Research article

Soft strong $ \theta $-continuity and soft almost strong $ \theta $-continuity

  • Received: 26 February 2024 Revised: 17 April 2024 Accepted: 28 April 2024 Published: 14 May 2024
  • MSC : 54A40, 05C72

  • We continued the study of "soft strong $ \theta $-continuity" and defined and investigated "soft almost strong $ \theta $-continuity" which is a generalization of soft strong $ \theta $-continuity. We gave characterizations and examined soft composition concerning these two concepts. Furthermore, we derived several soft mapping theorems. We provided several links between these two ideas and their related concepts through examples. Lastly, we looked at the symmetry between them and their topological counterparts.

    Citation: Dina Abuzaid, Samer Al-Ghour. Soft strong $ \theta $-continuity and soft almost strong $ \theta $-continuity[J]. AIMS Mathematics, 2024, 9(6): 16687-16703. doi: 10.3934/math.2024809

    Related Papers:

  • We continued the study of "soft strong $ \theta $-continuity" and defined and investigated "soft almost strong $ \theta $-continuity" which is a generalization of soft strong $ \theta $-continuity. We gave characterizations and examined soft composition concerning these two concepts. Furthermore, we derived several soft mapping theorems. We provided several links between these two ideas and their related concepts through examples. Lastly, we looked at the symmetry between them and their topological counterparts.



