec
(
2
√

RPϑ
))
, (3.19)

z1,14(x, y, t) =i
(
cot

(
2
√

RPϑ
)

+ csc
(
2
√

RPϑ
))
, (3.20)

and

z1,15(x, y, t) =
1
2i

(
tan

(
1
2

√
RPϑ

)
− cot

(
1
2

√
RPϑ

))
. (3.21)
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Family 1.4. When RP < 0 and Q = 0,

z1,16(x, y, t) = − tanh
(√
−RPϑ

)
, (3.22)

z1,17(x, y, t) = − coth
(√
−RPϑ

)
, (3.23)

z1,18(x, y, t) = −
(
tanh

(
2
√
−RPϑ

)
+ isech

(
2
√
−RPϑ

))
, (3.24)

z1,19(x, y, t) = −
(
coth

(
2
√
−RPϑ

)
+ csch

(
2
√
−RPϑ

))
, (3.25)

and

z1,20(x, y, t) = −
1
2

(
tanh

(
1
2

√
−RPϑ

)
+ coth

(
1
2

√
−RPϑ

))
. (3.26)

Family 1.5. When R = P and Q = 0,

z1,21(x, y, t) = − i tan (Pϑ) , (3.27)

z1,22(x, y, t) =i cot (Pϑ) , (3.28)

z1,23(x, y, t) = − i(tan (2 Pϑ) + sec (2 Pϑ)), (3.29)

z1,24(x, y, t) = − i (− cot (2 Pϑ) − csc (2 Pϑ)) , (3.30)

and

z1,25(x, y, t) = − i
(
1
2

tan
(
1
2

Pϑ
)
−

1
2

cot
(
1
2

Pϑ
))
. (3.31)

Family 1.6. When R = −P and Q = 0,

z1,26(x, y, t) = tanh (Pϑ) , (3.32)

z1,27(x, y, t) = coth (Pϑ) , (3.33)

z1,28(x, y, t) = tanh (2 Pϑ) + isech (2 Pϑ) , (3.34)

z1,29(x, y, t) = coth (2 Pϑ) + csch (2 Pϑ) , (3.35)

and

z1,30(x, y, t) =
1
2

(
tanh

(
1
2

Pϑ
)

+ coth
(
1
2

Pϑ
) )
. (3.36)

Family 1.7. When P = 0, Q , 0 and R , 0,

z1,31(x, y, t) =1 −
2

cosh (Qϑ) − sinh (Qϑ) + 1
, (3.37)
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and

z1,32(x, y, t) =1 − 2
cosh (Qϑ) + sinh (Qϑ)

cosh (Qϑ) + sinh (Qϑ) + 1
. (3.38)

Family 1.8. When Q = µ, R = pµ(p , 0) and P = 0,

z1,33(x, y, t) =1 + 2
peµϑ

1 − peµϑ
, (3.39)

where ϑ = y + x − σt.
Now, by considering Case 2 and using (3.1), (3.4), and the corresponding general solution to (2.4),

we construct the ensuing families of soliton solutions for CIE given in (1.1):
Family 2.1. When Φ < 0, R , 0,

z2,1(x, y, t) =
P
√

Φ

−1
2

Q
R

+
1
2

√
−Φ tan

(
1
2

√
−Φϑ

)
R


−1

+
1
2

Q
√

Φ
+

1
2
, (3.40)

z2,2(x, y, t) =
P
√

Φ

−1
2

Q
R
−

1
2

√
−Φ cot

(
1
2

√
−Φϑ

)
R


−1

+
1
2

Q
√

Φ
+

1
2
, (3.41)

z2,3(x, y, t) =
P
√

Φ

−1
2

Q
R

+
1
2

√
−Φ

(
tan

(√
−Φϑ

)
+ sec

(√
−Φϑ

))
R


−1

+
1
2

Q
√

Φ
+

1
2
, (3.42)

z2,4(x, y, t) =
P
√

Φ

−1
2

Q
R
−

1
2

√
−Φ

(
cot

(√
−Φϑ

)
+ csc

(√
−Φϑ

))
R


−1

+
1
2

Q
√

Φ
+

1
2
, (3.43)

and

z2,5(x, y, t) =
P
√

Φ

−1
2

Q
R

+
1
4

√
−Φ

(
tan

(
1
4

√
−Φϑ

)
− cot

(
1
4

√
−Φϑ

))
R


−1

+
1
2

Q
√

Φ
+

1
2
. (3.44)

