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1. Introduction and preliminaries

In the social sciences, engineering, health, environmental science, and economics, mathematical
modeling of uncertainty is essential for finding solutions to challenging issues. Although they have
limitations, other theories like probability theory, fuzzy set theory [1], and rough set theory [2] might
be helpful in handling ambiguity and uncertainty. The absence of parametrization tools is one of these
mathematical methodology’s main drawbacks.

The soft set theory was created in 1999 by Molodtsov [3] in response to criticisms of the
previously described uncertainty management strategies. It was suggested to use soft sets, or
parametrized universe possibilities. Set modeling uncertainty was introduced in [4] and refined in [5].
This standardized structure also has a lot of practical uses. Set interpretation has been successfully
applied for modeling uncertainty in a range of real-world scenarios by several studies (e.g., [6–12]).
These practical uses have shown the framework’s ability to solve problems and have further
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substantiated its usefulness and efficacy. Several researchers have examined and explored the key
concepts and tenets of soft set theory [12–14].

In order to create a soft topology for a certain set of parameters, Shabir and Naz [15] created one
over a family of soft sets. Their work encouraged more research in this field by demonstrating the
similarities between concepts in soft topology and classical topology. Many contributions have been
made to the study of topological concepts in soft contexts since the beginning of soft topology, such
as [16–28].

Mappings on soft sets were investigated by Majumdar and Samanta [29], along with their uses in
medical diagnosis. The notion of soft mapping with characteristics was first presented by Kharal and
Ahmed [30], who also suggested soft continuity for soft mappings [31].

The notion of soft continuity and its many characterizations are extensively explored in the literature
reviews that were provided in numerous publications, such as [32–40]. This mathematical notion,
which describes the smooth transition of a function between its values at adjacent places, is examined
in these works in all of its complexity.

Soft continuity has been the subject of extensive research in soft topology and other areas of
mathematics. Many disciplines, including soft topological models, data modeling, engineering,
science, economics, and business, make extensive use of soft continuity. This field has drawn the
attention of scientists. This motivated us to write this paper.

In this paper, we continue the study of “soft strong θ-continuity” and define and investigate “soft
almost strong θ-continuity” which is a generalization of soft strong θ-continuity. We give
characterizations and examine soft composition concerning these two concepts. Furthermore, we
derive several soft mapping theorems. We provide several links between these two ideas and their
related concepts through examples. Lastly, we look at the symmetry between them and their
topological counterparts.

This article is organized as follows: In Section 2, we continue the study of soft strongly θ-continuous
functions. In particular, we investigate the correspondence between them and their analog concept in
general topology. Also, we show that this type of soft function is strictly stronger than soft δ-continuity.
Moreover, we provide two new characterizations of them. Furthermore, we provide several results on
soft preservation, composition, and products related to soft strong θ-continuity. Besides these, we
give several suitable conditions under which a certain kind of soft continuous function is soft strongly
θ-continuous. In Section 3, we define “soft almost strongly θ-continuous functions”. We present
many characterizations of them, and we investigate the correspondence between them and their analog
concept in general topology. Also, we show that this class of soft functions lies strictly between the
classes of soft strongly θ-continuous functions and soft δ-continuous functions. Moreover, we provide
several results on soft preservation and composition related to almost soft strong θ-continuity. In
addition to these, we give several suitable conditions under which a certain kind of soft continuous
function is soft almost strongly θ-continuous.

Let L be an initial universe and ∆ be a set of parameters. A soft set over L relative to ∆ is a function
K : ∆ −→ P(L), where P(L) is the power set of L. The collection of soft sets over L relative to ∆ is
denoted by S (L,∆). Let H ∈ S (L,∆). If H (a) = ∅ for each a ∈ ∆, then H is called the null soft set
over L relative to ∆ and denoted by 0∆. If H (a) = L for all a ∈ ∆, then H is called the absolute soft
set over L relative to ∆ and denoted by 1∆. If there exist b ∈ ∆ and y ∈ L such that H (b) = {y} and
H (a) = ∅ for all a ∈ ∆ − {b}, then H is called a soft point over L relative to ∆ and denoted by by. The
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collection of all soft points over L relative to ∆ is denoted by P (L,∆). If for some b ∈ ∆ and X ⊆ L,
H (b) = X and H (a) = ∅ for all a ∈ ∆−{b}, then H will be denoted by bX. If for some X ⊆ L, H (a) = X
for all a ∈ ∆, then H will be denoted by CX. If H ∈ S (L,∆) and ax ∈ P (L,∆), then ax is said to belong
to H (notation: ax∈̃H) if x ∈ H (a). Soft topological spaces were defined in [15] as follows: A triplet
(L, ℘,∆), where ℘⊆ S (L,∆), is called a soft topological space if 0∆, 1∆ ∈ ℘, and ℘ is closed under finite
soft intersections and arbitrary soft unions.

Throughout this paper, we follow the notions and terminologies as they appear in [41, 42].
Let (L, ℘,∆) and (L, α) be a soft topological space and a topological space, respectively. Let H ∈

S (L,∆) and W ⊆ L. Cl℘(H), Int℘(H), Bd℘(H), Clα(W), Intα(W), and ℘c will denote the soft closure
of H, the soft interior of H, the soft boundary of H, the closure of W, and the interior of W, and the
family of all soft closed sets in (L, ℘,∆), respectively.

We will now go over some of the notions that will be used in the remainder of this work.
Definition 1.1. [43] Let (L, α) be a topological space, and let V ⊆ L. Then V is called a θ-open set
in (L, α) if for every x ∈ V , there exists U ∈ α such that x ∈ U ⊆ Clα(U) ⊆ V . The collection of all
θ-open sets in (L, α) is denoted by αθ.

It is well-known that αθ is a topology, αθ ⊆ α, and αθ , α in general.
Definition 1.2. A function g : (L, α) −→ (M, γ) is called θ-continuous (θ-C) [44], (resp., strongly
θ-continuous (S-θ-C) [45], almost strongly θ-continuous (A-S-θ-C) [46]) if for every x ∈ L and every
U ∈ γ such that g (x) ∈ U, we find V ∈ α such that x ∈ V and g(Clα (V)) ⊆ Clγ (U) (resp. g(Clα (V)) ⊆
U, g(Clα (V)) ⊆ Intγ

(
Clγ(U)

)
Definition 1.3. Let (L, ℘,∆) be a soft topological space, and let K ∈ S (L,∆). Then K is said to be a

(a) [47] Soft θ-open set in (L, ℘,∆) if for every ax∈̃K, we find H ∈ ℘ such that ax∈̃H⊆̃Cl℘(H)⊆̃K.
℘θ will denote the collection of all soft θ-open sets in (L, ℘,∆).

(b) [48] Soft regular-open set in (L, ℘,∆) if K = Int℘(Cl℘(K)). Soft complements of soft regular-
open sets in (L, ℘,∆) are called soft regular-closed sets. The families of all soft regular-open sets in
(L, ℘,∆) and soft regular-open sets in (L, ℘,∆) are denoted by RO (℘) and RC (℘), respectively.

(c) [49] Soft δ-open set in (L, ℘,∆) if for every ax∈̃K, we find H ∈ RO (℘) such that ax∈̃H⊆̃K.
℘δ will denote the collection of all soft δ-open sets in (L, ℘,∆). It is known that ℘θ and ℘δ are soft
topologies, ℘θ ⊆ ℘δ ⊆ ℘, ℘θ , ℘δ in general, and ℘δ , ℘ in general.
Definition 1.4. A soft topological space (L, ℘,∆) is called

(a) [50] Soft Hausdorf if for every ax, by ∈ P (L,∆) such that ax , by, there exist G,H ∈ ℘ such that
ax∈̃G, by∈̃H, and G∩̃H = 0∆.

(b) [50] Soft T0 if for every ax, by ∈ P (L, ℘,∆) such that ax , by, there exist G ∈ ℘ such that (ax∈̃G
and by<̃G) or (ax<̃G and by∈̃G).

(c) [50] Soft regular if for every ax ∈ P (L,∆) and every G ∈ ℘ such that ax∈̃G, there exists K ∈
℘ such that ax∈̃K⊆̃Cl℘ (K) ⊆̃G.

