We numerically investigate the possibility of defining Stabilization-Free Virtual Element discretizations–i.e., Virtual Element Method discretizations without an additional non-polynomial non-operator-preserving stabilization term–of advection-diffusion problems in the advection-dominated regime, considering a Streamline Upwind Petrov-Galerkin stabilized formulation of the scheme. We present numerical tests that assess the robustness of the proposed scheme and compare it with a standard Virtual Element Method.
Citation: Andrea Borio, Martina Busetto, Francesca Marcon. SUPG-stabilized stabilization-free VEM: a numerical investigation[J]. Mathematics in Engineering, 2024, 6(1): 173-191. doi: 10.3934/mine.2024008
[1] | Huawei Huang, Xin Jiang, Changwen Peng, Geyang Pan . A new semiring and its cryptographic applications. AIMS Mathematics, 2024, 9(8): 20677-20691. doi: 10.3934/math.20241005 |
[2] | Hailun Wang, Fei Wu, Dongge Lei . A novel numerical approach for solving fractional order differential equations using hybrid functions. AIMS Mathematics, 2021, 6(6): 5596-5611. doi: 10.3934/math.2021331 |
[3] | Shousheng Zhu . Double iterative algorithm for solving different constrained solutions of multivariate quadratic matrix equations. AIMS Mathematics, 2022, 7(2): 1845-1855. doi: 10.3934/math.2022106 |
[4] | Miloud Sadkane, Roger Sidje . Computing a canonical form of a matrix pencil. AIMS Mathematics, 2024, 9(5): 10882-10892. doi: 10.3934/math.2024531 |
[5] | Zahra Pirouzeh, Mohammad Hadi Noori Skandari, Kamele Nassiri Pirbazari, Stanford Shateyi . A pseudo-spectral approach for optimal control problems of variable-order fractional integro-differential equations. AIMS Mathematics, 2024, 9(9): 23692-23710. doi: 10.3934/math.20241151 |
[6] | Yinlan Chen, Min Zeng, Ranran Fan, Yongxin Yuan . The solutions of two classes of dual matrix equations. AIMS Mathematics, 2023, 8(10): 23016-23031. doi: 10.3934/math.20231171 |
[7] | Waleed Mohamed Abd-Elhameed, Abdullah F. Abu Sunayh, Mohammed H. Alharbi, Ahmed Gamal Atta . Spectral tau technique via Lucas polynomials for the time-fractional diffusion equation. AIMS Mathematics, 2024, 9(12): 34567-34587. doi: 10.3934/math.20241646 |
[8] | Emrah Polatlı . On some properties of a generalized min matrix. AIMS Mathematics, 2023, 8(11): 26199-26212. doi: 10.3934/math.20231336 |
[9] | Jin Li . Barycentric rational collocation method for semi-infinite domain problems. AIMS Mathematics, 2023, 8(4): 8756-8771. doi: 10.3934/math.2023439 |
[10] | Samia Bushnaq, Kamal Shah, Sana Tahir, Khursheed J. Ansari, Muhammad Sarwar, Thabet Abdeljawad . Computation of numerical solutions to variable order fractional differential equations by using non-orthogonal basis. AIMS Mathematics, 2022, 7(6): 10917-10938. doi: 10.3934/math.2022610 |
We numerically investigate the possibility of defining Stabilization-Free Virtual Element discretizations–i.e., Virtual Element Method discretizations without an additional non-polynomial non-operator-preserving stabilization term–of advection-diffusion problems in the advection-dominated regime, considering a Streamline Upwind Petrov-Galerkin stabilized formulation of the scheme. We present numerical tests that assess the robustness of the proposed scheme and compare it with a standard Virtual Element Method.
The importance of existence and uniqueness theorems for initial value and boundary value problems (IVP and BVP) involving the classical derivative operator is indisputable because, without them, one cannot understand modeled systems correctly and make predictions how they behave. Recently, with the popularity of fractional derivative operators such as Riemann-Liouville (R-L), Caputo (C), etc., the equations involving these operators have begun to be studied in detail (See, [1,2,3,4,5,6]). However, such a generalization leads to some difficulties and differences especially in R-L case. For instance, unlike the initial value problems involving the classical derivative, the existence of continuous solution to some IVPs in the sense of R-L derivative strictly depends on the initial values and smoothness conditions on nonlinear functions in right-hand side of equations in IVPs. For example, as shown in [7], the following initial value problem for R-L derivative of order σ∈(0,1)
{Dσω(x)=f(x,ω(x)),x>0ω(0)=b≠0 | (1.1) |
has no continuous solution when f is continuous on [0,T]×R. Therefore, this equation was investigated when subjected to different initial values (See, Theorem 3.3 in [1]). By considering the aforementioned remark, we investigate the existence and uniqueness of solutions to the following problem
{Dσω(x)=f(x,ω(x),Dσ−1ω(x)),x>0ω(0)=0,Dσ−1ω(x)|x=0=b, | (1.2) |
where σ∈(1,2), b∈R, Dσ represents the Riemann-Liouville fractional derivative of order σ, which is given by
Dσω(x)=1Γ(2−σ)d2dx2∫x0ω(t)(x−t)σ−1dt, |
and f fulfills the following condition:
(C1) Let f(x,t1,t2)∈C((0,T]×R×R) and xσ−1f(x,t1,t2)∈C([0,T]×R×R),
where C(X) represents the class of continuous functions defined on the subspace X of R3.
The equation in (1.2) was first considered by Yoruk et. al. [8], when the second initial value is also homogeneous (b=0) and the right-hand side function is continuous on [0,T]×R×R. They gave Krasnoselskii-Krein, Roger and Kooi-type uniqueness results. As seen from condition (C1), the equation in (1.2) has a singularity at x=0. Such singular equations involving R-L and Caputo derivatives were recently investigated in [7,9,10,11,12] and they proved local or global existence theorem for initial value problems involving singular equations. In the investigation of existence of solutions to these problems, converting the problem into the Volterra-type integral equation is one of the referenced tools. These integral equations have weakly and double singularities since the corresponding fractional differential equations are singular. For this reason, some new techniques or lemmas had to be developed to reveal the existence and uniqueness of solutions to integral equations (See for example [10,11]). In this paper, we also encounter a Volterra-type integral equations having a single singularity when we transform the problem (1.2) into a integral equation. For the uniqueness of solutions to the integral equation we need to generalize the definitions and methods previously given in [7,8,13] and use the tools of Lebesgue spaces such as Hölder inequality. These uniqueness theorems are the type of Nagumo-type, Krasnoselskii-Krein and Osgood which are well-known in the literature (See, [13,14,15,16]) Moreover, we give a Peano-type existence theorem for this problem as well.
We first give definition of the space of functions where we investigate the existence of solutions to the problem (1.2). The space is defined below as in [17] :
Theorem 2.1. The space of continuous functions defined on [0,T], whose R-L fractional derivative of order σ−1, 1<σ<2 are continuous on [0,T] is a Banach space when endowed with the following norm:
||ω||σ−1=||ω||∞+||Dσ−1ω||∞, |
where ||.||∞ is the supremum norm defined on the class of continuous functions. This space will be denoted by Cσ−1([0,T]).
According to this space, we define R-L integral and R-L derivative of higher order [11]. The lower terminal points of integrals in their formulas will be taken as zero.
Definition 2.1. The R-L integral of order σ>0 of a function ω(x)∈C0[0,T] is defined for all x∈[0,T] by
Iσω(x):=1Γ(σ) ∫x0ω(t)(x−t)1−σdt. | (2.1) |
Definition 2.2. For 1<σ<2 and ω(x)∈Cσ−1[0,T] with Dσ−1ω(x)∈C1(0,T]∩L1[0,T] the R-L fractional derivative Dβω is defined for all x∈(0,T] by
Dσω(x)=1Γ(2−σ)d2dx2∫x0ω(t)(x−t)σ−1dt. | (2.2) |
The local existence of solutions to problem (1.2) will be proved with the aid of Schauder fixed point theorem [18]:
Theorem 2.2. Let C be a closed, bounded, convex subset of a Banach space X:={u:I→R continuous:I⊂R closed and bounded interval}. If operator S:C→C is continuous and, if S(C) is an equicontinuous set on I, then S has at least one fixed point in C.
The one of mathematical tools used for showing the existence and uniqueness of the desired type of solution to a given initial or boundary value problem is first to convert them into an integral equation. One investigates the existence and uniqueness of the solution to the integral equation instead of the associated problem. Here, we follow this way by taking the aid of the lemma given below:
Lemma 3.1. Under condition (C1), if ω∈Cσ−1[0,T] is a solution of problem (1.2), then ω∈Cσ−1[0,T] is a solution of the following integral equation
ω(x)=bΓ(σ)xσ−1+1Γ(σ)∫x0f(t,ω(t),Dσ−1ω(t))(x−t)1−σdt | (3.1) |
and, vice versa.