Family 2.2. When Φ > 0, R , 0,

z2,6(x, y, t) =
P
√

Φ

−1
2

Q
R
−

1
2

√
Φ tanh

(
1
2

√
Φϑ

)
R


−1

+
1
2

Q
√

Φ
+

1
2
, (3.45)

z2,7(x, y, t) =
P
√

Φ

−1
2

Q
R
−

1
2

√
Φ coth

(
1
2

√
Φϑ

)
R


−1

+
1
2

Q
√

Φ
+

1
2
, (3.46)

z2,8(x, y, t) =
P
√

Φ

−1
2

Q
R
−

1
2

√
Φ

(
tanh

(√
Φϑ

)
+ isech

(√
Φϑ

))
R


−1

+
1
2

Q
√

Φ
+

1
2
, (3.47)
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z2,9(x, y, t) =
P
√

Φ

−1
2

Q
R
−

1
2

√
Φ

(
coth

(√
Φϑ

)
+ csch

(√
Φϑ

))
R


−1

+
1
2

Q
√

Φ
+

1
2
, (3.48)

and

z2,10(x, y, t) =
P
√

Φ

−1
2

Q
R
−

1
4

√
Φ

(
tanh

(
1
4

√
Φϑ

)
− coth

(
1
4

√
Φϑ

))
R


−1

+
1
2

Q
√

Φ
+

1
2
. (3.49)

Family 2.3. When RP > 0 and Q = 0,

z2,11(x, y, t) =
1
2i

(
tan

(√
RPϑ

))−1
+

1
2
, (3.50)

z2,12(x, y, t) = −
1
2i

(
cot

(√
RPϑ

))−1
+

1
2
, (3.51)

z2,13(x, y, t) =
1
2i

(
tan

(
2
√

RPϑ
)

+ sec
(
2
√

RPϑ
))−1

+
1
2
, (3.52)

z2,14(x, y, t) = −
1
2i

(
cot

(
2
√

RPϑ
)

+ csc
(
2
√

RPϑ
))−1

+
1
2
, (3.53)

and

z2,15(x, y, t) =
1
i

(
tan

(
1
2

√
RPϑ

)
− cot

(
1
2

√
RPϑ

))−1

+
1
2
. (3.54)

Family 2.4. When RP < 0 and Q = 0,

z2,16(x, y, t) = −
1
2

(
tanh

(√
−RPϑ

))−1
+

1
2
, (3.55)

z2,17(x, y, t) = −
1
2

(
coth

(√
−RPϑ

))−1
+

1
2
, (3.56)

z2,18(x, y, t) = −
1
2

(
tanh

(
2
√
−RPϑ

)
+ isech

(
2
√
−RPϑ

))−1
+

1
2
, (3.57)

z2,19(x, y, t) = −
1
2

(
coth

(
2
√
−RPϑ

)
+ csch

(
2
√
−RPϑ

))−1
+

1
2
, (3.58)

and

z2,20(x, y, t) = −
(
tanh

(
2
√
−RPϑ

)
+ coth

(
2
√
−RPϑ

))−1
+

1
2
. (3.59)

Family 2.5. When R = P and Q = 0,

z2,21(x, y, t) =
1

2i tan (Pϑ)
+

1
2
, (3.60)

z2,22(x, y, t) = −
1

2i cot (Pϑ)
+

1
2
, (3.61)
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z2,23(x, y, t) =
1

2i (tan (2 Pϑ) + sec (2 Pϑ))
+

1
2
, (3.62)

z2,24(x, y, t) =
1

2i (− cot (2 Pϑ) − csc (2 Pϑ))
+

1
2
, (3.63)

and

z2,25(x, y, t) =
1

i
(
tan

(
1
2 Pϑ

)
− cot

(
1
2 Pϑ

)) +
1
2
. (3.64)

Family 2.6. When R = −P and Q = 0,

z2,26(x, y, t) = −
1

2 tanh (Pϑ)
+

1
2
, (3.65)

z2,27(x, y, t) = −
1

2 coth (Pϑ)
+

1
2
, (3.66)

z2,28(x, y, t) =
1

2 (− tanh (2 Pϑ) − isech (2 Pϑ))
+

1
2
, (3.67)

z2,29(x, y, t) =
1

2 (− coth (2 Pϑ) − csch (2 Pϑ))
+

1
2
, (3.68)

and

z2,30(x, y, t) =
1(

− tanh
(

1
2 Pϑ

)
− coth

(
1
2 Pϑ

)) +
1
2
. (3.69)

Family 2.7. When Q = µ, P = pµ(p , 0) and R = 0,

z2,31(x, y, t) =
p

eµϑ − p
+ 1, (3.70)

where ϑ = y + x − (σ − 3
√

Φ)t.

4. Discussion and graphs

In this section, we show schematic illustrations of several wave configurations seen in the system
that we are studying. Using m-EDAM, an improved version of EDAM, we discovered and visualised
wave patterns in density and 3D graphs. These examples reveal that the soliton solutions generated
primarily appear as cuspon or kink solitons. A kink soliton is the perfect example of a lone wave that
has a sudden change or discontinuity in the variable or field it represents. It is also known as a domain
wall or topological soliton. Kink solitons typically appear in systems that are going through a scalar
field phase transition. On the other hand, a cuspon soliton, also called a cusped soliton, is a unique
type of single wave with a cusp, or sharp peak, at the apex. It functions as a solution to a particular
class of nonlinear wave equations in which the propagating single wave maintains its form.

Particular phenomena inherent to plasma physics account for the predominance of kink and cuspon
solitons as principal soliton solutions to the CIE, a fundamental model of ion-acoustic waves to plasma.
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Particle interactions, magnetic fields, and nonlinear behaviours are all aspects of plasma dynamics that
play a role in the creation and spread of single waves. The CIE, which records nonlinear phenomena
in plasma, clarifies the creation of isolated waves with characteristic kinks and cusps. The CIE’s
mathematical foundations and plasma dynamics interact to produce cuspon solitons, which have sharp
peaks, and kink solitons, which show sudden changes in fields as a result of phase transitions. As
tracers of nonlinear interactions, these solitons provide information about the complex dynamics of ion-
acoustic waves. Understanding these solitons helps to better understand plasma physics and provides
insight into the wave behaviours of intricate plasma systems.

The m-EDAM has proven to be a reliable, practical, and easy-to-use tool that offers more general
wave solutions for nonlinear models in mathematical physics and engineering. Moreover, our results,
under some assumptions, agree with the results of other transformation-based methods such as
the Riccati equation expansion method,

(
G′
G

)
-expansion method, sub-equation method, F-expansion

method, and many more. For instance, all ten solutions by the modified F-expansion method in the
study of Seadawy et al. [52] can be easily obtained from some of our 37 solutions produced by m-
EDAM by assigning values to P, Q, and R presented in our solutions. Our findings thus serve as a
generalisation of the outcomes of the various approaches that were previously described. This adds
an important new layer to the existing understanding of the CIE and demonstrates the adaptability and
broader applicability of our research.