(d) [51] Soft Urysohn if for every ax, by ∈ P (L,∆) such that ax , by, there exist G,H ∈ ℘ such that
ax∈̃G, by∈̃H, and Cl℘ (G) ∩̃Cl℘ (H) = 0∆.

(e) [52] Soft almost regular if for every ax ∈ P (L,∆) and every G ∈ RO (℘) such that ax∈̃G, there
exists K ∈ ℘ such that ax∈̃K⊆̃Cl℘ (K) ⊆̃G.

(f) [53] Soft semi-regular if for every ax ∈ P (L,∆) and every G ∈ ℘ such that ax∈̃G, there exists
K ∈ ℘ such that ax∈̃K⊆̃Int℘

(
Cl℘ (K)

)
⊆̃G or equivalently if ℘δ = ℘.

(g) [31] Soft compact if for any G ⊆℘ such that 1∆ = ∪̃G∈GG, there exists a finite subcollection
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G1 ⊆ G such that 1∆ = ∪̃G∈G1G.
Definition 1.5. A soft function fpv : (L, ℘,∆) −→ (M,ℵ,Ω) is called soft almost continuous [54],
(resp., soft θ-continuous (soft θ-C) [55], soft δ-continuous [56], soft strongly θ-continuous (soft
S-θ-C) [57]) if for every ax ∈ P (L,∆) and G ∈ ℵ such that fpu (ax) ∈̃G, we find H ∈ ℘ such that ax∈̃H
and fpu (H) ⊆̃Intℵ (Clℵ (G)) (resp., fpu

(
Cl℘ (H)

)
⊆̃Clℵ (G), fpu

(
Int℘

(
Cl℘ (H)

))
⊆̃Intℵ (Clℵ (G)),

fpu
(
Cl℘ (H)

)
⊆̃G).

Definition 1.6. [31] For any two soft topological spaces (L, ℘,∆) and (M,ℵ,Ω), the soft topology on
L × M relative to ∆ ×Ω having {H × K : H ∈ ℘ and K ∈ ℵ} as a soft base is denoted by pr (℘ × ℵ).
Definition 1.7. [41] For any topological space (L, α), the soft topology{
H ∈ S (L,∆) : H (a) ∈ α for every a ∈ ∆

}
on L relative to α will be denoted by τ (α).

Definition 1.8. [41] For any collection of topological spaces {(L, αa) : a ∈ ∆}, the soft topology{
H ∈ S (L,∆) : H (a) ∈ αa for every a ∈ ∆

}
is denoted by ⊕a∈∆αa.

2. Soft strongly θ-continuity

In this section, we continue the study of soft strongly θ-continuous functions. In particular, we
investigate the correspondence between them and their analog concept in general topology. Also, we
show that this type of soft function is strictly stronger than soft δ-continuity. Moreover, we provide
two new characterizations of them. Furthermore, we provide several results on soft preservation,
composition, and products related to soft strong θ-continuity. Besides these, we give a number of
suitable conditions under which a certain kind of soft continuous function is a soft
strongly θ-continuous.
Theorem 2.1. If fpv : (L, ℘,∆) −→ (M,ℵ,Ω) is soft S-θ-C, then p : (L, ℘b) −→

(
M,ℵv(b)

)
is S-θ-C for

all b ∈ ∆.
Proof. Let fpv : (L, ℘,∆) −→ (M,ℵ,Ω) be soft S-θ-C and let b ∈ ∆. By Proposition 5.2 of [55],
fpv : ( L, ℘θ,∆) −→ (M,ℵ,Ω) is soft continuous. Thus, by Corollary 5.13 of [41],
p :

(
L, (℘θ)b

)
−→

(
M,ℵv(b)

)
is continuous. Since by Theorem 2.20 of [58], (℘θ)b ⊆ (℘b)θ, then

p : (Z, (℘b)θ) −→
(
Y,ℵv(b)

)
is continuous. Therefore, p : (L, ℘b) −→

(
M,ℵv(b)

)
is S-θ-C.

Theorem 2.2. Let {(L, λa) : a ∈ ∆} and {(M, ψb) : b ∈ Ω} be two collections of topological spaces. Let
p : L −→ M and v : ∆ −→ Ω be functions where v is bijective. Then, fpv : (L,⊕a∈∆λa,∆) −→
(M,⊕b∈Ωψb,Ω) is soft S-θ-C if and only if p : (L, λa) −→

(
M, ψv(a)

)
is S-θ-C for all a ∈ ∆.

Proof. Necessity. Let fpv : (L,⊕a∈∆λa,∆) −→ (M,⊕b∈Ωψb,Ω) be soft S-θ-C. Let a ∈ ∆. Then by
Theorem 2.1, p : (L, (⊕a∈∆λa)a) −→

(
M, (⊕b∈Ωψb)v(a)

)
is S-θ-C. However, by Theorem 3.11 of [41],

(⊕a∈∆λa)a = λa and (⊕b∈Ωψb)v(a) = ψv(a). Hence, p : (L, λa) −→
(
M, ψv(a)

)
is S-θ-C.

Sufficiency. Let p : (L, λa) −→
(
M, ψv(a)

)
be S-θ-C for all a ∈ ∆. Let H ∈ ⊕b∈Ωψb. By Theorem 2.21

of [58], we need only to show that
(

f −1
pv (H)

)
(a) ∈ (λa)θ for all a ∈ ∆. Let a ∈ ∆. Since

p : (L, λa) −→
(
M, ψv(a)

)
is S-θ-C and H (v (a)) ∈ ψv(a), then

(
f −1
pv (H)

)
(a) = q−1 (H (v (a))) ∈ (λa)θ.

Corollary 2.3. Let p : (L, α) −→ (M, γ) and v : ∆ −→ Ω be two functions where v is bijective. Then,
p : (L, α) −→ (M, γ) is S-θ-C if and only if fpv : (L, τ (α) ,∆) −→ (M, τ (γ) ,Ω) is soft S-θ-C.
Proof. For every a ∈ ∆ and b ∈ Ω, let λa = α and ψb = γ. Then, τ (α) = ⊕a∈∆λa and τ (γ) = ⊕b∈Ωψb.
By Theorem 2.2, we get the result.

In the following three examples, we apply Corollary 2.3:
Example 2.4. Let L = Z, α = {∅, L,N}, and ∆ = R. Suppose that Intαθ (N) , ∅. Then, there
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exists x ∈ Intαθ (N). So, we find V ∈ α such that x ∈ V ⊆ Clα (V) ⊆ N. Thus, V = N and,
hence, Clα (V) = L ⊆ N. Therefore, Intαθ (N) = ∅. Let p : (L, α) −→ (L, α) and v : ∆ −→ ∆ be
the identity functions. Since p−1(N) = N < αθ, then p is not S-θ-C. Therefore, by Corollary 2.3,
fpv : (L, τ (α) ,∆) −→ (L, τ (α) ,∆) not soft S-θ-C.
Example 2.5. Let L = R, α = {∅,R} ∪ {(−∞, t) : t ∈ R}, and ∆ = Z. Consider the identity functions
p : (L, α) −→ (L, α) and v : ∆ −→ ∆. Then, p is θ-C but not S-θ-C. Therefore, by Theorem 3.2 of [58]
and Corollary 2.3, fpv : (L, τ (α) ,∆) −→ (L, τ (α) ,∆) is soft θ-C but not soft S-θ-C.
Example 2.6. Let L = R, α be the usual topology on L, and ∆ = N. Consider the identity functions
p : (L, α) −→ (L, α) and v : ∆ −→ ∆. Then, αθ = α and, thus, p : (L, α) −→ (L, α) is S-θ-C. Therefore,
by Corollary 2.3, fpv : (L, τ (α) ,∆) −→ (L, τ (α) ,∆) is soft S-θ-C.
Theorem 2.7. Every soft S-θ-C function is soft δ-continuous.
Proof. Let fpv : (L, ℘,∆) −→ (M,ℵ,Ω) be soft S-θ-C. Let H ∈ ℵδ. Since ℵδ ⊆ ℵ, then H ∈ ℵ. Thus,
f −1
pv (H) ∈ ℘θ ⊆ ℘δ. It follows that fpv : (L, ℘,∆) −→ (M,ℵ,Ω) is soft δ-continuous.

One cannot reverse Theorem 2.7:
Example 2.8. Let L = R, α be the usual topology on L, γ = {∅} ∪ {U ⊆ L : L − U is countable}, and
∆ = {a, b}. Consider the identity functions p : (L, α) −→ (L, γ) and v : ∆ −→ ∆. Then, p is θ-C but not
S-θ-C. Thus, fpv : (L, τ (α) ,∆) −→ (L, τ (α) ,∆) is soft δ-continuous but not soft S-θ-C.
Theorem 2.9. Let fpv, fqu : (L, ℘,∆) −→ (M,ℵ,Ω) be soft S-θ-C functions such that (M,ℵ,Ω) is soft
Hausdorff, and let H = ∪̃

{
ax : fpv (ax) = fqu (ax)

}
. Then, H ∈ (℘θ)c.

Proof. Let by∈̃1∆− H. Then, fpv

(
by

)
, fqu

(
by

)
. Since (M,ℵ,Ω) is soft Hausdorff, then there exist

T, S ∈ ℵ such that fpv

(
by

)
∈̃T , fpu

(
by

)
∈̃S , and T ∩̃S = 0Ω. Since fpv, fqu are soft S-θ-C,

then f −1
pv (T ) , f −1

qu (S ) ∈ ℘θ.
Claim. f −1

pv (T ) ∩̃ f −1
qu (S ) ∩̃H = 0∆.

Proof of Claim. Assume, however, that in contrast, there exists dz such that fpv (dz) ∈̃T , fqu (dz) ∈̃S , and
fpv (dz) = fqu (dz). Then, fpv (dz) ∈̃T ∩̃S = 0Ω, which is a contradiction.

Therefore, we have by∈̃ f −1
pv (T ) ∩̃ f −1

qu (S ) ∈ ℘θ and by the above claim, f −1
pv (T ) ∩̃ f −1

qu (S ) ⊆̃1∆− H.
This shows that 1∆− H ∈ ℘θ. Hence, H ∈ (℘θ)c.
Theorem 2.10. Let fpv : (L, ℘,∆) −→ (M,ℵ,Ω) be soft S-θ-C injective and (M,ℵ,Ω) be soft Hausdorff.
Then, (L, ℘,∆) is soft Urysohn.
Proof. Let ax, by ∈ P (L,∆) such that ax , by. Since fpv is injective, then fpv (ax) , fpv

(
by

)
. Since

(M,ℵ,Ω) is soft Hausdorff, then there exist T, S ∈ ℵ such that fpv (ax) ∈̃T , fpv

(
by

)
∈̃S , and T ∩̃S =

0Ω. Since fpv is soft S-θ-C, then there exist U,V ∈ ℘ such that ax∈̃U, by∈̃V , fpv(Cl℘ (U))⊆̃T , and
fpv(Cl℘ (V))⊆̃S .

Therefore, Cl℘ (U) ∩̃Cl℘ (V) ⊆̃ f −1
pv

(
fpv

(
Cl℘ (U)

))
∩̃ f −1

pv

(
fpv

(
Cl℘ (V)

))
⊆̃ f −1

pv (T ) ∩̃ f −1
pv (S ) =

f −1
pv

(
T ∩̃S

)
= f −1

pv (0Ω) = 0∆.
Theorem 2.11. Let fpv : (L, ℘,∆) −→ (M,ℵ,Ω) be soft S-θ-C and injective. If (M,ℵ,Ω) is soft T0,
then (L, ℘,∆) is soft Hausdorff.
Proof. Let ax, by ∈ P (L,∆) such that ax , by. Since fpv is injective, then fpv (ax) , fpv

(
by

)
. Since

(M,ℵ,Ω) is soft T0, then there exists T ∈ ℵ such that ( fpv (ax) ∈̃T and fpv

(
by

)
∈̃1Ω − T ) or ( fpv

(
by

)
∈̃T

and fpv (ax) ∈̃1Ω − T ). Without loss of generality, we may assume that fpv (ax) ∈̃T and fpv

(
by

)
∈̃1Ω − T .

Since fpv is soft S-θ-C, then there exists U ∈ ℘ such that ax∈̃U and fpv(Cl℘ (U))⊆̃T . Therefore, we
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have ax∈̃U ∈ ℘, by∈̃
(
1∆ −Cl℘ (U)

)
∈ ℘, and U∩̃

(
1∆ −Cl℘ (U)

)
= 0∆. Hence, (L, ℘,∆) is

soft Hausdorff.
Theorem 2.12. If fp1v1 : (L, ℘,∆) −→ (M,ℵ,Ω) is soft S-θ-C and fp2v2 : (M,ℵ,Ω) −→

(
N,=,Π

)
is

soft continuous, then f(p2◦p1)(v2◦v1) is soft S-θ-C.
Proof. Let fp1v1 be soft S-θ-C and fp2v2 be soft continuous. Let H ∈ =. Since fp2v2 is soft continuous,
f −1
p2v2

(H) ∈ ℵ. Since fp1v1 is soft S-θ-C, then, f −1
p1v1

(
f −1
p2v2

(H)
)

= f −1
(p2◦p1)(v2◦v1) (H) ∈ ℘θ. This shows that

f(p2◦p1)(v2◦v1) is soft S-θ-C.
Corollary 2.13. If fp1v1 : (L, ℘,∆) −→ (M,ℵ,Ω) and fp2v2 : (M,ℵ,Ω) −→

(
N,=,Π

)
are soft S-θ-C

functions, then f(p2◦p1)(v2◦v1) is soft S-θ-C.
Proof. The proof follows from Proposition 5.3 of [57] and Theorem 2.12. For any two nonempty sets
X and Y , the projection functions g : X × Y −→ X and h : X × Y −→ Y defined by g (x, y) = x and
h (x, y) = y for all (x, y) ∈ X × Y will be denoted by πX and πY , respectively.
Theorem 2.14. Let (L, ℘,∆), (M,ℵ,Ω), and

(
N,=,Π

)
be three soft topological spaces, and let

fpv : (L, ℘,∆) −→
(
M × N, pr

(
ℵ × =

)
,Ω × Π

)
be a soft function. Then, fpv is soft S-θ-C if and only if

f(p◦πM)(v◦πΩ) : (L, ℘,∆) −→ (M,ℵ,Ω) and f(p◦πN )(v◦πΠ) : (L, ℘,∆) −→
(
N,=,Π

)
are soft S-θ-C.

Proof. Necessity. Let fpv be soft S-θ-C. Since f(πM)(πΩ) :
(
M × N, pr

(
ℵ × =

)
,Ω × Π

)
−→

(
N,=,Π

)
and

f(πN )(πΠ) :
(
M × N, pr

(
ℵ × =

)
,Ω × Π

)
−→

(
N,=,Π

)
are always soft continuous, then by

Theorem 2.12, f(p◦πM)(v◦πΩ) and f(p◦πN )(v◦πΠ) are soft S-θ-C.
Sufficiency. We will apply Proposition 5.5 of [57]. Consider the soft sub-base
{H × 1Π : H ∈ ℵ} ∪

{
1Ω × K : K ∈ =

}
of

(
M × N, pr

(
ℵ × =

)
,Ω × Π

)
. Since f(p◦πM)(v◦πΩ) and

f(p◦πN )(v◦πΠ) are soft S-θ-C, then for any H ∈ ℵ and K ∈ =, f −1
p◦v (H × 1Π) = f −1

(p◦πM)(v◦πΩ) (H) ∈ ℘θ and
f −1
p◦v (1Ω × K) = f −1

(p◦πN )(v◦πΠ) (K) ∈ ℘θ. Therefore, fpv is soft S-θ-C.

For any function g : X −→ Y , the function h : X −→ X × Y defined by h(x) = (x, g (x)) will be
denoted by g#.
Theorem 2.15. Let fpv : (L, ℘,∆) −→ (M,ℵ,Ω) be a soft function. Then,
fp#v# : (L, ℘,∆) −→ (L × M, pr(℘×ℵ),∆ ×Ω) is soft S-θ-C if and only if fpv is soft S-θ-C and (L, ℘,∆)
is soft regular.
Proof. Necessity. Let fp#v# be soft S-θ-C. Then, by Theorem 2.14,
fpv = f(p#◦πN)(v#◦πΠ) : (L, ℘,∆) −→

(
N,=,Π

)
is soft S-θ-C. To show that (L, ℘,∆) is soft regular, it is

sufficient to see that ℘ ⊆ ℘θ. Let K ∈ ℘. Since fp#v# is soft S-θ-C, then K × 1Ω ∈ pr(℘×ℵ), and, thus,
f −1
p#v# (K × 1Ω) = K ∈ ℘θ.

Sufficiency. Let fpv be soft S-θ-C and (L, ℘,∆) be soft regular. Since fpv is soft S-θ-C, then by
Proposition 5.3 of [57], fpv is soft continuous. Thus, fp#v# is soft continuous. Since (L, ℘,∆) is soft
regular, then ℘θ = ℘. Therefore, by Proposition 5.2 of [57], fq#v# is soft S-θ-C.
Lemma 2.16. Let (L, ℘,∆) and (M,ℵ,Ω) be two soft topological spaces. Then for any T ∈ S (L,∆)
and S ∈ S (M,Ω), T × S ∈ (pr (℘×ℵ))θ if and only if T ∈ ℘θ and S ∈ ℵθ.
Proof. Necessity. Let T × S ∈ (pr (℘×ℵ))θ. Let ax∈̃T and by∈̃S . Then, (a, b)(x,y) ∈̃T × S ∈ (pr (℘×ℵ))θ.
Thus, there exists G ∈ pr (℘×ℵ) such that (a, b)(x,y) ∈̃G⊆̃Clpr(℘×ℵ) (G) ⊆̃T × S . Choose U ∈ ℘ and
V ∈ ℵ such that (a, b)(x,y) ∈̃U × V⊆̃G. Since U × V⊆̃G⊆̃Clpr(℘×ℵ) (G) ⊆̃T × S , then
Cl℘ (U) × Clℵ (V) = Clpr(℘×ℵ) (U × V) ⊆̃Clpr(℘×ℵ) (G) ⊆̃T × S . Therefore, we have ax∈̃U⊆̃Cl℘ (U) ⊆̃T
and by∈̃V⊆̃Clℵ (V) ⊆̃S . Hence, T ∈ ℘θ and S ∈ ℵθ.
Sufficiency. Let T ∈ ℘θ and S ∈ ℵθ. Let (a, b)(x,y) ∈̃T × S . Then, ax∈̃T ∈ ℘θ and by∈̃S ∈ ℵθ. So, there
exist U ∈ ℘ and V ∈ ℵ such that ax∈̃U⊆̃Cl℘ (U) ⊆̃T and by∈̃V⊆̃Clℵ (V) ⊆̃S . Therefore, we have
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U × V ∈ pr (℘×ℵ) and (a, b)(x,y) ∈̃U × V⊆̃Cl℘ (U) × Clℵ (V) = Clpr(℘×ℵ) (U × V) ⊆̃T × S . This shows
that T × S ∈ (pr (℘×ℵ))θ.
Theorem 2.17. Let fp1v1 : (L, ℘,∆) −→ (M,ℵ,Ω) and fp2v2 :

(
N,=,Π

)
−→

(
O,<,Φ

)
be two soft

functions. Let p∗ : L × N −→ M × O and v∗ : ∆ × Π −→ Ω × Φ be the functions defined by
p∗(x, y) = (p1(x), p2(y)) and v∗(a, b) = (v1(a), v2(b)). Then,
fp∗v∗ :

(
L × N, pr

(
℘×=

)
,∆ × Π

)
−→

(
M × O, pr

(
ℵ×<

)
,Ω × Φ

)
is soft S-θ-C if and only if fp1v1 and

fp2v2 are soft S-θ-C.
Proof. Necessity. Let fp∗v∗ be soft S-θ-C. Let H ∈ ℵ and K ∈ <. Then, H × K ∈ pr

(
ℵ×<

)
. Thus,

f −1
p∗v∗ (H × K) = f −1

p1v1
(H) × f −1

p2v2
(K) ∈

(
pr

(
℘×=

))
θ. So, by Lemma 2.16, f −1

p1v1
(H) ∈ ℘θ and

f −1
p2v2

(K) ∈ =θ. This shows that fp1v1 and fp2v2 are soft S-θ-C.
Sufficiency. Let fp1v1 and fp2v2 be soft S-θ-C. We will apply Proposition 5.5 of [57]. Consider the soft
base (and, hence, soft sub-base)

{
H × K : H ∈ ℵ and K ∈ <

}
of

(
M × O, pr

(
ℵ×<

)
,Ω × Φ

)
. Let

H ∈ ℵ and K ∈ <. Then, f −1
p1v1

(H) ∈ ℘θ and f −1
p2v2

(K) ∈ =θ. Since f −1
q∗v∗ (H × K) = f −1

p1v1
(H) × f −1

p2v2
(K),

then by Lemma 2.16, f −1
q∗v∗ (H × K) ∈

(
pr

(
℘×=

))
θ. Therefore, fq∗v∗ is soft S-θ-C.

Theorem 2.18. Let fpv : (L, ℘,∆) −→ (M,ℵ,Ω) be soft continuous such that (M,ℵ,Ω) is soft regular.
Then fpv is soft S-θ-C.
Proof. Let fpv be soft continuous such that (M,ℵ,Ω) is soft regular. Let ax ∈ P (L,∆) and let H ∈ ℵ
such that fpv (ax) ∈̃H. Since (M,ℵ,Ω) is soft regular, then there exists K ∈ ℵ such that
fpv (ax) ∈̃K⊆̃Clℵ (K) ⊆̃H. Since fpv is soft continuous, then f −1

pv (K) ∈ ℘ and
Cl℘

(
f −1
pv (K)

)
⊆̃ f −1

pv (Clℵ (K)). Therefore, we have ax∈̃ f −1
pv (K) ∈ ℘ and

fpv

(
Cl℘

(
f −1
pv (K)

))
⊆̃ fpv

(
f −1
pv (Clℵ (K))

)
⊆̃Clℵ (K) ⊆̃H. This shows that fpv is soft S-θ-C.

For a given soft function fpv : S (L,∆) −→ S (M,Ω), the soft set
∪̃

{
(a, v (a))(x,p(x)) : a ∈ ∆ and x ∈ L

}
is called the soft graph of fpv and is denoted by G

(
fpv

)
. So,

(a, b)(x,y) ∈̃G
(

fpv

)
if and only if fpv(ax) = by if and only if p(x) = y and v (a) = b.

Definition 2.19. Let fpv : (L, ℘,∆) −→ (M,ℵ,Ω). Then, G
(

fpv

)
is said to be θ-closed with respect to

(L × M, pr (℘×ℵ) ,∆ ×Ω) if for each (a, b)(x,y) ∈̃1∆×Ω −G
(

fpv

)
, there exist T ∈ = and S ∈ ℵ such that

ax∈̃T , by∈̃S , and
(
Cl℘ (T ) ×Clℵ (S )

)
∩̃G

(
fpv

)
= 0∆×Ω.

Definition 2.20. Let (L, ℘,∆) be a soft topological space, and K ∈ S (L,∆). Then, K is said to be a soft
H-set if for every A ⊆ ℘ such that K⊆̃∪̃A∈AA, there exists a finite subcollection A1 ⊆ A such that
K⊆̃∪̃A∈A1Cl℘ (A).
Theorem 2.21. Let fpv : (L, ℘,∆) −→ (M,ℵ,Ω) be a soft function such that G

(
fpv

)
is θ-closed with

respect to (L × M, pr (℘×ℵ) ,∆ ×Ω). If (M,ℵ,Ω) is soft semi-regular and every soft regular-closed set
in (M,ℵ,Ω) is a soft H-set, then fpv is soft S-θ-C.
Proof. Let ax ∈ P(L,∆) and let G ∈ ℵ such that fpv (ax) ∈̃G. Since (M,ℵ,Ω) is soft semi-regular, there
exists K ∈ RO (ℵ) such that fpv (ax) ∈̃K⊆̃G. For each by∈̃1Ω − K, (a, b)(x,y) ∈̃1∆×Ω − G

(
fpv

)
and by

assumption, we find T
(
by

)
∈ ℘ and S

(
by

)
∈ ℵ such that ax∈̃T

(
by

)
, by∈̃S

(
by

)
, and(

Cl℘
(
T

(
by

))
×Clℵ

(
S

(
by

)))
∩̃G

(
fpv

)
= 0∆×Ω or that fpv

(
Cl℘

(
T

(
by

)))
∩̃Clℵ

(
S

(
by

))
= 0Ω. Since

1Ω − K ∈ RO (ℵ) and 1Ω − K⊆̃∪̃by∈̃1Ω−KS
(
by

)
, then by assumption, there exists a finite subset F ⊆

P (M,Ω) such that dz∈̃1Ω − K for every dz ∈ F and 1Ω − K⊆̃∪̃dz∈FClℵ
(
S

(
by

))
. Let N = ∩̃dz∈FT

(
by

)
.

Then, we have ax∈̃N ∈ ℘ and
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fpv
(
Cl℘ (N)

)
= fpv

(
Cl℘

(
∩̃dz∈FT

(
by

)))
⊆̃ fpv

(
∩̃dz∈FCl℘

(
T

(
by

)))
⊆̃ ∩̃dz∈F fpv

(
Cl℘

(
T

(
by

)))
⊆̃ ∩̃dz∈F

(
1Ω −Clℵ

(
S

(
by

)))
= 1Ω −

(
∪̃dz∈FClℵ

(
S

(
by

)))
⊆̃ K
⊆̃ G.

This shows that fpv is soft S-θ-C.
Definition 2.22. Let fpv : (L, ℘,∆) −→ (M,ℵ,Ω). Then, G

(
fpv

)
is said to be θ-closed with respect to

(L, ℘,∆) if for each (a, b)(x,y) ∈̃1∆×Ω − G
(

fpv

)
, there exist T ∈ = and S ∈ ℵ such that ax∈̃T , by∈̃S , and(

Cl℘ (T ) × S
)
∩̃G

(
fpv

)
= 0∆×Ω.

Definition 2.23. A soft topological space (L, ℘,∆) is said to be soft rim-compact if (L, ℘,∆) has a soft
base K such that Bd℘ (K) is soft compact for every K ∈ K .
Theorem 2.24. Let fpv : (L, ℘,∆) −→ (M,ℵ,Ω) be a soft θ-C function such that (M,ℵ,Ω) is soft
rim-compact and G

(
fpv

)
is θ-closed with respect to (L, ℘,∆). Then, fpv is soft S-θ-C.

Proof. Let ax ∈ P(L,∆) and let G ∈ ℵ such that fpv (ax) ∈̃G. Since (M,ℵ,Ω) is soft rim-compact, there
exists K ∈ ℵ such that fpv (ax) ∈̃K⊆̃G and Bd℘ (K) is soft compact. For each by∈̃Bd℘ (K),
(a, b)(x,y) ∈̃1∆×Ω − G

(
fpv

)
and by assumption, we find T

(
by

)
∈ ℘ and S

(
by

)
∈ ℵ such that ax∈̃T

(
by

)
,

by∈̃S
(
by

)
, and

(
Cl℘

(
T

(
by

))
× S

(
by

))
∩̃G

(
fpv

)
= 0∆×Ω or that fpv

(
Cl℘

(
T

(
by

)))
∩̃S

(
by

)
= 0Ω. Since

Bd℘ (K) is soft compact and Bd℘ (K) ⊆̃∪̃by∈̃Bd℘(K)S
(
by

)
, then by assumption, there exists a finite subset

F ⊆ P (M,Ω) such that dz∈̃Bd℘ (K) for every dz ∈ F and Bd℘ (K) ⊆̃∪̃dz∈FS
(
by

)
. Since fpv is soft θ-C,

there exists N ∈ ℘ such that ax∈̃N and fpv
(
Cl℘ (N)

)
⊆̃Clℵ (K). Let R = N∩̃

(
∩̃dz∈FT

(
by

))
. Then, we

have ax∈̃N ∈ ℘ and Cl℘ (R) = Cl℘
(
N∩̃

(
∩̃dz∈FT

(
by

)))
⊆̃Cl℘ (N) ∩̃

(
∩̃dz∈FCl℘

(
T

(
by

)))
. Thus,

fpv
(
Cl℘ (R)

)
∩̃ (1Ω − K) = fpv

(
Cl℘ (R)

)
∩̃Bd℘ (K)

⊆̃ ∪̃dz∈F

(
fpv

(
Cl℘ (R)

)
∩̃S

(
by

))
⊆̃ ∪̃dz∈F

(
fpv

(
Cl℘

(
T

(
by

)))
∩̃S

(
by

))
= 0Ω.

Therefore, fpv
(
Cl℘ (R)

)
⊆̃K⊆̃G. This shows that fpv is soft S-θ-C.

Theorem 2.25. Let fpv : (L, ℘,∆) −→ (M,ℵ,Ω) be a soft function such that (M,ℵ,Ω) is soft compact
and G

(
fpv

)
is θ-closed with respect to (L, ℘,∆). Then, fpv is soft S-θ-C.

Proof. Let ax ∈ P(L,∆) and let G ∈ ℵ such that fpv (ax) ∈̃G. For each by∈̃1Ω − G,
(a, b)(x,y) ∈̃1∆×Ω − G

(
fpv

)
and by assumption, we find T

(
by

)
∈ = and S

(
by

)
∈ ℵ such that ax∈̃T

(
by

)
,

by∈̃S
(
by

)
, and

(
Cl℘

(
T

(
by

))
× S

(
by

))
∩̃G

(
fpv

)
= 0∆×Ω or that fpv

(
Cl℘

(
T

(
by

)))
∩̃S

(
by

)
= 0Ω. Since

(M,ℵ,Ω) is soft compact and 1Ω − G ∈ ℵc, then 1Ω − G is soft compact. Since
1Ω − G⊆̃∪̃by∈̃Bd℘(K)S

(
by

)
, then there exists a finite subset F ⊆ P (M,Ω) such that dz∈̃1Ω − G for every

dz ∈ F and 1Ω − G⊆̃∪̃dz∈FS
(
by

)
. Now, we have fpv

(
∩̃dz∈FCl℘

(
T

(
by

)))
∩̃

(
∪̃dz∈FS

(
by

))
= 0Ω. Let

N = ∩̃dz∈FT
(
by

)
. Then, we have ax∈̃N ∈ ℘ and fpv

(
Cl℘ (N)

)
⊆̃G. This shows that fpv is soft S-θ-C.

Theorem 2.26. If fpv : (L, ℘,∆) −→ (M,ℵ,Ω) is soft S-θ-C and (M,ℵ,Ω) is soft Hausdorff, then
G

(
fpv

)
is θ-closed with respect to (L, ℘,∆).
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Proof. Let (a, b)(x,y) ∈̃1∆×Ω −G
(

fpv

)
. Then, fpv (ax) , by. Since (M,ℵ,Ω) is soft Hausdorff, then there

exist T, S ∈ ℵ such that fpv (ax) ∈̃T , by∈̃S , and T ∩̃S = 0Ω. Since fpv is soft S-θ-C, then there exists
N ∈ ℘ such that ax∈̃N and fpv

(
Cl℘ (N)

)
⊆̃T . Therefore, fpv

(
Cl℘ (N)

)
∩̃S = 0Ω and, hence,(

Cl℘ (N) × S
)
∩̃G

(
fpv

)
= 0∆×Ω. This shows that G

(
fpv

)
is θ-closed with respect to (L, ℘,∆).

Theorem 2.27. Let (M,ℵ,Ω) be soft Hausdorff and soft compact. Then, fpv : (L, ℘,∆) −→ (M,ℵ,Ω)
is soft S-θ-C if and only if G

(
fpv

)
is θ-closed with respect to (L, ℘,∆).

Proof. The proof follows from Theorems 2.25 and 2.26.
Theorem 2.28. Let fpv : (L, ℘,∆) −→ (M,ℵ,Ω) be a soft strongly θ-C function. If K ∈ S (L,∆) such
that K is a soft H-set, then fpv(K) is soft compact.
Proof. Let A ⊆ ℵ such that fpv(K)⊆̃∪̃A∈AA. For each dx∈̃K, there is A (dx) ∈ A such that
fpv (dx) ∈̃A (dx). Since fpv is soft S-θ-C, then there exists N (dx) such that fpv(Cl℘ (N (dx)))⊆̃A (dx).
Since K is a soft H-set and K⊆̃∪̃dx∈̃KN (dx), then there exists a finite subset F ⊆ P (L,∆) such that
dz∈̃K for every dz ∈ F and K⊆̃∪̃dz∈FCl℘ (N (dx)). Thus,
fpv(K)⊆̃ fpv

(
∪̃dz∈FCl℘ (N (dx))

)
= ∪̃dz∈F fpv

(
Cl℘ (N (dx))

)
⊆̃∪̃dz∈F fpv (A (dx)). Consequently, fpv(K) is

soft compact.

3. Soft almost strongly θ-continuity

In this section, we define “soft almost strongly θ-continuous functions”. We present many
characterizations of them, and we investigate the correspondence between them and their analog
concept in general topology. Also, we show that this class of soft functions lies strictly between the
classes of soft strongly θ-continuous functions and soft δ-continuous functions. Moreover, we provide
several results on soft preservation and composition related to almost soft strong θ-continuity. In
addition to these, we give several suitable conditions under which a certain kind of soft continuous
function is soft almost strongly θ-continuous.
Definition 3.1. A soft function fpv : (L, ℘,∆) −→ (M,ℵ,Ω) is called soft almost strongly θ-continuous
(soft A-S-θ-C) if for ax ∈ P(L,∆) and each H ∈ ℵ such that fpv (ax) ∈ H, we find K ∈ ℘ such that
ax∈̃K and fpv(Cl℘ (K))⊆̃Intℵ (Clℵ (H)).
Theorem 3.2. The following are equivalent for the soft function fpv : (L, ℘,∆) −→ (M,ℵ,Ω):

(a) fpv is soft A-S-θ-C.
(b) For every H ∈ RO (ℵ), f −1

pv (H) ∈ ℘θ.
(c) For every G ∈ RC (ℵ), f −1

pv (G) ∈ (℘θ)c.
(d) For each ax ∈ P(L,∆) and each H ∈ RO (ℵ) such that fpv (ax) ∈̃H, we find K ∈ ℘ such that ax∈̃K

and fpv(Cl℘ (K))⊆̃H.
(e) For every N ∈ ℵδ, f −1

pv (N) ∈ ℘θ.
(f) For every C ∈ (ℵδ)c, f −1

pv (C) ∈ (℘θ)c.

(g) For every T ∈ S (L,∆), fpv(Cl℘θ(T ))⊆̃Clℵδ
(

fpv(T )
)
.

(h) For every N ∈ S (M,Ω), Cl℘θ
(

f −1
pv (N)

)
⊆̃ f −1

pv (Clℵδ (N)).
Proof. (a) −→ (b): Let H ∈ RO (ℵ) and let ax∈̃ f −1

pv (H). Then, fpv(ax)̃∈H. So by (a), there exists K ∈ ℘
such that ax∈̃K and fpv(Cl℘ (K))⊆̃Intℵ (Clℵ (H)) = H. Thus, ax∈̃K⊆̃Cl℘ (K) ⊆̃ f −1

pv (H). This shows that
f −1
pv (H) ∈ ℘θ.

(b) −→ (c): Let G ∈ RC (ℵ). Then, 1Ω −G ∈ RO (ℵ). So, by (b), f −1
pv (1Ω −G) = 1∆ − f −1

pv (G) ∈ ℘θ.
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Hence, f −1
pv (G) ∈ (℘θ)c.

(c) −→ (d): Let ax ∈ P(L,∆) and let H ∈ RO (ℵ) such that fpv (ax) ∈̃H. Then, 1Ω − H ∈ RC (ℵ). So,
by (c), f −1

pv (1Ω − H) = 1∆ − f −1
pv (H) ∈ (℘θ)c. Thus, f −1

pv (H) ∈ ℘θ. Since ax∈̃ f −1
pv (H) ∈ ℘θ, there exists

K ∈ ℘ such that ax∈̃K⊆̃Cl℘ (K) ⊆̃ f −1
pv (H). Hence, fpv(Cl℘ (K))⊆̃ fpv

(
f −1
pv (H)

)
⊆̃H.

(d) −→ (e): Let N ∈ ℵδ and let ax∈̃ f −1
pv (N). Since fpv(ax)̃∈N ∈ ℵδ, there exists H ∈ RO (ℵ)

such that fpv (ax) ∈̃H⊆̃N. So, by (d), there exists K ∈ ℘ such that ax∈̃K and fpv(Cl℘ (K))⊆̃H. Thus,
ax∈̃K⊆̃Cl℘ (K) ⊆̃ f −1

pv (H)⊆̃N. This shows that f −1
pv (N) ∈ ℘θ.

(e) −→ (f): Let C ∈ (ℵδ)c. Then, 1Ω − C ∈ ℵδ. So, by (e), f −1
pv (1Ω − C) = 1∆ − f −1

pv (C) ∈ ℘θ. Hence,
f −1
pv (C) ∈ (℘θ)c.

(f) −→ (g): Let T ∈ S (L,∆). Then, Clℵδ
(

fpv(T )
)
∈ (ℵδ)c. So, by (f), f −1

pv (Clℵδ
(

fpv(T )
)
) ∈ (℘θ)c.

Since T ⊆̃ f −1
pv (Clℵδ

(
fpv(T )

)
), Cl℘θ(T )⊆̃ f −1

pv (Clℵδ
(

fpv(T )
)
) and, hence, fpv(Cl℘θ(T ))⊆̃Clℵδ

(
fpv(T )

)
.

(g) −→ (h): Let N ∈ S (M,Ω). Then, by (f), fpv(Cl℘θ( f −1
pv (N)))⊆̃Clℵδ

(
fpv( f −1

pv (N))
)
⊆̃Clℵδ (N). Thus,

Cl℘θ
(

f −1
pv (N)

)
⊆̃ f −1

pv

(
fpv(Cl℘θ( f −1

pv (N)))
)
⊆̃ f −1

pv (Clℵδ (N)).
(h) −→ (a): Let ax ∈ P(L,∆) and let H ∈ ℵ such that fpv (ax) ∈ H. Let C = 1Ω − Intℵ (Clℵ (H)).

Then, C ∈ RC (ℵ) ⊆ (ℵδ)c. By (h), Cl℘θ
(

f −1
pv (C)

)
⊆̃ f −1

pv (Clℵδ (C)) = f −1
pv (C). Thus, f −1

pv (C) ∈ (℘θ)c. Since
ax∈̃ f −1

pv (Intℵ (Clℵ (H))) ∈ ℘θ, there exists K ∈ ℘ such that ax∈̃K⊆̃Cl℘ (K))⊆̃ f −1
pv (Intℵ (Clℵ (H))). Hence,

fpv(Cl℘ (K))⊆̃ fpv

(
f −1
pv (Intℵ (Clℵ (H)))

)
⊆̃Intℵ (Clℵ (H)). This shows that fpv is soft A-S-θ-C.

Theorem 3.3. For a soft function fpv : (L, ℘,∆) −→ (M,ℵ,Ω), the following are equivalent:
(a) fpv : (L, ℘,∆) −→ (M,ℵ,Ω) is soft A-S-θ-C.
(b) fpv : ( L, ℘θ,∆) −→ (M,ℵ,Ω) is soft almost continuous.
(c) fpv : ( L, ℘θ,∆) −→ (M,ℵδ,Ω) is soft continuous.

Proof. (a) −→ (b): Let H ∈ RO (ℵ). Then, by (a) and Theorem 3.2 (b), f −1
pv (H) ∈ ℘θ. Thus,

by Theorem 3.8 (b) of [54], fpv : ( L, ℘θ,∆) −→ (M,ℵ,Ω) is soft almost continuous.
(b) −→ (c): Let G ∈ ℵδ. Then, there exists H ⊆ RO (ℵ) such that G = ∪̃H∈HH. By (a) and

Theorem 3.8 (b) of [54], f −1
pv (H) ∈ ℘θ for all H ∈ H . Thus, f −1

pv (G) = f −1
pv

(
∪̃H∈HH

)
= ∪̃H∈H f −1

pv (H) ∈
℘θ. This shows that fpv : ( L, ℘θ,∆) −→ (M,ℵδ,Ω) is soft continuous.

(c) −→ (a): The proof follows from Theorem 3.2 (e).
Theorem 3.4. Let {(L, λa) : a ∈ ∆} and {(M, ψb) : b ∈ Ω} be two collections of topological spaces. Let
p : L −→ M and v : ∆ −→ Ω be functions where v is bijective. Then, fpv : (L,⊕a∈∆λa,∆) −→
(M,⊕b∈Ωψb,Ω) is soft A-S-θ-C if and only if p : (L, λa) −→

(
M, ψv(a)

)
is A-S-θ-C for all a ∈ ∆.

Proof. Necessity. Let fpv : (L,⊕a∈∆λa,∆) −→ (M,⊕b∈Ωψb,Ω) be soft A-S-θ-C. Let a ∈ ∆. Let
U ∈ RO

(
ψv(a)

)
. Then, by Theorem 14 of [59], (v (a))U ∈ RO (⊕b∈Ωψb). So, by Theorem 3.2 (b),

f −1
pv ((v (a))U) ∈ (⊕a∈∆λa)θ. By Theorem 2.21 of [58],

(
f −1
pv ((v (a))U)

)
(a) = p−1 (U) ∈ (λa)θ. Thus, by

Theorem 3.1 (b) of [46], p : (L, λa) −→
(
M, ψv(a)

)
is A-S-θ-C.

Sufficiency. Let p : (L, λa) −→
(
M, ψv(a)

)
be A-S-θ-C for all a ∈ ∆. Let H ∈ RO (⊕b∈Ωψb). By

Theorem 2.21 of [58], we need only to show that
(

f −1
pv (H)

)
(a) ∈ (λa)θ for all a ∈ ∆. Let a ∈ ∆. Since

H ∈ RO (⊕b∈Ωψb), by Theorem 14 of [59], H(v(a)) ∈ RO
(
ψv(a)

)
. Since p : (L, λa) −→

(
M, ψv(a)

)
is

A-S-θ-C and H (v (a)) ∈ RO
(
ψv(a)

)
, by Theorem 3.1 (b) of [46],

(
f −1
pv (H)

)
(a) = p−1 (H (v (a))) ∈ (λa)θ.

Corollary 3.5. Let p : (L, α) −→ (M, γ) and v : ∆ −→ Ω be two functions where v is bijective. Then,
p : (L, α) −→ (M, γ) is A-S-θ-C if and only if fpv : (L, τ (α) ,∆) −→ (M, τ (γ) ,Ω) is soft A-S-θ-C.
Proof. For every a ∈ ∆ and b ∈ Ω, let λa = α and ψb = γ. Then, τ (α) = ⊕a∈∆λa and τ (γ) = ⊕b∈Ωψb.
By Theorem 3.4, we get the result.

AIMS Mathematics Volume 9, Issue 6, 16687–16703.



16697

Theorem 3.6. Every soft S-θ-C is soft A-S-θ-C.
Proof. Let fpv : (L, ℘,∆) −→ (M,ℵ,Ω) be soft S-θ-C. Let G ∈ RO (℘) ⊆ ℘. Then, by Theorem 5.2
of [57], f −1

pv (G) ∈ ℘θ. Therefore, by Theorem 3.2 (b), fpv is soft A-S-θ-C.
The example below shows that the inverse of Theorem 3.6 is not always true in general.
Example 3.7. Let L = {1, 2, 3, 4}, M = {5, 6, 7, 8}, α = {∅, L, {3} , {1, 2} , {1, 2, 3}},
γ = {∅,M, {5} , {7} , {5, 6} , {5, 7} , {5, 6, 7} , {5, 7, 8}}, and ∆ = Q. Define p : (L, α) −→ (M, γ) and
v : ∆ −→ ∆ by p (1) = p (2) = 6, p (3) = p (4) = 5, v (a) = b, and v (b) = a. Then, fpv is soft A-S-θ-C,
but it is not soft S-θ-C.
Theorem 3.8. Every soft A-S-θ-C is soft δ-continuous.
Proof. Let fpv : (L, ℘,∆) −→ (M,ℵ,Ω) be soft A-S-θ-C. Let G ∈ RO (℘). Then, by Theorem 3.2 (b),
f −1
pv (G) ∈ ℵθ ⊆ ℵδ. Therefore, by Theorem 6.2 (7) of [49], fpv is soft δ-continuous.

The example below shows that the inverse of Theorem 3.8 is not always true in general.
Example 3.9. Let L, α, ∆, and v : ∆ −→ ∆ be as in Example 3.7. Let M = {5, 6, 7} and γ =

{∅,M, {5} , {6} , {5, 6}}. Define p : (L, α) −→ (M, γ) by p (1) = p (2) = 6, p (3) = p (4) = 7. Then, fpv is
soft δ-continuous, but it is not soft A-S-θ-C.
Theorem 3.10. Every soft δ-continuous is soft θ-C.
Proof. The proof follows directly from Theorems 7 and 8 of [19].

The following corollary follows from Theorems 3.8 and 3.10.
Corollary 3.11. Every soft A-S-θ-C is soft θ-C.

The example below shows that the inverse of Theorem 3.10 is not always true in general.
Example 3.12. Let L = {1, 2, 3}, M = {5, 6, 7, 8}, α = {∅, L, {1} , {3} , {1, 2} , {1, 3}},
γ = {∅, L, {1} , {3} , {1, 3}}, and ∆ = R. Consider the identity functions p : (L, α) −→ (L, γ) and
v : ∆ −→ ∆. Then, fpv is soft θ-C, but it is not soft δ-continuous.
Theorem 3.13. Let fpv : (L, ℘,∆) −→ (M,ℵ,Ω) be soft continuous such that (L, ℘,∆) is soft regular.
Then, fpv is soft S-θ-C.
Proof. Let fpv be soft continuous such that (M,ℵ,Ω) is soft regular. Let ax ∈ P(L,∆) and let H ∈ ℵ
such that fpv (ax) ∈̃H. Since fpv is soft continuous, there exists K ∈ ℵ such that ax∈̃K and fpv (K) ⊆̃H.
Since (M,ℵ,Ω) is soft regular, there exists G ∈ ℘ such that ax∈̃G⊆̃Clℵ (G) ⊆̃K. Thus, we have
ax∈̃G ∈ ℘ and fpv (G) ⊆̃ fpv (Clℵ (G)) ⊆̃H. Therefore, fpv is soft S-θ-C.
Theorem 3.14. Let fpv : (L, ℘,∆) −→ (M,ℵ,Ω) be soft δ-continuous such that (L, ℘,∆) is soft almost
regular. Then, fpv is soft A-S-θ-C.
Proof. Let fpv be soft δ-continuous such that (M,ℵ,Ω) is soft almost regular. Let ax ∈ P(L,∆) and let
H ∈ RO (ℵ) such that fpv (ax) ∈̃H. Since fpv is soft δ-continuous, by Theorem 6.2 (2) of [49], there
exists K ∈ RO (ℵ) such that ax∈̃K and fpv (K) ⊆̃H. Since (M,ℵ,Ω) is soft almost regular, by
Theorem 3.4 (2) of [52], there exists G ∈ RO (℘) ⊆ ℘ such that ax∈̃G⊆̃Clℵ (G) ⊆̃K. Thus, we have
ax∈̃G ∈ ℘ and fpv (Clℵ (G)) ⊆̃ fpv (K) ⊆̃H. Therefore, by Theorem 3.2 (d), fpv is soft A-S-θ-C.
Theorem 3.15. Let fpv : (L, ℘,∆) −→ (M,ℵ,Ω) be soft θ-C such that (M,ℵ,Ω) is soft almost regular.
Then, fpv is soft A-S-θ-C.
Proof. Let fpv be soft θ-C such that (M,ℵ,Ω) is soft almost regular. To show that fpv is soft A-S-θ-C,
we will apply Theorem 3.2 (d). Let ax ∈ P(L,∆) and let H ∈ RO (ℵ) such that fpv (ax) ∈̃H. Since
(M,ℵ,Ω) is soft almost regular, there exists K ∈ RO (ℵ) such that fpv (ax) ∈̃K⊆̃Clℵ (K) ⊆̃H. Since
fpv is soft θ-C, there exists G ∈ ℘ such that ax∈̃G and fpv

(
Cl℘(G)

)
⊆̃Clℵ (K) ⊆̃H. This shows that fpv is

soft A-S-θ-C.
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The following result follows from Theorems 3.10 and 3.15:
Corollary 3.16. Let fpv : (L, ℘,∆) −→ (M,ℵ,Ω) be soft δ-continuous such that (M,ℵ,Ω) is soft
almost regular. Then, fpv is soft A-S-θ-C.
Theorem 3.17. Let fpv : (L, ℘,∆) −→ (M,ℵ,Ω) be soft A-S-θ-C such that (M,ℵ,Ω) is soft
semi-regular. Then, fpv is soft S-θ-C.
Proof. Let fpv be soft A-S-θ-C such that (M,ℵ,Ω) is soft semi-regular. Let H ∈ ℵ. Since (M,ℵ,Ω) is
soft semi-regular, ℵδ = ℵ. So, H ∈ ℵδ. Since fpv be soft A-S-θ-C, by Theorem 3.2 (b), f −1

pv (H) ∈ ℘θ.
Therefore, by Proposition 5.2 of [57], fpv is soft S-θ-C.
Corollary 3.18. Let fpv : (L, ℘,∆) −→ (M,ℵ,Ω) be soft A-S-θ-C such that (M,ℵ,Ω) is soft regular.
Then, fpv is soft S-θ-C.
Theorem 3.19. If fp1v1 : (L, ℘,∆) −→ (M,ℵ,Ω) is soft S-θ-C and fp2v2 : (M,ℵ,Ω) −→

(
N,=,Π

)
is

soft almost continuous, then f(p2◦p1)(v2◦v1) is soft A-S-θ-C.
Proof. Let fp1v1 be soft S-θ-C and fp2v2 be soft almost continuous. Let H ∈ RO

(
=
)
. Since fp2v2 is soft

almost continuous, by Theorem 3.8 (b) of [54], f −1
p2v2

(H) ∈ ℵ. Since fp1v1 is soft S-θ-C,
f −1
p1v1

(
f −1
p2v2

(H)
)

= f −1
(p2◦p1)(v2◦v1) (H) ∈ ℘θ. This shows that f(p2◦p1)(v2◦v1) is soft A-S-θ-C.

Theorem 3.20. If fp1v1 : (L, ℘,∆) −→ (M,ℵ,Ω) is soft A-S-θ-C and fp2v2 : (M,ℵ,Ω) −→
(
N,=,Π

)
is

soft δ-continuous, then f(p2◦p1)(v2◦v1) is soft A-S-θ-C.
Proof. Let fp1v1 be soft A-S-θ-C and fp2v2 be soft δ-continuous. Let H ∈ RO

(
=
)
. Since fp2v2 is soft

δ-continuous, by Theorem 6.2 (7) of [49], f −1
p2v2

(H) ∈ ℵδ. Since fp1v1 is soft A-S-θ-C, by
Theorem 3.2 (e), f −1

p1v1

(
f −1
p2v2

(H)
)

= f −1
(p2◦p1)(v2◦v1) (H) ∈ ℘θ. This shows that f(p2◦p1)(v2◦v1) is soft A-S-θ-C.

The following result follows from Theorems 3.8 and 3.20:
Corollary 3.21. The soft composition of two soft A-S-θ-C functions is soft A-S-θ-C.
Theorem 3.22. Let fpv : (L, ℘,∆) −→ (M,ℵ,Ω) be soft A-S-θ-C injective and (M,ℵ,Ω) be soft
Hausdorff. Then, (L, ℘,∆) is soft Urysohn.
Proof. Let ax, by ∈ P (L,∆) such that ax , by. Since fpv is injective, then fpv (ax) , fpv

(
by

)
. Since

(M,ℵ,Ω) is soft Hausdorff, then there exist T, S ∈ ℵ such that fpv (ax) ∈̃T , fpv

(
by

)
∈̃S , and T ∩̃S = 0Ω.

It is not difficult to check that Intℵ (Clℵ (T )) ∩̃Intℵ (Clℵ (S )) = 0Ω. Since fpv : (L, ℘,∆) −→ (M,ℵ,Ω)
is soft A-S-θ-C, there exist H,K ∈ ℘ such that ax∈̃U, by∈̃V , fpv

(
Cl℘ (U)

)
⊆̃Intℵ (Clℵ (T )), and

fpv
(
Cl℘ (V)

)
⊆̃Intℵ (Clℵ (S )). Therefore,

Cl℘ (U) ∩̃Cl℘ (V) ⊆̃ f −1
pv

(
fpv

(
Cl℘ (U)

))
∩̃ f −1

pv

(
fpv

(
Cl℘ (V)

))
⊆̃ f −1

pv (Intℵ (Clℵ (T ))) ∩̃ f −1
pv (Intℵ (Clℵ (S ))) =

f −1
pv

(
Intℵ (Clℵ (T )) ∩̃Intℵ (Clℵ (S ))

)
= f −1

pv (0Ω) = 0∆. This shows that (L, ℘,∆) is soft Urysohn.
Definition 3.23. A soft topological space (L, ℘,∆) is called soft weakly Hausdorff if for each
ax ∈ P(L,∆), ax = ∩̃

{
G : G ∈ RC(℘) and ax∈̃G

}
.

Theorem 3.24. Let fpv : (L, ℘,∆) −→ (M,ℵ,Ω) be soft A-S-θ-C injective and (M,ℵ,Ω) be soft
weakly Hausdorff. Then, (L, ℘,∆) is soft Hausdorff.
Proof. Let ax, by ∈ P (L,∆) such that ax , by. Since fpv is injective, then fpv (ax) , fpv

(
by

)
. Since

(M,ℵ,Ω) is soft weakly Hausdorff, then there exist T ∈ RC(ℵ) such that fpv

(
by

)
∈̃T and

fpv (ax) ∈̃1Ω − T ∈ RO(ℵ). Since fpv soft A-S-θ-C, by Theorem 3.2 (d), there exists K ∈ ℘ such that
ax∈̃K and fpv(Cl℘ (K))⊆̃1Ω − T . So, we have by∈̃ f −1

pv (T ) ⊆̃1Ω − Cl℘ (K). This shows that (L, ℘,∆) is
soft Hausdorff.
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4. Conclusions

Uncertainty is a part of many of the things we deal with every day. Soft set theory and its related
concepts are among the important ideas developed to deal with uncertainty. Soft topology is among the
frameworks to emerge from soft set theory. This work addresses the concept of soft continuity, which
is one of the most important concepts in soft topology.

In this paper, we investigate the correspondence between soft strongly θ-continuous functions and
their analog concept in general topology (Theorems 2.1, 2.2, and Corollary 2.3). Also, we show that
soft strong θ-continuity is strictly stronger than soft δ-continuity (Theorem 2.7 and Example 2.8).
Moreover, we provide two new characterizations of soft strong θ-continuity (Theorems 2.15
and 2.27). Furthermore, we give several results on soft preservation (Theorems 2.10, 2.11 and 2.28),
composition (Theorems 2.12, 2.14, and Corollary 2.13), and products (Theorem 2.17) related to soft
strong θ-continuity. Furthermore, we give several suitable conditions under which a certain kind of
soft continuous function is soft strongly θ-continuous (Theorems 2.18, 2.21, 2.24, 2.25, 3.13
and 3.17). On the other hand, we define and explore soft almost strongly θ-continuous functions
(Definition 3.1). We present many characterizations of them (Theorems 3.2 and 3.3), and we
investigate the correspondence between them and their analog concept in general topology
(Theorem 3.4 and Corollary 3.5). Also, we show that this class of soft functions lies strictly between
the classes of soft strongly θ-continuous functions and soft δ-continuous functions (Theorems 3.6, 3.8
and Examples 3.7, 3.9). Moreover, we give several suitable conditions under which a certain kind of
soft continuous function is soft almost strongly θ-continuous (Theorems 3.14 and 3.15). In addition to
these, we provide several results on soft composition (Theorems 3.19 and 3.20) and preservation
(Theorems 3.22 and 3.24) related to almost soft strong θ-continuity.

Future studies might examine the following subjects: (1) Defining soft strongly δ-continuous
functions; (2) defining strongly θ-semicontinuous functions; (3) applying our recently developed
concepts of soft continuity to a “decision-making problem”.
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