Proof. We assume that ω∈Cσ−1[0,T] is a solution of problem (1.2). By condition (C1), we have f(x,ω(x),Dσ−1ω(x)) is continuous on (0,T] and xσ−1f(x,ω(x),Dσ−1ω(x)) is continuous on [0,T]. It means that f(x,ω(x),Dσ−1ω(x)) is integrable, i.e f(x,ω(x),Dσ−1ω(x))∈C(0,T]∩L1[0,T]. Then, by integrating the both sides of the equation in (1.2) and using the relation IDσ=IDDσ−1
Dσ−1ω(x)=Dσ−1ω(0)+If(x,ω(x),Dσ−1ω(x))∈C[0,T] |
is obtained. From here, by integration of the both sides of last equation and by use of IDσ−1=IDI2−σ we have
I2−σω(x)=bx+I2f(x,ω(x),Dσ−1ω(x))∈C1[0,T] | (3.2) |
where we used Dσ−1ω(0)=b and I2−σω(0)=0 since ω(0)=0.
If the operator Iσ−1 is applied to the both sides of (3.2), then by semigroup and commutative property of R-L derivative we get
Iω(x)=bxσΓ(1+σ)+I[Iσf(x,ω(x),Dσ−1ω(x))] | (3.3) |
for all x∈[0,T]. Differentiating the both sides of (3.3), we have
ω(x)=bxσ−1Γ(σ)+Iσf(x,ω(x),Dσ−1ω(x)) |
which is the equivalent to the integral Eq (3.1).
Now we suppose that ω∈Cσ−1[0,T] is a solution of integral Eq (3.1), and let us show that ω is a solution of the problem (1.2). If Dσ is applied to the both sides of (3.1), and then, if
DσIσω(x)=ω(x) for all ω∈Cσ−1[0,T] |
is used, then one can observe that ω∈Cσ−1[0,T] satisfies the equation in (1.2). Moreover, let us prove that ω∈Cσ−1[0,T] also fulfills initial value conditions. By change of variables and condition (C1) we have
ω(0)=limx→0+ω(x)=bΓ(σ)xσ−1+1Γ(σ)limx→0+∫x0f(t,ω(t),Dσ−1ω(t))(x−t)1−σdt=1Γ(σ)limx→0+∫x0tσ−1f(t,ω(t),Dσ−1ω(t))tσ−1(x−t)1−σdt=1Γ(σ)limx→0+x∫10(xτ)σ−1f(xτ,ω(xτ),Dσ−1ω(xτ))τσ−1(1−τ)1−σdτ=0, | (3.4) |
since the integral is finite. Thus ω satisfies the first initial condition in (1.2).
Now let us show that ω provides the second initial condition in (1.2). If Dσ−1 is applied to both sides of (3.1), and if the relation Dσ−1Iσh(x)=Ih(x) is used, then we can first get
Dσ−1ω(x)=b+∫x0f(t,ω(t),Dσ−1ω(t))dt. | (3.5) |
From here, by passing the limit as x→0+, we then obtain
Dσ−1ω(0)=b+limx→0+∫x0f(t,ω(t),Dσ−1ω(t))dt=b+limx→0+∫x01tσ−1tσ−1f(t,ω(t),Dσ−1ω(t))dt=b+limx→0+x2−σ∫101τσ−1(xτ)σ−1f(xτ,ω(xτ),Dσ−1ω(xτ))dτ=b, | (3.6) |
since 2−σ>0 and the integral is finite due to the continuity of tσ−1f(t,ω(t),Dσ−1ω(t)) on [0,T]. Consequently, it has been shown that any solution of (3.1) provides the problem (1.2) if condition (C1) is assumed to be satisfied.
Theorem 3.1 (Existence). Let condition (C1) be satisfied, and assume that there exist positive real numbers r1, r2 and M such that |xσ−1f(x,ω,v)|≤Mfor all(x,ω,v)∈I=[0,T]×[−r1,r1]×[b−r2,b+r2]. Then problem (1.2) admits at least one solution in Cσ−1[0,T0 ], where
T0 ={TifT<rC(b,σ,M)rC(b,σ,M)ifT≥rC(b,σ,M)≥1[rC(b,σ,M)]σ−1,ifT≥rC(b,σ,M),1≥rC(b,σ,M)and1<σ≤1.5[rC(b,σ,M)]2−σ,ifT≥rC(b,σ,M),1≥rC(b,σ,M)and1.5<σ<2, | (3.7) |
and
r=r1+r2andC(b,σ,M)=[|b|Γ(σ)+M(1+Γ(3−σ)2−σ)]. | (3.8) |
Proof. As it is known from Lemma 3.1, solutions of problem (1.2) are solutions of integral equation (3.1) as well. Moreover, the fixed points of the opeator S:Cσ−1[0,T0 ]→Cσ−1[0,T0 ] defined by
Sω(x)=bΓ(σ)xσ−1+∫x0f(t,ω(t),Dσ−1ω(t))(x−t)1−σdt | (3.9) |
interfere with solutions of the integral equation. For this reason, it is sufficient to prove that operator S admits at least one fixed point. For this, it will be verified that operator S satisfies the hypotheses of Schauder fixed-point theorem. Let us start with showing the following inclusion to be valid:
S(Br)⊂Br |
where
Br={ω∈Cσ−1[0,T0 ]:||ω||∞+||Dσ−1ω−b||∞≤r} |
is a closed compact subset of Cσ−1[0,T0 ]. Accordingly to the norm on Cσ−1[0,T0 ], upper bounds of ‖ and \left\| D^{\sigma-1}\mathcal{S}\omega(x)-b\right\|_{\infty} can be determined as follows:
\begin{align} \left|\mathcal{S}\omega(x)\right| &\leq \frac{\left|b\right| }{\Gamma(\sigma)}x^{\sigma-1}+\frac{1}{\Gamma(\sigma)}\int_{0}^{x}\frac{\left|t^{\sigma-1}f(t, \omega(t), D^{\sigma-1}\omega(t)\right|}{t^{\sigma-1}(x-t)^{1-\sigma }}dt \\ &\leq \frac{\left|b\right| }{\Gamma(\sigma)}x^{\sigma-1}+\frac{\mathcal{M}}{\Gamma(\sigma)}\int_{0}^{1}\frac{x}{\tau^{\sigma-1}(1-\tau)^{1-\sigma }}d\tau \leq \frac{\left|b\right| }{\Gamma(\sigma)}x^{\sigma-1}+\Gamma(2-\sigma)\mathcal{M}x \end{align} | (3.10) |
and
\begin{align} \left|D^{\sigma-1}\mathcal{S}\omega(x)-b\right| &\leq \int_{0}^{x}\frac{\left|t^{\sigma-1}f(t, \omega(t), D^{\sigma-1}\omega(t)\right|}{t^{\sigma-1}}dt\leq\mathcal{M}x^{2-\sigma} \int_{0}^{1}\tau^{1-\sigma}d\tau = \frac{\mathcal{M}x^{2-\sigma}}{2-\sigma}. \end{align} | (3.11) |
From (3.10)) and (3.11),
\begin{align} \left|\mathcal{S}\omega(x)\right|+\left|D^{\sigma-1}\mathcal{S}\omega(x)-b\right| \leq \frac{\left|b\right| }{\Gamma(\sigma)}x^{\sigma-1}+\Gamma(2-\sigma)\mathcal{M}x+ \frac{\mathcal{M}x^{2-\sigma}}{2-\sigma} \end{align} | (3.12) |
is obtained. Taking supremum over [0, T_0] for a T_0 > 0 for the right hand-side of the above equation,
\begin{align} \left|\mathcal{S}\omega(x)\right|+\left|D^{\sigma-1}\mathcal{S}\omega(x)-b\right| \leq C(b, \sigma, \mathcal{M}) T_0 ^{\alpha} \end{align} | (3.13) |
can be written, where \alpha\in\Omega = \left\lbrace \sigma-1, 1, 2-\sigma\right\rbrace. \alpha depends on values of b, \mathcal{M}, \sigma, r. To determine T_0 and \alpha , let
C(b, \sigma, \mathcal{M}) T_0 ^{\alpha} = r. |
If T_0 ^{\alpha} = \frac{r}{C(b, \sigma, \mathcal{M})} < 1, then it is observed that T_0 < 1 for any \alpha\in \Omega. If T_0 ^{\alpha} = \frac{r}{C(b, \sigma, \mathcal{M})}\geq1, it must be T_0 \geq 1 for any \alpha\in \Omega. Thus,
\begin{align} \sup\limits_{x\in [0, T_0]}\left[ \left|\mathcal{S}\omega(x)\right|+\left|D^{\sigma-1}\mathcal{S}\omega(x)-b\right|\right] \leq C(b, \sigma, \mathcal{M}) T_0 ^{\alpha} = r, \end{align} | (3.14) |
where
T_0: = \left[\frac{r}{C(b, \sigma, \mathcal{M})}\right]^{1/\alpha} |
and
\begin{equation} \alpha = \begin{cases} \quad 1 \quad &\text{if} \quad \frac{r}{C(b, \sigma, \mathcal{M})}\geq 1 \\ \quad \sigma-1\quad &\text{if} \quad \frac{r}{C(b, \sigma, \mathcal{M})} < 1 \quad \text{and} \quad 1 < \sigma\leq1.5\\ \quad 2-\sigma \quad &\text{if} \quad \frac{r}{C(b, \sigma, \mathcal{M})} < 1 \quad \text{and} \quad 1.5\leq\sigma < 2.\\ \end{cases} \end{equation} | (3.15) |
As a result, for all cases we obtain
||\mathcal{S}\omega||_{\infty}+||D^{\sigma-1}\mathcal{S}\omega-b||_{\infty}\leq r, |
which is the desired.
Now, let us prove the equicontinuity of \mathcal{S}(B_{r})\subset C^{\sigma-1} [0, T_{0}~]. Since the composition of uniformly continuous functions is so as well, the function x^{\sigma-1}f(x, \omega(x), D^{\sigma-1}\omega(x)) is uniformly continuous on [0, T_{0}~]. Because for any \omega\in B_{r}, both \omega(x) and D^{\sigma-1}\omega(x) and x^{\sigma-1}f(x, \omega, v) are uniformly continuous on I, respectively. Therefore, for given any \epsilon > 0, one can find a \delta = \delta(\epsilon) > 0 so that for all x_{1}, x_{2}\in [0, T_{0}~] with \left|x_{1}-x_{2}\right| < \delta it is
\left \vert x_{1}^{\sigma-1}f(x_{1}, \omega(x_{1}), D^{\sigma-1}\omega(x ))-x_{2}^{\sigma-1}f(x_{2}, \omega(x_{2}), D^{\sigma-1}\omega(x_{2} ))\right \vert < K\epsilon , |
where K = \max\left(\frac{1}{T_{0}~\Gamma(2-\sigma)}, \frac{2-\sigma}{T_{0}~^{2-\sigma}}\right). It follows that
\begin{align*} \big|\mathcal{S}&\omega\left(x_{1}\right)-\mathcal{S}\omega\left(x_{2}\right) \big|+\big|D^{\sigma-1}\mathcal{S}\omega\left(x_{1}\right)-D^{\sigma-1}\mathcal{S}\omega\left(x_{2}\right) \big| \\ &\leq \int_{0}^{1} \frac{\left \vert h\left( \eta x_{1}\right) -h\left( \eta x_{2}\right) \right \vert}{\Gamma \left(\sigma\right)\eta^{1-\sigma} \left( 1-\eta \right) ^{\sigma-1}}x d\eta+\int_{0}^{1} \frac{\left \vert h\left( \eta x_{1}\right) -h\left( \eta x_{2}\right) \right \vert}{\eta^{1-\sigma} }x^{2-\sigma}d\eta\\ & < T_{0}~\Gamma(2-\sigma)K\epsilon+\frac{T_{0}~^{2-\sigma}}{2-\sigma}K\epsilon = \epsilon, \end{align*} |
where h(x) = x^{\sigma-1}f\left(x, \omega\left(x\right), D^{\sigma-1}\omega(x) \right). This implies that \mathcal{S}(B_{r}) is an equicontinuous set of C^{\sigma-1} [0, T_{0}~].
Finally, the continuity of \mathcal{S} on B_{r} will be proven. Assume that \left \{\omega_{k}\right \}_{k = 1}^{\infty}\subset B_{r} is a sequence with \omega_{k}\stackrel{C^\sigma [0, T_{0}~]}{\rightarrow } \omega as k\rightarrow \infty. Then, one can easily conclude that \omega_{k} and D^{\sigma-1}\omega_{k}(t) converges uniformly to \omega and D^{\sigma-1}\omega(t), respectively. With these and the uniform continuity of x^{\sigma-1}f(x, \omega, v) on I = \left[0, T\right]\times\left[-r_{1}, r_{1}\right] \times \left[b-r_{2}, b+r_{2}\right], it leads to
\begin{align*} &\left \|\mathcal{S}\omega_{k}-\mathcal{S}\omega\right \|_{\sigma-1} = \sup\limits_{x\in [0, T_{0}~]} \left \vert \frac{1}{\Gamma \left( \sigma\right)}\int_{0}^{x}\frac{ \left[f\left(t, \omega_{k}(t ), D^{\sigma-1}\omega_{k}(t )\right) -f\left(t , \omega(t), D^{\sigma-1}\omega(t )\right)\right] }{\left(x-t\right) ^{1-\sigma}}dt \right \vert\\ &+\sup\limits_{x\in [0, T_{0}~]} \left \vert \int_{0}^{x} \left[f\left(t, \omega_{k}(t ), D^{\sigma-1}\omega_{k}(t )\right) -f\left(t , \omega(t), D^{\sigma-1}\omega(t )\right)\right] dt \right \vert \\ &\leq \sup\limits_{\eta x\in [0, T_{0}~]} \int_{0}^{1}\frac{(\eta x)^{\sigma-1} \left|f\left(\eta x, \omega_{k}(\eta x), D^{\sigma-1}\omega_{k}(\eta x )\right)-f\left( \eta x , \omega(\eta x), D^{\sigma-1}\omega(\eta x )\right)\right|}{\Gamma \left(\sigma\right)\eta^{\sigma-1}\left( 1-\eta \right) ^{1-\sigma}} xd\eta \\ &+\sup\limits_{\eta x\in [0, T_{0}~]} \int_{0}^{1}\frac{(\eta x)^{\sigma-1} \left|f\left(\eta x, \omega_{k}(\eta x), D^{\sigma-1}\omega_{k}(\eta x )\right)-f\left( \eta x , \omega(\eta x), D^{\sigma-1}\omega(\eta x )\right)\right|}{\eta^{\sigma-1}} x^{2-\sigma}d\eta \\ &\rightarrow 0 \quad \text{as} \quad k\rightarrow \infty. \end{align*} |
In conclusion, since hypotheses of Theorem 2.2 are fulfilled, it implies that operator \mathcal{S} admits at least one fixed point in C^{\sigma-1} [0, T_{0}~], which is a solution of problem (1.2) as well.
The mean value theorem for R-L derivative of order \sigma\in (0, 1) was correctly given by [7]. Now, its counterparts for order \sigma\in (1, 2) is given as follows:
Lemma 3.2. Let \sigma \in (1, 2) and \omega\in C^{\sigma-1}\left(\left[0, T\right]\right). Then, there is a function \mu:[0, T]\to [0, T] with 0 < \mu(x) < x so that
\omega(x) = D^{\sigma-1}\omega(0)\frac{x^{\sigma-1}}{\Gamma(\sigma)}+\Gamma(2-\sigma)x(\mu(x))^{\sigma-1}D^{\sigma-1}\omega(\mu(x)), |
is satisfied.
The lemma can be proved by following the way used in [7] and so we omit it here. With the aid of this lemma we can obtain the Nagumo-type uniqueness:
Theorem 3.2. (Nagumo type uniqueness) Let 1 < \sigma < 2, 0 < T < \infty and let condition (C1) be satisfied. Moreover, assume that there exists a positive real number L\leq \frac{2-\sigma}{\max\left( T, T^{2-\sigma}\right) (1+\Gamma(3-\sigma))} such that the inequality
\begin{align} x^{\sigma-1}\left|f(x, \omega_{1}, v_{1})-f(x, \omega_{2}, v_{2})\right|\leq L\left( \left|\omega_{1}-\omega_{2}\right|+\left|v_{1}-v_{2}\right|\right) \end{align} | (3.16) |
is fulfilled for all x\in[0, T] and for all \omega{i}, v{i}\in\mathbb{R} with i = 1, 2. Then, (1.2) has at most one solution in the space of C^{\sigma-1}(\left[0, T_0\right]).