The graphical discussion presents the visualization of various soliton solutions derived from the
mathematical models. Figure 1 illustrates the kink soliton solution z1,6 at t = 0 for specific parameter
values. In Figure 2, the bright kink soliton solution z1,9 is depicted at t = 1, showcasing its behavior
under different parameter settings. Figure 3 displays the bright kink soliton solution z1,18 at t = 10,
highlighting its evolution over time. Meanwhile, Figures 4 and 5 focus on the imaginary part of cuspon
soliton solutions z1,21 and z1,24 at different time instances, demonstrating their unique characteristics.
In Figure 6, the kink soliton solution z1,32 is visualized at t = 0, revealing its structure under specific
parameter conditions. Figures 7 and 8 showcase the dark kink soliton solutions z2,10 and z2,19 at different
time points, emphasizing their behavior under varying parameters. Figure 9 presents the bright-dark
soliton solution z2,23 at t = 0, while Figure 10 illustrates the kink soliton solution z2,31 at t = 2, providing
insights into their dynamics under specific parameter configurations. Overall, these visualizations offer
valuable insights into the behavior and characteristics of the soliton solutions under investigation.

Figure 1. The 3D and contour plots of the kink soliton solution z1,6 stated in (3.12) are plotted
for P = 1,Q = 3,R = 2, σ = 10, t = 0.
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Figure 2. The 3D and contour plots of the bright kink soliton solution z1,9 stated in (3.15)
are plotted for P = 8,Q = 10,R = 2, σ = 50, t = 1.

Figure 3. The 3D and contour plots of the bright kink soliton solution z1,18 stated in (3.24)
are plotted for P = 9,Q = 0,R = −4, σ = 20, t = 10.

Figure 4. The 3D and contour plots of the imaginary part of cuspon soliton solution z1,21

stated in (3.27) are plotted for P = 3,Q = 0,R = 3, σ = 30, t = 100.
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Figure 5. The 3D and contour plots of the imaginary part of cuspon soliton solution z1,24

stated in (3.30) are plotted for P = 6,Q = 0,R = 6, σ = 40, t = 50.

Figure 6. The 3D and contour plots of the kink soliton solution z1,32 stated in (3.38) are
plotted for P = 0,Q = 10,R = 5, σ = 100, t = 0.

Figure 7. The 3D and contour plots of the dark kink soliton solution z2,10 stated in (3.49) are
plotted for P = 2,Q = 10,R = 8, σ = 1, t = 5.
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Figure 8. The 3D and contour plots of the kink soliton solution z2,19 stated in (3.58) are
plotted for P = 5,Q = 0,R = −5, σ = 4, t = 15.

Figure 9. The 3D and contour plots of the bright-dark soliton solution z2,23 stated in (3.62)
are plotted for P = 6,Q = 0,R = 6, σ = 100, t = 0.

Figure 10. The 3D and contour plots of the kink soliton solution z2,31 stated in (3.70) are
plotted for P = 10, µ = 5, p = 2,Q = 5,R = 0, σ = 0, t = 2.
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5. Conclusions

In conclusion, our study has thoroughly investigated the propagation of solitons in the CIE, a
noteworthy model in plasma sciences, by employing the upgraded m-EDAM. By converting the CIE
into a NODE and assuming a closed-form solution, numerous cuspon and kink soliton solutions have
been identified, including hyperbolic, trigonometric, exponential, and rational functions. Density
charts and 3D models that illustrate the propagating behaviour of specific soliton solutions provide
important insights into the behaviour of soliton propagation processes, with direct applicability to
domains related to the CIE. The results shown here are remarkable and demonstrate the novelty of using
m-EDAM to the CIE, as they have not been covered in academic literature before. These discoveries
advance our understanding of temporal evolution processes and nonlinear dynamics, which has
significant implications for our comprehension of related physical phenomena. Moreover, the efficacy
and uniformity of the employed techniques in this study underscore their broader significance for
nonlinear problems across other scientific domains. While the utilisation of m-EDAM has significantly
enhanced our understanding of soliton dynamics and their impact on the CIE, it is imperative to
acknowledge the constraints of the methodology, particularly with the fair handling of the highest
derivative and nonlinear variables. Despite this limitation, the work shows that our understanding of
soliton behaviour and nonlinear dynamics will continue to expand and opens up new directions for
future research in related fields. That is, the future scope of the current study lies in extending the
proposed m-EDAM to study soliton events in nonlinear stochastic models, which will shed further
light on how mechanistic and stochastic dynamics interact.
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