    加载中


    [1] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
    [2] Z. Pawlak, Rough sets, Int. J. Comput. Inf. Sci., 11 (1982), 341–356. https://doi.org/10.1007/BF01001956
    [3] D. Molodtsov, Soft set theory-First results, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5
    [4] J. L. Yang, Y. Y. Yao, Semantics of soft sets and three-way decision with soft sets, Knowl.-Based Syst., 194 (2020), 105538. https://doi.org/10.1016/j.knosys.2020.105538
    [5] J. C. R. Alcantud, The semantics of $N$-soft sets, their applications, and a coda about three-way decision, Inf. Sci., 606 (2022), 837–852. https://doi.org/10.1016/j.ins.2022.05.084 doi: 10.1016/j.ins.2022.05.084
    [6] J. Gwak, H. Garg, N. Jan, Hybrid integrated decision-making algorithm for clustering analysis based on a bipolar complex fuzzy and soft sets, Alex. Eng. J., 67 (2023), 473–487. https://doi.org/10.1016/j.aej.2022.12.003 doi: 10.1016/j.aej.2022.12.003
    [7] O. Kguller, A soft set theoretic approach to network complexity and a case study for Turkish Twitter users, Appl. Soft Comput., 143 (2023), 110344. https://doi.org/10.1016/j.asoc.2023.110344 doi: 10.1016/j.asoc.2023.110344
    [8] O. Dalkılıc, N. Demirtas, Algorithms for covid-19 outbreak using soft set theory: Estimation and application, Soft Comput., 27 (2023), 3203–3211. https://doi.org/10.1007/s00500-022-07519-5
    [9] M. A. Balci, L. M. Batrancea, O. Akguller, Network-induced soft sets and stock market applications, Mathematics, 10 ( 2022), 3964. https://doi.org/10.3390/math10213964
    [10] H. W. Qin, Q. H. Fei, X. Q. Ma, W. H. Chen, A new parameter reduction algorithm for soft sets based on chi-square test, Appl. Intell., 51 (2021), 7960–7972. https://doi.org/10.1007/s10489-021-02265-x doi: 10.1007/s10489-021-02265-x
    [11] X. Q. Ma, H. W. Qin, Soft set based parameter value reduction for decision making application, IEEE Access, 7 (2019), 35499–35511. https://doi.org/10.1109/ACCESS.2019.2905140 doi: 10.1109/ACCESS.2019.2905140
    [12] P. K. Maji, A. R. Roy, R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl., 44 (2002), 1077–1083. https://doi.org/10.1016/S0898-1221(02)00216-X
    [13] J. C. R. Alcantud, A. Z. Khameneh, G. Santos-Garcıa, M. Akram, A systematic literature review of soft set theory, Neural Comput. Appl., 2024. https://doi.org/10.1007/s00521-024-09552-x
    [14] F. Feng, C. X. Li, B. Davvaz, M. I. Ali, Soft sets combined with fuzzy sets and rough sets: A tentative approach, Soft Comput., 14 (2010), 899–911. https://doi.org/10.1007/s00500-009-0465-6 doi: 10.1007/s00500-009-0465-6
    [15] M. Shabir, M. Naz, On soft topological spaces, Comput. Math. Appl., 61 (2011), 1786–1799. https://doi.org/10.1016/j.camwa.2011.02.006
    [16] D. Abuzaid, S. A. Ghour, M. Naghi, Soft super-continuity and soft delta-closed graphs, Plos One, 19 (2024), e0301705. https://doi.org/10.1371/journal.pone.0301705 doi: 10.1371/journal.pone.0301705
    [17] T. M. Al-shami, M. E. El-Shafei, M. Abo-Elhamayel, Seven generalized types of soft semi-compact spaces, Korean J. Math., 27 (2019), 661–690. https://doi.org/10.11568/kjm.2019.27.3.661 doi: 10.11568/kjm.2019.27.3.661
    [18] M. H. Alqahtani, Z. A. Ameen, Soft nodec spaces, AIMS Math., 9 (2024), 3289–3302. https://doi.org/10.3934/math.2024160
    [19] D. Abuzaid, M. Naghi, S. A. Ghour, Soft faint continuity and soft faint theta omega continuity between soft topological spaces, Symmetry, 16 (2024), 268. https://doi.org/10.3390/sym16030268
    [20] Z. A. Ameen, M. H. Alqahtani, Baire category soft sets and their symmetric local properties, Symmetry, 15 (2023), 1810. https://doi.org/10.3390/sym15101810
    [21] T. M. Al-shami, A. Mhemdi, R. Abu-Gdairi, A Novel framework for generalizations of soft open sets and its applications via soft topologies, Mathematics, 11 (2023), 840. https://doi.org/10.3390/math11040840
    [22] A. Mhemdi, Novel types of soft compact and connected spaces inspired by soft $Q$-sets, Filomat, 37 (2023), 9617–9626.
    [23] X. C. Guan, Comparison of two types of separation axioms in soft topological spaces, J. Intell. Fuzzy Syst., 44 (2023), 2163–2171. https://doi.org/10.3233/JIFS-212432 doi: 10.3233/JIFS-212432
    [24] T. M. Al-shami, Soft somewhat open sets: Soft separation axioms and medical application to nutrition, Comput. Appl. Math., 41 (2022). https://doi.org/10.1007/s40314-022-01919-x
    [25] T. M. Al-shami, On soft separation axioms and their applications on decision-making problem, Math. Probl. Eng., 2021 (2021), 1–12. https://doi.org/10.1155/2021/8876978 doi: 10.1155/2021/8876978
    [26] T. M. Al-shami, L. D. R. Kocinac, B. A. Asaad, Sum of soft topological spaces, Mathematics, 8 (2020), 990. https://doi.org/10.3390/math8060990 doi: 10.3390/math8060990
    [27] T. M. Al-shami, M. E. El-Shafei, Partial belong relation on soft separation axioms and decision-making problem, two birds with one stone, Soft Comput., 24 (2020), 5377–5387. https://doi.org/10.1007/s00500-019-04295-7 doi: 10.1007/s00500-019-04295-7