Proof. We have just showed the existence of the solution to problem (1.2) in the previous theorem. For the uniqueness, we first assume that (1.2) admits two different solutions such as \omega_{1} and \omega_{2} in the space of C^{\sigma-1}(\left[0, T_0\right]). Let us define a function \Phi(x) to be in the form
\Phi(x): = \begin{cases} \left|\omega_{1}(x)-\omega_{2}(x)\right|+\left|D^{\sigma-1}\omega_{1}(x)-D^{\sigma-1}\omega_{2}(x)\right|, & x > 0 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0 \ \ \ \ \ \ \ \ \ \ \ , & x = 0. \end{cases} |
Since \omega_{1}, \omega_{2}\in C^{\sigma-1}(\left[0, T\right]), the continuity of \Phi(x) on x\in (0, T_0] can obviously be seen. For its continuity at x = 0,
\begin{align*} 0\leq\lim\limits_{x\to 0^{+}}\Phi(x)& = \lim\limits_{x\to 0^{+}} \frac{1}{\Gamma(\sigma)}\left|\int_{0}^{x}\frac{f\left(t , \omega_{1}\left(t\right), D^{\sigma-1}\omega_{1}\left(t\right)\right)-f\left(t , \omega_{2}\left(t\right), D^{\sigma-1}\omega_{2}\left(t\right)\right)}{\left(x-t\right) ^{1-\sigma}} dt\right| \\ &+\lim\limits_{x\to 0^{+}}\left|\int_{0}^{x} f\left(t , \omega_{1}\left(t\right), D^{\sigma-1}\omega_{1}\left(t\right)\right)-f\left(t , \omega_{2}\left(t\right), D^{\sigma-1}\omega_{2}\left(t\right)\right) dt\right| \\ &\leq\int_{0}^{1}\frac{\lim\limits_{x\to 0^{+}}x\left| H\left(x\eta, \omega_{1}\left( x\eta\right)\right)-H\left(x\eta, \omega_{2}\left( x\eta\right)\right) \right| }{\eta^{\sigma-1}\left(1-\eta\right)^{1-\sigma}}d\eta \\ &+\int_{0}^{1} \frac{\lim\limits_{x\to 0^{+}}x^{2-\sigma} \left| H\left(x\eta, \omega_{1}\left( x\eta\right)\right)-H\left(x\eta, \omega_{2}\left( x\eta\right)\right) \right|}{\eta^{\sigma-1}}d\eta = 0, \end{align*} |
where H(x, \omega(x)) = x^{\sigma-1}f\left(x, \omega\left(x\right), D^{\sigma-1}\omega(x ) \right) and we made the change of variable t = x\eta and used condition (C1), respectively. Consequently, \lim_{x\to 0^{+}}\Phi(x) = 0 = \Phi(0).
The fact that \Phi(x)\geq 0 on [0, T] allows us to choose a point x_{0}\in (0, T] so that
\begin{align*} 0 < \Phi(x_{0})& = \left|\omega_{1}(x_{0})-\omega_{2}(x_{0})\right| +\left|D^{\sigma-1}\omega_{1}(x_{0})-D^{\sigma-1}\omega_{2}(x_{0})\right|. \end{align*} |
By using the mean value theorem given by Lemma 3.2
\begin{align} &\left|\omega_{1}(x_{0})-\omega_{2}(x_{0})\right| = \Gamma(2-\sigma)x_{0}\left|x_{1}^{\sigma-1}D^{\sigma-1}(\omega_{1}-\omega_{2})(x_{1})\right| \\ & = \Gamma(2-\sigma)x_{0}x_{1}^{\sigma-1}\left|f\left(x_{1}, \omega_{1}\left(x_{1}\right), D^{\sigma-1}\omega_{1}(x_{1})\right)-f\left(x_{1}, \omega_{2}\left(x_{1}\right), D^{\sigma-1}\omega_{2}(x_{1})\right)\right| \end{align} | (3.17) |
is obtained for x_{1}\in (0, x_{0}).
Secondly, for the estimation of \left|D^{\sigma-1}\omega_{1}(x_{0})-D^{\sigma-1}\omega_{2}(x_{0})\right|, we have from the well-known integral mean theorem for the classical calculus
\begin{align} &\left|D^{\sigma-1}\omega_{1}(x_{0})-D^{\sigma-1}\omega_{2}(x_{0})\right| = \int_{0}^{x_0}\frac{t^{\sigma-1}\left|f(t, \omega_{1}(t), D^{\sigma-1}\omega_{1}(t)-f(t, \omega_{2}(t), D^{\sigma-1}\omega_{2}(t)\right|}{t^{\sigma-1}}dt \\ & = \frac{x^{2-\sigma}_{0}}{2-\sigma}x_{2}^{\sigma-1}\left|f\left(x_{2}, \omega_{1}\left(x_{2}\right), D^{\sigma-1}\omega_{1}(x_{2}) \right)-f\left(x_{2}, \omega_{2}\left(x_{2}\right), D^{\sigma-1}\omega_{2}(x_{2})\right)\right|, \end{align} | (3.18) |
where x_{2}\in (0, x_{0}).
We assign x_{3} as one of the points x_{1} and x_{2} so that \left| H(x_{3}, \omega_{1}(x_{3}))-H(x_{3}, \omega_{2}(x_{3}))\right| : = \max\left(\left| H(x_{1}, \omega_{1}(x_{1}))-H(x_{1}, \omega_{2}(x_{1}))\right|, \left| H(x_{2}, \omega_{1}(x_{2}))-H(x_{2}, \omega_{2}(x_{2}))\right| \right).
Thus, from (3.17) and (3.18), we have
\begin{align} \label{unique7} 0& < \Phi(x_{0})\leq\left(\Gamma(2-\sigma)x_{0}+\frac{x^{2-\sigma}_{0}}{2-\sigma}\right) \left| H(x_{3}, \omega_{1}(x_{3}))-H(x_{3}, \omega_{2}(x_{3}))\right|\\ &\leq \max\left( T, T^{2-\sigma}\right) \left( \frac{1+\Gamma(3-\sigma)}{2-\sigma}\right)x_{3}^{\sigma-1} \left|f\left(x_{3}, \omega_{1}\left(x_{3}\right)\right)-f\left(x_{3}, \omega_{2}\left(x_{3}\right)\right)\right|\\ &\leq x_{3}^{\sigma-1} \left( \left|\omega_{1}(x_{3})-\omega_{2}(x_{3})\right| +\left|D^{\sigma-1}\omega_{1}(x_{3})-D^{\sigma-1}\omega_{2}(x_{3})\right|\right) = \Phi(x_{3}) \end{align} |
since L\leq \frac{2-\sigma}{\max\left(T, T^{2-\sigma}\right)~~ (1+\Gamma(3-\sigma))}. Repeating the same procedure for the point x_{3}, it enables us to find some points x_{6}\in(0, x_{3}) so that 0 < \Phi(x_{0})\leq\Phi(x_{3})\leq \Phi(x_{6}). Continuing in the same way, the sequence \left\{x_{3n}\right\}_{n = 1}^{\infty}\subset [0, x_{0}) can be constructed so that x_{3n}\to 0 and
\begin{equation} 0 < \Phi(x_{0})\leq\Phi(x_{3})\leq\Phi(x_{6})\leq...\leq\Phi(x_{3n})\leq... \end{equation} | (3.19) |
However, the fact that \Phi(x) is continuous at x = 0 and x_{3n}\to 0 leads to \Phi(x_{3n})\to \Phi(0) = 0, and this contradicts with (3.19). Consequently, IVP (1.2) possesses a unique solution.
Theorem 3.3. (Krasnoselskii-Krein type uniqueness) Let 1 < \sigma < 2 and T^{*}_{0} = \min\left\lbrace T_{0}~, 1 \right\rbrace, where T_0 is defined by (3.7). Let condition (C1) be fulfilled. Furthermore, suppose that there exist a L > 0 and an \alpha \in (0, 1) so that
\begin{align} x^{1-\alpha(\sigma-1)}\left|f(x, \omega_{1}, v_{1})-f(x, \omega_{2}, v_{2})\right|\leq \Gamma(\sigma)\frac{\alpha(\sigma-1)+L}{2}\left( \left|\omega_{1}-\omega_{2}\right|+\left|v_{1}-v_{2}\right|\right) \end{align} | (3.20) |
holds for all x\in[0, T] and for all \omega_{i}, v_{i}\in\mathbb{R} with i = 1, 2, and that there exist C > 0 satisfying (1-\sigma)(1-\alpha)-L(1-\alpha)+1 > 0 such that
\begin{align} x^{\sigma-1}\left|f(x, \omega_{1}, v_{1})-f(x, \omega_{2}, v_{2})\right|\leq C\left( \left|\omega_{1}-\omega_{2}\right|^{\alpha}+x^{\alpha(\sigma-1)}\left|v_{1}-v_{2}\right|^{\alpha}\right) \end{align} | (3.21) |
holds for all x\in[0, T] and for all \omega_{i}, v_{i}\in\mathbb{R} with i = 1, 2. Then, problem (1.2) has a unique solution in the space of C^{\sigma-1}(\left[0, T^{*}_{0}\right]).
Proof. As claimed in the previous theorem, we first assume that problem (1.2) has two different solutions such as \omega_{1}(x) and \omega_{2}(x) in C^{\sigma-1}(\left[0, T^{*}_{0}\right]). However, by contradiction, we will show that they are indeed equal. For this, let us first define \Phi_{1}(x) = \left|\omega_{1}(x)-\omega_{2}(x)\right| and \Phi_{2}(x) = \left|D^{\sigma-1}\omega_{1}(x)-D^{\sigma-1}\omega_{2}(x)\right| and try to find estimates for each functions by using condition (C1) and inequality (3.21). Hence, we first have
\begin{align*} \Phi_{1}(x)&\leq \frac{1}{\Gamma(\sigma)}\int_{0}^{x}\frac{\left|f\left(t , \omega_{1}\left(t\right), D^{\sigma-1}\omega_{1}\left(t\right)\right)-f\left(t , \omega_{2}\left(t\right), D^{\sigma-1}\omega_{2}\left(t\right)\right)\right|}{\left(x-t\right) ^{1-\sigma}} dt \\ &\leq \frac{1}{\Gamma(\sigma)}\int_{0}^{x}\frac{t^{\sigma-1}\left|f\left(t , \omega_{1}\left(t\right), D^{\sigma-1}\omega_{1}\left(t\right)\right)-f\left(t , \omega_{2}\left(t\right), D^{\sigma-1}\omega_{2}\left(t\right)\right)\right|}{t^{\sigma-1}\left(x-t\right) ^{1-\sigma}} dt \\ &\leq \frac{C}{\Gamma(\sigma)} \int_{0}^{x}\frac{\left[\Phi^{\alpha}_{1}(x)+t^{\alpha(\sigma-1)}\Phi^{\alpha}_{2}(x) \right] }{t^{\sigma-1}\left(x-t\right) ^{1-\sigma}} dt \\ &\leq \frac{C}{\Gamma(\sigma)}\left( \int_{0}^{x}\left(\frac{1}{t^{\sigma-1}\left(x-t\right) ^{1-\sigma}}\right) ^{q} dt\right)^{1/q}\left( \int_{0}^{x}\left[\Phi^{\alpha}_{1}(t)+t^{\alpha(\sigma-1)}\Phi^{\alpha}_{2}(t) \right]^{p} dt\right)^{1/p} \\ &\leq \frac{C\Gamma(1+(1-\sigma)q)\Gamma(1+(\sigma-1)q))}{\Gamma(\sigma)}x^{1/q}\Omega^{1/p}(x) \end{align*} |
where we used Hölder inequality with q > 1 satisfying (1-\sigma)q+1 > 0 and p = q/(q-1), and \Omega(x) is defined by
\Omega(x) = \int_{0}^{x}\left[\Phi^{\alpha}_{1}(t)+t^{\alpha(\sigma-1)}\Phi^{\alpha}_{2}(t) \right]^{p}dt. |
From here, we have the following estimation
\begin{align} \Phi^{p}_{1}(x)\leq Cx^{p/q}\Omega(x), \end{align} | (3.22) |
where C is not specified here and throughout the proof. In addition to this, the upper bound for \Phi_{2}(x) can be found as follows:
\begin{align*} \Phi_{2}(x)&\leq \int_{0}^{x} \left|f\left(t , \omega_{1}\left(t\right), D^{\sigma-1}\omega_{1}\left(t\right)\right)-f\left(t , \omega_{2}\left(t\right), D^{\sigma-1}\omega_{2}\left(t\right)\right)\right| dt \\ &\leq \int_{0}^{x}\frac{t^{\sigma-1}\left|f\left(t , \omega_{1}\left(t\right), D^{\sigma-1}\omega_{1}\left(t\right)\right)-f\left(t , \omega_{2}\left(t\right), D^{\sigma-1}\omega_{2}\left(t\right)\right)\right|}{t^{\sigma-1} } dt \\ &\leq \frac{C}{\Gamma(\sigma)} \int_{0}^{x}\frac{\left[\Phi^{\alpha}_{1}(x)+t^{\alpha(\sigma-1)}\Phi^{\alpha}_{2}(x) \right] }{t^{\sigma-1}\left(x-t\right) ^{1-\sigma}} dt \\ &\leq C \left( \int_{0}^{x}\left(\frac{1}{t^{\sigma-1}}\right)^{q} dt\right)^{1/q}\left( \int_{0}^{x}\left[\Phi^{\alpha}_{1}(t)+t^{\alpha(\sigma-1)}\Phi^{\alpha}_{2}(t) \right]^{p} dt\right)^{1/p} \\ &\leq \frac{C\Gamma(1+(1-\sigma)q)}{\Gamma(2+(\sigma-1)q))}x^{(1+q(1-\sigma))/q}\Omega^{1/p}(x). \end{align*} |
From here,
\begin{align} \Phi^{p}_{2}(x)\leq Cx^{(1+q(1-\sigma))p/q}\Omega(x) \end{align} | (3.23) |
is then obtained. By using estimations in (3.22) and (3.23) in the derivative of \Omega(x) we have
\begin{align} \Omega'(x)& = \left[\Phi^{\alpha}_{1}(x)+t^{\alpha(\sigma-1)}\Phi^{\alpha}_{2}(x) \right]^{p}\leq 2^{p-1}\left[\left( \Phi^{\alpha}_{1}(x)\right) ^{p}+t^{p\alpha(\sigma-1)}\left( \Phi^{\alpha}_{2}(x)\right) ^{p}\right] \\ & = 2^{p-1}\left[\left( \Phi^{p}_{1}(x)\right)^{\alpha} +x^{p\alpha(\sigma-1)}\left( \Phi^{p}_{2}(x)\right)^{\alpha} \right]\\ &\leq 2^{p-1}\left[C^{\alpha}x^{\alpha p/q}\Omega^{\alpha}(x)+ C^{\alpha}x^{p\alpha(\sigma-1)}x^{(1+q(1-\sigma))\alpha p/q}\Omega^{\alpha}(x)\right]\leq Cx^{\alpha p/q}\Omega^{\alpha}(x). \end{align} | (3.24) |
If we multiply the both sides of the above inequality with (1-\alpha)\Omega^{-\alpha}(x),
\begin{align*} (1-\alpha)\Omega^{-\alpha}(x)\Omega'(x) = \frac{d}{dx}\left[\Omega^{1-\alpha}(x)\right] \leq Cx^{\alpha p/q}. \end{align*} |
is then obtained. Integrating the both sides of the inequality over [0, x], we get
\begin{align*} \Omega^{1-\alpha}(x)\leq Cx^{(\alpha p+q)/q}, \end{align*} |
since \Omega(0) = 0. Consequently, this leads to the following estimation on \Omega(x)
\begin{align} \Omega(x)\leq Cx^{(\alpha p+q)/(1-\alpha)q}. \end{align} | (3.25) |
By considering (3.22) and (3.23) together with (3.25), one can conclude that
\begin{align*} \Phi^{p}_{1}(x)\leq Cx^{p/q}\Omega(x)\leq Cx^{p/q}x^{(\alpha p+q)/(1-\alpha)pq} = Cx^{p+q/(1-\alpha)q}. \end{align*} |
or
\begin{align} \Phi_{1}(x)\leq Cx^{(p+q)/(1-\alpha)pq} = x^{1/(1-\alpha)}, \end{align} | (3.26) |
and
\begin{align*} \Phi^{p}_{2}(x)\leq Cx^{p(1+q(1-\sigma))/q}\Omega(x)\leq Cx^{p(1+q(1-\sigma))/q}x^{(\alpha p+q)/(1-\alpha)pq} = Cx^{\frac{(1-\alpha)(1-\sigma)pq+p+q}{(1-\alpha)q}}. \end{align*} |
or
\begin{align} \Phi_{2}(x)\leq Cx^{(1-\sigma)+\frac{p+q}{(1-\alpha)pq}} = x^{(1-\sigma)+\frac{1}{(1-\alpha)}}, \end{align} | (3.27) |
since \frac{p+q}{pq} = 1.
Let us now define
\Psi(x) = x^{-L}\max\left\lbrace \Phi_{1}(x), \Phi_{2}(x)\right\rbrace, |
where L(1-\alpha) < 1+(1-\sigma)(1-\alpha). If \Phi_{1}(x) = \max\left\lbrace \Phi_{1}(x), \Phi_{2}(x)\right\rbrace, then from (3.26) we get
0\leq \Psi(x)\leq x^{\frac{1}{1-\alpha}-L}, |
or in the case of \Phi_{2}(x) = \max\left\lbrace \Phi_{1}(x), \Phi_{2}(x)\right\rbrace, by the inequality (3.27) we have the following
0\leq \Psi(x)\leq x^{(1-\sigma)+\frac{1}{1-\alpha}-L} = x^{\frac{(1-\sigma)(1-\alpha)-L(1-\alpha)+1}{1-\alpha}}. |
In both cases, \Psi(x) is continuous on [0, T^{*}_{0}] and \Psi(0) = 0. Let us now show that \Psi(x)\equiv 0 on [0, T^{*}_{0}]. For this, suppose otherwise and let \Psi(x)\not\equiv 0. This means \Psi(x) > 0, and from its continuity one can say that there exists a point x_{1}\in [0, T^{*}_{0}] so that \Psi(x) takes its maximum value at that point. Thus, let
M = \Psi(x_{1}) = \max\limits_{x\in [0, T^{*}_{0}]}\Psi(x). |
By assuming \Psi(x) = x^{-L}\Phi_{1}(x),
\begin{align} M& = \Psi(x_{1}) = x_{1}^{-L}\Phi_{1}(x_{1}) \\ &\leq\frac{x_{1}^{-L}}{\Gamma(\sigma)}\int_{0}^{x_{1}}\frac{t^{1-\alpha(\sigma-1)}\left|f\left(t , \omega_{1}\left(t\right), D^{\sigma-1}\omega_{1}\left(t\right)\right)-f\left(t , \omega_{2}\left(t\right), D^{\sigma-1}\omega_{2}\left(t\right)\right)\right|}{t^{1-\alpha(\sigma-1)}\left(x-t\right) ^{1-\sigma}}dt \\ &\leq\frac{(\alpha(\sigma-1)+L)x_{1}^{-L}}{2}\int_{0}^{x_{1}}\left(x_{1}-t\right) ^{\sigma-1}t^{-1+\alpha(\sigma-1)}\left[\Phi_{1}(t)+\Phi_{2}(t) \right] dt \\ &\leq M(\alpha(\sigma-1)+L)x_{1}^{-L+\sigma-1}\int_{0}^{x_{1}}t^{-1+\alpha(\sigma-1)+L} dt \\ & < Mx^{(\alpha+1)(\sigma-1)}_{1}\leq M \end{align} | (3.28) |
is obtained for t\in [0, x_{1}). However, we get to a contradiction.
On the other hand, when \Psi(x) = x^{-L}\Phi_{2}(x), we get
\begin{align} M& = \Psi(x_{1}) = x_{1}^{-L}\Phi_{2}(x_{1})\\ &\leq x_{1}^{-L} \int_{0}^{x_{1}}\frac{t^{1-\alpha(\sigma-1)}\left|f\left(t , \omega_{1}\left(t\right), D^{\sigma-1}\omega_{1}\left(t\right)\right)-f\left(t , \omega_{2}\left(t\right), D^{\sigma-1}\omega_{2}\left(t\right)\right)\right|}{t^{1-\alpha(\sigma-1)}}dt \\ &\leq\Gamma(\sigma)\frac{(\alpha(\sigma-1)+L)x_{1}^{-L}}{2}\int_{0}^{x_{1}}t^{-1+\alpha\left( \sigma-1\right)+L}\left[\Phi_{1}(t)+\Phi_{2}(t) \right] dt \\ & < Mx^{\alpha(\sigma-1)}_{1}\leq M, \end{align} | (3.29) |
which is contraction as well.
Consequently, \Psi(x) vanishes identically on [0, T^{*}_{0}]. This gives us the uniqueness of solutions to the considered problem.
Theorem 3.4 (Osgood-type uniqueness). Let 1 < \sigma < 2, and T_0 be defined by (3.7), and let condition (C1) be satisfied. Furthermore, suppose that the equality
\begin{align} x^{\sigma-1}\left|f(x, \omega_{1}, v_{1})-f(x, \omega_{2}, v_{2})\right|\leq C\left( g\left(\left|\omega_{1}-\omega_{2}\right|^{p}+\left|v_{1}-v_{2}\right|^{p}\right)\right)^{1/p} \end{align} | (3.30) |
is fulfilled for all x\in[0, T] and for all \omega_{i}, v_{i}\in\mathbb{R} with i = 1, 2, where p > 1 is conjugate of q > 1 satisfying 1+(1-\sigma)q > 0 and
\begin{align*} C^{q}\geq 2\max\left( b\Gamma^{q}(\sigma)[T_0\Gamma(1+(1-\sigma)q)\Gamma(1+(\sigma-1)q)]^{-1} , (1+(1-\sigma)q) T_{0}~^{-1-q(1-\sigma)} \right). \end{align*} |
Moreover, assume that g is a continuous, non-negative and non-decreasing function in \left[0, \infty\right) so that g(0) = 0 and it satisfies
\begin{align} \lim\limits_{\epsilon\to 0^{+}}\int_{\epsilon}^{\gamma}\frac{du}{g(u)} = \infty \end{align} | (3.31) |
for any \gamma\in\mathbb{R}. Then, (1.2) has a unique solution in the space C^{\sigma-1}(\left[0, T_{0}~\right]).
Proof. As made in previously given uniqueness theorems, we assume that there exist two different solutions such as \omega_{1}(x) and \omega_{2}(x) to problem (1.2) in C^{\sigma-1}(\left[0, T^{*}_{0}\right]). Moreover, let \Phi_{1}(x) = \left| \omega_{1}(x)-\omega_{2}(x)\right| and \Phi_{2}(x) = \left| D^{\sigma-1}\omega_{1}(x)-D^{\sigma-1}\omega_{2}(x)\right|. At first, we get the estimation on \Phi_{1}(x) as follows:
\begin{align} \Phi_{1}(x)&\leq \frac{1}{\Gamma(\sigma)}\int_{0}^{x}\frac{t^{\sigma-1}\left|f\left(t , \omega_{1}\left(t\right), D^{\sigma-1}\omega_{1}\left(t\right)\right)-f\left(t , \omega_{2}\left(t\right), D^{\sigma-1}\omega_{2}\left(t\right)\right)\right|}{t^{\sigma-1}\left(x-t\right) ^{1-\sigma}} dt \\ &\leq \frac{C}{\Gamma(\sigma)} \int_{0}^{x}\frac{\left[ g\left(\left|\omega_{1}\left(t\right)-\omega_{2}\left(t\right)\right|^{p}+\left|D^{\sigma-1}\omega_{1}\left(t\right)-D^{\sigma-1}\omega_{2}\left(t\right)\right|^{p}\right)\right] ^{1/p}}{t^{\sigma-1}\left(x-t\right) ^{1-\sigma}} dt \\ &\leq \frac{C}{\Gamma(\sigma)}\left( \int_{0}^{x}\left(\frac{1}{t^{\sigma-1}\left(x-t\right) ^{1-\sigma}}\right) ^{q} dt\right)^{1/q}\left( \int_{0}^{x} g\left(\Phi^{p}_{1}(t)+\Phi^{p}_{2}(t)\right) dt\right)^{1/p} \\ &\leq C\left[ \frac{\Gamma(1+(1-\sigma)q)\Gamma(1+(\sigma-1)q)}{\Gamma^{q}(\sigma)}\right]^{1/q}x^{1/q}\left( \int_{0}^{x} g\left(\Phi^{p}_{1}(t)+\Phi^{p}_{2}(t)\right) dt\right)^{1/p} \\ &\leq \frac{1}{2^{1/p}}\left( \int_{0}^{x} g\left(\Phi^{p}_{1}(t)+\Phi^{p}_{2}(t)\right) dt\right)^{1/p} \end{align} | (3.32) |
where we used the inequality (3.30), Hölder inequality and the assumption on C, respectively. From here, it follows that
\begin{align} \Phi^{p}_{1}(x)\leq \frac{1}{2}\int_{0}^{x} g\left(\Phi^{p}_{1}(t)+\Phi^{p}_{2}(t)\right) dt . \end{align} | (3.33) |
Similarly to above, we have
\begin{align} \Phi_{2}(x)&\leq \int_{0}^{x}\frac{t^{\sigma-1}\left|f\left(t , \omega_{1}\left(t\right), D^{\sigma-1}\omega_{1}\left(t\right)\right)-f\left(t , \omega_{2}\left(t\right), D^{\sigma-1}\omega_{2}\left(t\right)\right)\right|}{t^{\sigma-1}} dt \\ &\leq C \int_{0}^{x}\frac{\left[ g\left(\left|\omega_{1}\left(t\right)-\omega_{2}\left(t\right)\right|^{p}+\left|D^{\sigma-1}\omega_{1}\left(t\right)-D^{\sigma-1}\omega_{2}\left(t\right)\right|^{p}\right)\right] ^{1/p}}{t^{\sigma-1}} dt \\ &\leq C\left( \int_{0}^{x}\left(\frac{1}{t^{\sigma-1}}\right) ^{q} dt\right)^{1/q}\left( \int_{0}^{x} g\left(\Phi^{p}_{1}(t)+\Phi^{p}_{2}(t)\right) dt\right)^{1/p} \\ &\leq C\left[ \frac{1}{(1+(1-\sigma)q)}\right]^{1/q} x^{(1+q(1-\sigma))/q}\left( \int_{0}^{x} g\left(\Phi^{p}_{1}(t)+\Phi^{p}_{2}(t)\right) dt\right)^{1/p} \\ &\leq \frac{1}{2^{1/p}}\left( \int_{0}^{x} g\left(\Phi^{p}_{1}(t)+\Phi^{p}_{2}(t)\right) dt\right)^{1/p}. \end{align} | (3.34) |
This leads to
\begin{align} \Phi^{p}_{2}(x)\leq \frac{1}{2}\int_{0}^{x} g\left(\Phi^{p}_{1}(t)+\Phi^{p}_{2}(t)\right) dt . \end{align} | (3.35) |
Now, set
\Psi(x): = \max\limits_{0\leq t\leq x} \left[ \Phi^{p}_{1}(x)+\Phi^{p}_{2}(x)\right], |
and assume that \Psi(x) > 0 for x\in (0, T_{0}~]. We will show that it can not be possible under assumptions.
From the definition of \Psi(x) one easily conclude that for each x\in [0, T_0], it is \Phi^{p}_{1}(x)+\Phi^{p}_{2}(x)\leq \Psi(x) and there exists a x_{1}\leq x so that \Psi(x) = \Phi^{p}_{1}(x_{1})+\Phi^{p}_{2}(x_{1}). Then, from estimations (3.33)–(3.35) and from the fact that g is non-decreasing function
\begin{align} \Psi(x) = \Phi^{p}_{1}(x_{1})+\Phi^{p}_{2}(x_{1})\leq \int_{0}^{x_{1}} g\left(\Phi^{p}_{1}(t)+\Phi^{p}_{2}(t)\right)\leq \int_{0}^{x} g\left(\Psi(t)\right)dt: = \Psi_{*}(x) \end{align} | (3.36) |
is then obtained. It can be seen that \Psi(x)\leq \Psi_{*}(x). Moreover, we have
\frac{d}{dx}\Psi_{*}(x) = g\left(\Psi(x)\right)\leq g\left(\Psi_{*}(x)\right) |
for all x\in [0, T_0]. From this fact, for sufficiently small \delta > 0, we have
\int_{\delta}^{T_{0}~}\frac{\Psi^{'}_{*}(x)}{g\left(\Psi_{*}(x)\right)}dx\leq T_{0}~-\delta. |
Furthermore, by changing variables u = \Psi_{*}(x) in the above integral and by using the continuity of \Psi_{*}(x) and \Psi_{*}(0) = 0 , we have
\int_{\epsilon}^{\gamma}\frac{du}{g\left(u\right)} \leq T_{0}~-\delta. |
for sufficiently small \epsilon > 0 with \epsilon = \Psi_{*}(\delta) and for \gamma = \Psi_{*}(T_{0}~). However, this contradicts with the assumption on g given in (3.31). Consequently, \Psi(x) = 0 for x\in [0, T_{0}~], i.e. \omega_{1} = \omega_{2}.
Remark 3.1. It must be pointed out that, as noted in Theorem 1.4.3 in [13], the condition that function g(u) is non-decreasing can be dropped.
Example 3.1. Let us consider the following problem
\begin{equation} D^{\frac{4}{3}}\omega(x) = \begin{cases} x^{-\frac{1}{3}}\left[-\omega \ln\omega-(D^{\frac{1}{3}}\omega)\ln(D^{\frac{1}{3}}\omega) \right], &if \quad 0 < \omega, D^{\frac{1}{3}}\omega\leq 1/e \\ 0, &if\quad \omega = 0 \quad or \quad D^{\frac{1}{3}}\omega = 0, \end{cases} \end{equation} | (3.37) |
with initial conditions \omega(0) = 0 and D^{\sigma-1}\omega\left(x\right)|_{x = 0} = 1. Let T = 1 in Theorem 3.1. Then, \mathcal{M} = \max_ {(x, u, v)\in [0, 1]\times [0, 1/e]\times [0, 1/e]} \left|x^{\frac{1}{3}}f(x, \omega, v) \right|\cong \frac{2}{e}, C(b, \sigma, \mathcal{M}) = C(1, \frac{4}{3}, \frac{2}{e})\cong 3.2 and T_{0}~ = \frac{r}{C(b, \sigma, \mathcal{M})}\cong 0.22. Hence, problem (3.37) has a solution in C^{\frac{1}{3}}(\left[0, 0.22 \right]). Now, we investigate the uniqueness of the solution to the problem in C^{\frac{1}{3}}(\left[0, 0.22 \right]). Let the function g in the previous theorem defined by
\begin{equation} g(u) = \begin{cases} 0 &if \quad u = 0 \\ -\sqrt{u}\ln\sqrt{u} &if\quad 0 < u\leq 1/e^{2} , \\ 1/e &if\quad u\geq 1/e^{2} , \\ \end{cases} \end{equation} | (3.38) |
It is obvious that g is positive for u > 0 . Since g'(u) = -\frac{1}{2\sqrt{u}}\left(1+\ln(\sqrt{u})\right) > 0 for 0 < u\leq 1/e^{2}, it is non-decreasing. Also,
\begin{align} \lim\limits_{\epsilon\to 0^{+}}\int_{\epsilon}^{\gamma}\frac{du}{g(u)} = \infty \end{align} | (3.39) |
for any \gamma\in\mathbb{R}, which can be seen by considering the inequality \frac{1}{g(u)} = -\frac{1}{\sqrt{u}\ln\sqrt{u}}\leq \frac{1}{u} in the neighborhood of u = 0 and the divergence of the integral \lim_{\epsilon\to 0^{+}}\int_{\epsilon}^{\gamma}\frac{du}{u} and by applying comparison test. Moreover, by using the concavity of the nonlinear function f with respect to second and third variables, we have
\begin{align} x^{1/3}\left|f(x, \omega_{1}, v_{1})-f(x, \omega_{2}, v_{2})\right|&\leq \left|-\omega_{1}\ln \omega_{1}-v_{1}\ln v_{1}-\left( -\omega_{2}\ln \omega_{2}-v_{2}\ln v_{2}\right) \right| \\ &\leq -\left|\omega_{1}\ln \omega_{1}-\omega_{2}\ln \omega_{2} \right|-\left|v_{1}\ln v_{1}-v_{2}\ln v_{2} \right| \\ &\leq -\left|\omega_{1}-\omega_{2}\right| \left| \ln \left( \omega_{1}- \omega_{2}\right) \right|-\left|v_{1}-v_{2}\right| \left| \ln \left( v_{1}-v_{2}\right) \right| \\ &\leq -2\sqrt{ \left|\omega_{1}-\omega_{2}\right|^{2}+\left|v_{1}-v_{2}\right|^{2}} \ln \sqrt{ \left|\omega_{1}-\omega_{2}\right|^{2}+\left|v_{1}-v_{2}\right|^{2}} \\ &\leq C \left( g\left(\left|\omega_{1}-\omega_{2}\right|^{2}+\left|v_{1}-v_{2}\right|^{2}\right)\right) ^{1/2} \end{align} | (3.40) |
where v_{i} = D^{\frac{1}{3}}\omega_{i} for i = 1, 2, p = q = 2 and
C\geq 1.725\cong \sqrt{2}\max\left( \frac{\Gamma(4/3)}{0.22\times\Gamma(1/3)\Gamma(5/3)}, \frac{1} {3\times 0.22^{1/3}} \right). |
Hence, assumptions of Theorem 3.4 are satisfied. So, the problem has a unique solution in C^{\frac{1}{3}}(\left[0, 0.22 \right]).
In this research, we gave some sufficient conditions for the existence and uniqueness of a problem involving a nonlinear differential equations in the sense of R-L derivative when the right-hand side function has a discontinuity at zero. We presented an example associated with two theorems. Considering the literature, these results can be generalized and improved. Besides, one can obtain another uniqueness results for this problem as well.
There is no conflict of interest.
[1] |
D. A. Di Pietro, A. Ern, Hybrid high-order methods for variable-diffusion problems on general meshes, C. R. Math., 353 (2015), 31–34. https://doi.org/10.1016/j.crma.2014.10.013 doi: 10.1016/j.crma.2014.10.013
![]() |
[2] | M. Cicuttin, A. Ern, N. Pignet, Hybrid high-order methods: a primer with application to solid mechanics, Cham: Springer, 2021. https://doi.org/10.1007/978-3-030-81477-9 |
[3] |
F. Brezzi, K. Lipnikov, V. Simoncini, A family of mimetic finite difference methods on polygonal and polyhedral meshes, Math. Mod. Meth. Appl. Sci., 15 (2005), 1533–1551. https://doi.org/10.1142/S0218202505000832 doi: 10.1142/S0218202505000832
![]() |
[4] |
N. Sukumar, A. Tabarraei, Conforming polygonal finite elements, Int. J. Numer. Meth. Eng., 61 (2004), 2045–2066. https://doi.org/10.1002/nme.1141 doi: 10.1002/nme.1141
![]() |
[5] | A. Cangiani, Z. Dong, E. H. Georgoulis, P. Houston, hp-version discontinuous Galerkin methods on polygonal and polyhedral meshes, Cham: Springer, 2017. https://doi.org/10.1007/978-3-319-67673-9 |
[6] |
L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini, A. Russo, Basic principles of virtual element methods, Math. Mod. Meth. Appl. Sci., 23 (2013), 199–214. https://doi.org/10.1142/S0218202512500492 doi: 10.1142/S0218202512500492
![]() |
[7] |
L. Beirão da Veiga, F. Brezzi, L. D. Marini, Virtual Elements for linear elasticity problems, SIAM J. Numer. Anal., 51 (2013), 794–812. https://doi.org/10.1137/120874746 doi: 10.1137/120874746
![]() |
[8] |
L. Beirão da Veiga, F. Brezzi, L. D. Marini, A. Russo, The Hitchhiker's Guide to the Virtual Element Method, Math. Mod. Meth. Appl. Sci., 24 (2014), 1541–1573. https://doi.org/10.1142/S021820251440003X doi: 10.1142/S021820251440003X
![]() |
[9] |
L. Beirão da Veiga, F. Brezzi, L. D. Marini, A. Russo, Virtual Element Methods for general second-order elliptic problems on polygonal meshes, Math. Mod. Meth. Appl. Sci., 26 (2015), 729–750. https://doi.org/10.1142/S0218202516500160 doi: 10.1142/S0218202516500160
![]() |
[10] |
L. Beirão da Veiga, C. Lovadina, D. Mora, A Virtual Element Method for elastic and inelastic problems on polytope meshes, Comput. Meth. Appl. Mech. Eng., 295 (2015), 327–346. https://doi.org/10.1016/j.cma.2015.07.013 doi: 10.1016/j.cma.2015.07.013
![]() |
[11] |
E. Artioli, S. de Miranda, C. Lovadina, L. Patruno, A stress/displacement Virtual Element method for plane elasticity problems, Comput. Meth. Appl. Mech. Eng., 325 (2017), 155–174. https://doi.org/10.1016/j.cma.2017.06.036 doi: 10.1016/j.cma.2017.06.036
![]() |
[12] |
F. Dassi, C. Lovadina, M. Visinoni, A three-dimensional Hellinger-Reissner virtual element method for linear elasticity problems, Comput. Meth. Appl. Mech. Eng., 364 (2020), 112910. https://doi.org/10.1016/j.cma.2020.112910 doi: 10.1016/j.cma.2020.112910
![]() |
[13] |
F. Dassi, C. Lovadina, M. Visinoni, Hybridization of the virtual element method for linear elasticity problems, Math. Mod. Meth. Appl. Sci., 31 (2021), 2979–3008. https://doi.org/10.1142/S0218202521500676 doi: 10.1142/S0218202521500676
![]() |
[14] | M. F. Benedetto, S. Berrone, A. Borio, The Virtual Element Method for underground flow simulations in fractured media, In: G. Ventura, E. Benvenuti, Advances in discretization methods, SEMA SIMAI Springer Series, Cham: Springer, 12 (2016), 167–186. https://doi.org/10.1007/978-3-319-41246-7_8 |
[15] |
M. F. Benedetto, S. Berrone, A. Borio, S. Pieraccini, S. Scialò, A hybrid mortar virtual element method for discrete fracture network simulations, J. Comput. Phys., 306 (2016), 148–166. https://doi.org/10.1016/j.jcp.2015.11.034 doi: 10.1016/j.jcp.2015.11.034
![]() |
[16] |
M. F. Benedetto, A. Borio, A. Scialò, Mixed Virtual Elements for discrete fracture network simulations, Finite Elem. Anal. Des., 134 (2017), 55–67. https://doi.org/10.1016/j.finel.2017.05.011 doi: 10.1016/j.finel.2017.05.011
![]() |
[17] |
S. Berrone, M. Busetto, F. Vicini, Virtual Element simulation of two-phase flow of immiscible fluids in Discrete Fracture Networks, J. Comput. Phys., 473 (2023), 111735. https://doi.org/10.1016/j.jcp.2022.111735 doi: 10.1016/j.jcp.2022.111735
![]() |
[18] |
A. Borio, F. P. Hamon, N. Castelletto, J. A. White, R. R. Settgast, Hybrid mimetic finite-difference and virtual element formulation for coupled poromechanics, Comput. Methods Appl. Mech. Eng., 383 (2021), 113917. https://doi.org/10.1016/j.cma.2021.113917 doi: 10.1016/j.cma.2021.113917
![]() |
[19] |
S. Berrone, M. Busetto, A virtual element method for the two-phase flow of immiscible fluids in porous media, Comput. Geosci., 26 (2022), 195–216. https://doi.org/10.1007/s10596-021-10116-4 doi: 10.1007/s10596-021-10116-4
![]() |
[20] |
M. F. Benedetto, S. Berrone, A. Borio, S. Pieraccini, S. Scialò, Order preserving SUPG stabilization for the virtual element formulation of advection-diffusion problems, Comput. Methods Appl. Mech. Eng., 311 (2016), 18–40. https://doi.org/10.1016/j.cma.2016.07.043 doi: 10.1016/j.cma.2016.07.043
![]() |
[21] |
S. Berrone, A. Borio, G. Manzini, SUPG stabilization for the nonconforming virtual element method for advection-diffusion-reaction equations, Comput. Methods Appl. Mech. Eng., 340 (2018), 500–529. https://doi.org/10.1016/j.cma.2018.05.027 doi: 10.1016/j.cma.2018.05.027
![]() |
[22] |
S. Berrone, A. Borio, F. Marcon, Lowest order stabilization free Virtual Element Method for the Poisson equation, arXiv, 2021. https://doi.org/10.48550/arXiv.2103.16896 doi: 10.48550/arXiv.2103.16896
![]() |
[23] |
A. Borio, C. Lovadina, F. Marcon, M. Visinoni, A lowest order stabilization-free mixed Virtual Element Method, Comput. Math. Appl., 160 (2024), 161–170. https://doi.org/10.1016/j.camwa.2024.02.024 doi: 10.1016/j.camwa.2024.02.024
![]() |
[24] |
S. Berrone, A. Borio, F. Marcon, Comparison of standard and stabilization free Virtual Elements on anisotropic elliptic problems, Appl. Math. Lett., 129 (2022), 107971. https://doi.org/10.1016/j.aml.2022.107971 doi: 10.1016/j.aml.2022.107971
![]() |
[25] |
S. Berrone, A. Borio, F. Marcon, G. Teora, A first-order stabilization-free Virtual Element Method, Appl. Math. Lett., 142 (2023), 108641. https://doi.org/10.1016/j.aml.2023.108641 doi: 10.1016/j.aml.2023.108641
![]() |
[26] |
A. M. D'Altri, S. de Miranda, L. Patruno, E. Sacco, An enhanced VEM formulation for plane elasticity, Comput. Methods Appl. Mech. Eng., 376 (2021), 113663. https://doi.org/10.1016/j.cma.2020.113663 doi: 10.1016/j.cma.2020.113663
![]() |
[27] |
A. Chen, N. Sukumar, Stabilization-free virtual element method for plane elasticity, Comput. Math. Appl., 138 (2023), 88–105. https://doi.org/10.1016/j.camwa.2023.03.002 doi: 10.1016/j.camwa.2023.03.002
![]() |
[28] |
A. Chen, N. Sukumar, Stabilization-free serendipity virtual element method for plane elasticity, Comput. Methods Appl. Mech. Eng., 404 (2023), 115784. https://doi.org/10.1016/j.cma.2022.115784 doi: 10.1016/j.cma.2022.115784
![]() |
[29] |
B. B. Xu, F. Peng, P. Wriggers, Stabilization-free virtual element method for finite strain applications, Comput. Methods Appl. Mech. Eng., 417 (2023), 116555. https://doi.org/10.1016/j.cma.2023.116555 doi: 10.1016/j.cma.2023.116555
![]() |
[30] | S. C. Brenner, L. R. Scott, The mathematical theory of finite element methods, New York: Springer, 2008. https://doi.org/10.1007/978-0-387-75934-0 |
[31] |
L. P. Franca, S. L. Frey, T. J. R. Hughes, Stabilized finite element methods: Ⅰ. Application to the advective-diffusive model, Comput. Methods Appl. Mech. Eng., 95 (1992), 253–276. https://doi.org/10.1016/0045-7825(92)90143-8 doi: 10.1016/0045-7825(92)90143-8
![]() |
[32] |
L. Beirão da Veiga, F. Dassi, C. Lovadina, G. Vacca, SUPG-stabilized virtual elements for diffusion-convection problems: a robustness analysis, ESAIM: M2AN, 55 (2021), 2233–2258. https://doi.org/10.1051/m2an/2021050 doi: 10.1051/m2an/2021050
![]() |
[33] |
A. Cangiani, E. H. Georgoulis, T. Pryer, O. J. Sutton, A posteriori error estimates for the virtual element method, Numer. Math., 137 (2017), 857–893. https://doi.org/10.1007/s00211-017-0891-9 doi: 10.1007/s00211-017-0891-9
![]() |
[34] |
P. Clément, Approximation by finite element functions using local regularization, R.A.I.R.O. Anal. Numer., 9 (1975), 77–84. https://doi.org/10.1051/m2an/197509R200771 doi: 10.1051/m2an/197509R200771
![]() |
[35] |
C. Talischi, G. H. Paulino, A. Pereira, I. F. M. Menezes, PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab, Struct. Multidisc. Optim., 45 (2012), 309–328. https://doi.org/10.1007/s00158-011-0706-z doi: 10.1007/s00158-011-0706-z
![]() |
[36] |
P. F. Antonietti, S. Berrone, A. Borio, A. D'Auria, M. Verani, S. Weisser, Anisotropic a posteriori error estimate for the virtual element method, IMA J. Numer. Anal., 42 (2022), 1273–1312. https://doi.org/10.1093/imanum/drab001 doi: 10.1093/imanum/drab001
![]() |
1. | Peng E, Tingting Xu, Linhua Deng, Yulin Shan, Miao Wan, Weihong Zhou, Solutions of a class of higher order variable coefficient homogeneous differential equations, 2025, 20, 1556-1801, 213, 10.3934/nhm.2025011 |