    [28] J. C. R. Alcantud, Soft open bases and a novel construction of soft topologies from bases for topologies, Mathematics, 8 (2020), 672. https://doi.org/10.3390/math8050672 doi: 10.3390/math8050672
    [29] P. Majumdar, S. K. Samanta, On soft mappings, Comput. Math. Appl., 60 (2010), 2666–2672. https://doi.org/10.1016/j.camwa.2010.09.004
    [30] A. Kharal, B. Ahmad, Mappings on soft classes, New Math. Nat. Comput., 7 (2011), 471–481. https://doi.org/10.1142/S1793005711002025
    [31] A. Aygunoglu, H. Aygun, Some notes on soft topological spaces, Neural Comput. Applic., 21 (2012), 113–119. https://doi.org/10.1007/s00521-011-0722-3 doi: 10.1007/s00521-011-0722-3
    [32] T. M. Al-shami, A. Mhemdi, A weak form of soft $\alpha $-open sets and its applications via soft topologies, AIMS Math., 8 (2023), 11373–11396. https://doi.org/10.3934/math.2023576
    [33] T. M. Al-shami, Z. A. Ameen, B. A. Asaad, A. Mhemdi, Soft bi-continuity and related soft functions, J. Math. Comput. Sci., 30 (2023), 19–29. https://doi.org/10.22436/jmcs.030.01.03
    [34] S. A. Ghour, Soft $\theta _{\omega }$-open sets and soft $ \theta _{\omega }$-continuity, Int. J. Fuzzy Log. Intel. Syst. 22 (2022), 89–99. https://doi.org/10.5391/IJFIS.2022.22.1.89
    [35] S. A. Ghour, Soft $\omega _{p}$-open sets and soft $\omega _{p}$ -continuity in soft topological spaces, Mathematics, 9 ( 2021), 2632. https://doi.org/10.3390/math9202632
    [36] T. M. Al-shami, I. Alshammari, B. A. Asaad, Soft maps via soft somewhere dense sets, Filomat, 34 (2020), 3429–3440. https://doi.org/10.2298/FIL2010429A
    [37] T. Y. Ozturk, S. Bayramov, Topology on soft continuous function spaces, Math. Comput. Appl., 22 (2017), 32. https://doi.org/10.3390/mca22020032
    [38] I. Zorlutuna, H. Cakir, On continuity of soft mappings, Appl. Math. Inform. Sci., 9 (2015), 403–409. https://doi.org/10.12785/amis/090147
    [39] M. Akdag, A. Ozkan, On soft $\beta $-open sets and soft $\beta $ -continuous functions, The Scientific World J., 2014 (2014), 843456. https://doi.org/10.1155/2014/843456 doi: 10.1155/2014/843456
    [40] M. Akdag, A. Ozkan, Soft $\alpha $-open sets and soft $\alpha $ -continuous functions, Abstr. Appl. Anal., 2014 (2014), 891341. https://doi.org/10.1155/2014/891341 doi: 10.1155/2014/891341
    [41] S. A. Ghour, A. Bin-Saadon, On some generated soft topological spaces and soft homogeneity, Heliyon, 5 (2019), E02061. https://doi.org/10.1016/j.heliyon.2019.e02061
    [42] S. A. Ghour, W. Hamed, On two classes of soft sets in soft topological spaces, Symmetry, 12 (2020), 265. https://doi.org/10.3390/sym12020265
    [43] N. V. Velicko, $H$-closed topological spaces, Mat. Sb., 70 (1966), 98–112.
    [44] S. Fomin, Extensions of topological spaces, Ann. Math., 44 (1943), 471–480. https://doi.org/10.2307/1968976
    [45] T. Noiri, On $\delta $-continuous functions, J. Korean Math. Soc., 16 (1980), 161–166.
    [46] T. Noiri, S. M. Kang, On almost strongly $\theta $-continuous functions, Indian J. Pure Appl. Math., 15 (1984), 1–8.
    [47] M. Shabir, M. Naz, On soft topological spaces, Comput. Math. Appl., 61 (2011), 1786–1799. https://doi.org/10.1016/j.camwa.2011.02.006
    [48] S. Yuksel, N. Tozlu, Z. G. Ergul, Soft regular generalized closed sets in soft topological spaces, Int. J. Math. Anal., 8 (2014), 355–367. https://doi.org/10.12988/ijma.2014.4125
    [49] R. A. Mohammed, O. R. Sayed, A. Eliow, Some properties of soft delta-topology, Acad. J. Nawroz Univ., 8 (2019), 352–361. https://doi.org/10.25007/ajnu.v8n4a481
    [50] S. Hussain, B. Ahmad, Soft separation axioms in soft topological spaces, Hacet. J. Math. Stat., 44 (2015), 559–568.
    [51] S. Ramkumar, V. Subbiah, Soft separation axioms and soft product of soft topological spaces, Maltepe J. Math., 2 (2020), 61–75.
    [52] A. K. Prasad, S. S. Thakur, Soft almost regular spaces, Malaya J. Mat., 7 (2019), 408–411. https://doi.org/10.26637/MJM0703/0007
    [53] S. M. A. Salem, Soft regular generalized $b$-closed sets in soft topological spaces, J. Linear Topol. Algebra, 3 (2014), 195–204.
    [54] S. S. Thakur, A. S. Rajput, Soft almost continuous mappings, Int. J. Adv. Math., 2017 (2017), 23–29.
    [55] D. N. Georgiou, A. C. Megaritis, V. I. Petropoulos, On soft topological spaces, Appl. Math. Inform. Sci., 7 (2013), 1889–1901. https://doi.org/10.12785/amis/070527
    [56] S. Jeyashri, S. Tharmar, G. Ramkumar, On soft $\delta $ -continuous functions, Int. J. Math. Trends Tech., 45 (2017), 28–34. https://doi.org/10.14445/22315373/IJMTT-V45P505
    [57] O. R. Sayed, A. M. Khalil, Some properties of soft $\theta $ -topology, Hacet. J. Math. Stat., 44 (2015), 1133–1145.
    [58] S. A. Ghour, Soft $\theta _{\omega }$-open sets and soft $ \theta _{\omega }$-continuity, Int. J. Fuzzy Log. Inte., 22 (2022), 89–99. https://doi.org/10.5391/IJFIS.2022.22.1.89 doi: 10.5391/IJFIS.2022.22.1.89
    [59] S. A. Ghour, Soft $R_{\omega }$-open sets and the soft topology of soft $\delta _{\omega }$-open sets, Axioms, 11 (2022), 177. https://doi.org/10.3390/axioms11040177
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(397) PDF downloads(27) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog