Research article Special Issues

Pointwise error estimate of conservative difference scheme for supergeneralized viscous Burgers' equation


  • This work focuses on exploring pointwise error estimate of three-level conservative difference scheme for supergeneralized viscous Burgers' equation. The cut-off function method plays an important role in constructing difference scheme and presenting numerical analysis. We study the conservative invariant of proposed method, which is energy-preserving for all positive integers p and q. Meanwhile, one could apply the discrete energy argument to the rigorous proof that the three-level scheme has unique solution combining the mathematical induction. In addition, we prove the L2-norm and L-norm convergence of proposed scheme in pointwise sense with separate and different ways, which is different from previous work in [1]. Numerical results verify the theoretical conclusions.

    Citation: Yang Shi, Xuehua Yang. Pointwise error estimate of conservative difference scheme for supergeneralized viscous Burgers' equation[J]. Electronic Research Archive, 2024, 32(3): 1471-1497. doi: 10.3934/era.2024068

    Related Papers:

    [1] Yunxia Niu, Chaoran Qi, Yao Zhang, Wahidullah Niazi . Numerical analysis and simulation of the compact difference scheme for the pseudo-parabolic Burgers' equation. Electronic Research Archive, 2025, 33(3): 1763-1791. doi: 10.3934/era.2025080
    [2] Chang Hou, Hu Chen . Stability and pointwise-in-time convergence analysis of a finite difference scheme for a 2D nonlinear multi-term subdiffusion equation. Electronic Research Archive, 2025, 33(3): 1476-1489. doi: 10.3934/era.2025069
    [3] Guoliang Zhang, Shaoqin Zheng, Tao Xiong . A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29(1): 1819-1839. doi: 10.3934/era.2020093
    [4] Jingyun Lv, Xiaoyan Lu . Convergence of finite element solution of stochastic Burgers equation. Electronic Research Archive, 2024, 32(3): 1663-1691. doi: 10.3934/era.2024076
    [5] Cheng Wang . Convergence analysis of Fourier pseudo-spectral schemes for three-dimensional incompressible Navier-Stokes equations. Electronic Research Archive, 2021, 29(5): 2915-2944. doi: 10.3934/era.2021019
    [6] Leilei Wei, Xiaojing Wei, Bo Tang . Numerical analysis of variable-order fractional KdV-Burgers-Kuramoto equation. Electronic Research Archive, 2022, 30(4): 1263-1281. doi: 10.3934/era.2022066
    [7] Akeel A. AL-saedi, Jalil Rashidinia . Application of the B-spline Galerkin approach for approximating the time-fractional Burger's equation. Electronic Research Archive, 2023, 31(7): 4248-4265. doi: 10.3934/era.2023216
    [8] Hongze Zhu, Chenguang Zhou, Nana Sun . A weak Galerkin method for nonlinear stochastic parabolic partial differential equations with additive noise. Electronic Research Archive, 2022, 30(6): 2321-2334. doi: 10.3934/era.2022118
    [9] Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao . A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28(4): 1439-1457. doi: 10.3934/era.2020076
    [10] Jun Pan, Yuelong Tang . Two-grid $ H^1 $-Galerkin mixed finite elements combined with $ L1 $ scheme for nonlinear time fractional parabolic equations. Electronic Research Archive, 2023, 31(12): 7207-7223. doi: 10.3934/era.2023365
  • This work focuses on exploring pointwise error estimate of three-level conservative difference scheme for supergeneralized viscous Burgers' equation. The cut-off function method plays an important role in constructing difference scheme and presenting numerical analysis. We study the conservative invariant of proposed method, which is energy-preserving for all positive integers p and q. Meanwhile, one could apply the discrete energy argument to the rigorous proof that the three-level scheme has unique solution combining the mathematical induction. In addition, we prove the L2-norm and L-norm convergence of proposed scheme in pointwise sense with separate and different ways, which is different from previous work in [1]. Numerical results verify the theoretical conclusions.



    In this paper, we shall present a incisive analysis of a finite difference method for solving the following supergeneralized viscous Burgers' equation in the domain [0,L]×[0,T]:

    ut+up(1u)qux=νuxx,x(0,L),t(0,T], (1.1)
    u(x,0)=Ψ(x),x(0,L), (1.2)
    u(0,t)=0,u(L,t)=0,t[0,T], (1.3)

    here L and T are positive constants, Ψ(x) that satisfies Ψ(0)=Ψ(L)=0 is smooth on [0,L], p1 and q0 are two positive integers, and positive constant ν denotes the dynamic viscosity coefficient.

    In the last few decades, Burgers' equation for the case of supergeneralized viscous Burgers' equation with p=1 and q=0 has attracted much attention from researchers. It is caused by numerous effective applications of Burgers' equation to many fields of science and engineering like shock wave theory, cosmology, gas dynamics, quantum field and traffic flow, see e.g., [2,3,4,5,6]. The supergeneralized viscous Burgers' equation is a typical evolution equation, and recently a series of numerical methods have been developed to solve it, e.g., finite difference method [7,8,9,10,11], finite volume method [12,13,14], ADI method [15,16,17,18], collocation method [19,20], two-grid method [21,22] and extrapolation method [23]. Meanwhile, as the other simplified form of supergeneralized viscous Burgers' equation with p1 and q=0, the generalized Burgers' equation also plays an important role in applied mathematics and engineering, see e.g., [24,25,26,27]. Recently, Wang et al. [28] established two conservative fourth-order compact schemes for Burgers' equation. Zhang et al. [29,30] derived various efficient difference schemes for Burgers' type equations. Gao et al. [31] proposed a bounded high-order upwind scheme in the normalized-variable formulation for the modified Burgers' equations. Guo et al. [32] proposed a BDF3 finite difference scheme for the generalized viscous Burgers' equation. Hu et al. [33] considered an implicit difference scheme to study the local conservation properties for Burgers' equation. Pany et al. [34] investigated an H1-Galerkin mixed finite element method to approximate the solution of the Burgers' equation. In addition, Jiwari et al. [35] studied a numerical scheme which is a composition of forward finite difference, quasilinearization process and uniform Haar wavelets for solving Burgers' equation. Wang et al. [36] used the weak Galerkin finite element method to study a class of time fractional generalized Burgers' equation. Wang et al. [37,38,39] presented an implicit robust difference method to solve the modified Burgers equation on graded meshes. Zhang et al. [40] provided a fourth-order compact difference scheme for time-fractional Burgers' equation. Zhang et al. [41] considered a conservative decoupled difference scheme for the rotation-two-component Camassa-Holm system. Sun et al. [42] obtained nonlinear discrete scheme for generalized Burgers' equation with the help of meshless method. Zhang et al. [1] constructed various difference schemes for generalized Burgers' equation only with one positive parameter p1.

    The previous works are mainly concerned with the simple case of the parameter p=1 for problem (1.1)–(1.3). Our scheme can extended the results in the previous work [1] with a positive integer p1. In this paper, the main contributions are as follows:

    ● We construct the discretization of the nonlinear term by a second-order operator in supergeneralized viscous Burgers' equation and provide complete theoretical analysis on the proposed scheme, including conservation, existence, uniqueness and convergence.

    ● We prove L2-norm and L-norm convergence in pointwise sense by the cut-off function method, which doesn't have any step ratio restrictions. The L2-norm and L-norm convergence are proved with separate and different ways, which is different from previous work in [1].

    The rest of the paper is arranged as follows. We introduce some useful notations for discretization and construct our proposed scheme in Section 2. In Section 3, we present certain conclusions about conservative invariants and boundedness of the suggested numerical scheme, and we provide the proof of unique solvability and convergence. The numerical test in Section 4 is given to demonstrate the reliability of our analysis. A brief conclusion is followed in Section 5.

    Firstly, for any integer s, we denote set Ns={i|1is,iZ} and N0s={i|0is,iZ}. For two positive integers ˜m and ˜n, define the spatial step h=L˜m, and the temporal step τ=T˜n. Denotexi=ih,iN0˜m; tk=kτ,kN0˜n. We introduce the mesh ˜ωLT=˜ωLטωT, where ˜ωL={xi|iN0˜m}, and ˜ωT={tk|kN0˜n}. Denote xi+12=12(xi+xi+1),iN0˜m1 and tk+12=12(tk+tk+1),kN0˜n1.

    Let Jh={j|j=(j0,j1,,j˜m)} and Jh={j|jJh,j0=j˜m=0} be the spaces of grid functions on ˜ωL. For d,jJh, introducing the following notations:

    δxdki+12=1h(dki+1dki),δ2xdki=1h2(dki12dki+dki+1),Δxdki=12h(dki+1dki1),dk+12i=12(dki+dk+1i),δtdk+12i=1τ(dk+1idki),(d,j)=h(12d0j0+˜m1i=1diji+12d˜mj˜m),dˉki=12(dk+1i+dk1i),Δtdki=12τ(dk+1idk1i),d=(d,d),d=max0i˜m|di|,ψ(d,j)i=diΔxji+Δx(dj)i,dˉki=dk+1+dk12,d,j=h˜m1i=0(δxdi+12)(δxji+12),|d|1=d,d.

    Lemma 2.1. [28] Let jJh and rJh, then

    (ψ(j,r),r)=0.

    Lemma 2.2. [28] Set jJh, then

    (δ2xj,j)=|j|21,jL2|j|1,jL6|j|1.

    Lemma 2.3. Suppose that U=(U0,U1,,U˜m), u=(u0,u1,,u˜m)Jh and g(u) is a second-order smooth function. Denote e=(e0,e1,,e˜m) and ei=Uiui, iN0˜m. Then there are ρ(0,1) and ζi(yi,ri) such that

    δx(g(U)g(u))i+12=g(ρui+1+(1ρ)ui)δxei+12+g(ζi)[ρ(Ui+1ui+1)+(1ρ)(Uiui)]δxUi+12, (2.1)

    where

    yi=min{ρui+1+(1ρ)ui,ρUi+1+(1ρ)Ui},
    ri=max{ρui+1+(1ρ)ui,ρUi+1+(1ρ)Ui}.

    Proof. Using the mean value theorem, one has

    δx(g(U)g(u))i+12=1h[(g(Ui+1)g(ui+1))(g(Ui)g(ui))]=1h[(g(Ui+hδxUi+12)g(ui+hδxui+12))(g(Ui)g(ui))]=1h[(g(Ui+hδxUi+12)g(Ui))(g(ui+hδxui+12)g(ui))]=g(Ui+ρhδxUi+12)δxUi+12g(ui+ρhδxui+12)δxui+12.

    Again, applying the mean value theorem, we have

    δx(g(U)g(u))i+12=g(ui+ρhδxui+12)δxei+12+[g(Ui+ρhδxUi+12)g(ui+ρhδxui+12)]δxUi+12=g(ρui+1+(1ρ)ui)δxei+12+[g(ρUi+1+(1ρ)Ui)g(ρui+1+(1ρ)ui)]δxUi+12=g(ρui+1+(1ρ)ui)δxei+12+g(ζi)[ρei+1+(1ρ)ei]δxUi+12.

    The proof is finished.

    In order to construct a three-level conservative numerical scheme for supergeneralized viscous Burgers' equation (1.1)–(1.3), we first turn problem (1.1) into an equivalent form as follows:

    {ut+qm=0Cmq(1)mp+m+2(W(m)ux+(W(m)u)x)=vuxx,W(m)=up+m, (2.2)

    where Cmq is the binomial coefficient, 0mq.

    We denote Uki=u(xi,tk), and let uki denote the nodal approximation to the exact solution computed at the mesh point (xi,tk).

    Considering (2.2) at the point (xi,tk), iN˜m1, kN˜n1, one gets

    {ΔtUki+qm=0Cmq(1)mp+m+2ψ(Wk(m),Uˉk)i=νδ2xUˉki+Pki,W(m)ki=(Uki)p+m. (2.3)

    By Taylor expansion, one gets

    |Pki|c1(τ2+h2), (2.4)

    where c1 is a positive constant.

    We consider (1.1) at the point (xi,t0), iN˜m1, noticing (1.2), and one gets

    ut(xi,t0)=υΨ(xi)(Ψ(xi))p(1Ψ(xi))qΨ(xi),iN˜m1.

    Denote

    ri=Ψ(xi)+τ2[υΨ(xi)(Ψ(xi))p(1Ψ(xi))qΨ(xi)], (2.5)
    R(m)i=(ri)p+m,iN˜m1. (2.6)

    Considering (2.2) at the point (xi,t12), iN˜m1, one gets

    δtU12i+qm=0Cmq(1)mp+m+2ψ(R(m),U12)i=νδ2xU12i+P0i, (2.7)

    and

    |P0i|c1(τ2+h2). (2.8)

    Noticing (1.2) and (1.3), we get

    {U0i=Ψ(xi),iN˜m1,Uk0=0,Uk˜m=0,kN0˜n. (2.9)

    Omitting the small terms Pki in (2.3) and P0i in (2.7), and replacing Uki by uki, and W(m)ki by w(m)ki, iN˜m1, kN˜n1, respectively. Thus, we can obtain the three-level difference approximation for (1.1)–(1.3) as follows

    Δtuki+qm=0Cmq(1)mp+m+2ψ(wk(m),uˉk)i=νδ2xuˉki, (2.10)
    δtu12i+qm=0Cmq(1)mp+m+2ψ(R(m),u12)i=νδ2xu12i, (2.11)
    w(m)ki=(uki)p+m,iN0˜m,kN˜n1, (2.12)
    u0i=Ψ(xi),iN˜m1, (2.13)
    uk0=0,uk˜m=0,kN0˜n. (2.14)

    Noticing that substituting (2.12) into (2.10), the three-level difference scheme only contains one variable uki.

    We now begin to consider the energy conservation and boundedness of solution of the three-level numerical scheme (2.10)–(2.14).

    Theorem 3.1. Suppose that {uki,w(m)ki|iN0˜m,kN0˜n} is the solution of (2.10)–(2.14), we get

    12(u12+u02)+ντ|u12|21=u02, (3.1)
    Υk=Υ0,kN˜n1, (3.2)

    where

    Υk=12(uk+12+uk2)+2ντks=1|uˉs|21,kN0˜n1. (3.3)

    Proof. 1) Taking the inner product of (2.11) with u12, one obtains

    (δtu12,u12)+qm=0Cmq(1)mp+m+2(ψ(R(m),u12),u12)=ν(δ2xu12,u12).

    Since u12Jh, by Lemmas 2.1 and 2.2, one gets

    (δtu12,u12)=12τ(u12u02),(ψ(R(m),u12),u12)=0,(δ2xu12,u12)=|u12|21.

    Thus,

    12(u12u02)+ντ|u12|21=0. (3.4)

    Namely,

    12(u12+u02)+ντ|u12|21=u02.

    2) Taking the inner product of (2.10) with uˉk, one gets

    (Δtuk,uˉk)+qm=0Cmq(1)mp+m+2(ψ(wk(m),uˉk),uˉk)=ν(δ2xuˉk,uˉk).

    Since uˉkJh, by Lemmas 2.1 and 2.2, we have

    (Δtuk,uˉk)=14τ(uk+12uk12),(ψ(wk(m),uˉk),uˉk)=0,(δ2xuˉk,uˉk)=|uˉk|21.

    Thus,

    14(uk+12uk12)+ντ|uˉk|21=0. (3.5)

    Above equality can be rewritten as

    12(ΥkΥk1)=0,kN˜n1.

    Thus,

    Υk=Υ0,kN˜n1.

    Corollary 3.2. Let {uki,w(m)ki|iN0˜m,kN0˜n} represent the solution of (2.10)–(2.14). Then one has

    12(uk+12+uk2)+ντ|u12|21+2ντks=1|uˉs|21=u02,kN0˜n1.

    Proof. According to Theorem 3.1,

    Υk=Υ0=12(u12+u02)=u02ντ|u12|21.

    Thus,

    Υk+ντ|u12|21=u02.

    Corollary 3.3. Let {uki,w(m)ki|iN0˜m,kN0˜n} represent the solution of (2.10)–(2.14). Then the computed solution uki can satisfy

    uku0,kN˜n.

    Proof. From (3.4) and (3.5) in Theorem 3.1, we can get Corollary 3.3 directly.

    Furthermore, we will carry out the proof of existence and uniqueness of the solution of (2.10)–(2.14).

    Theorem 3.4. The solution of (2.10)–(2.14) exists and it is unique.

    Proof. According to (2.13) and (2.14), u0 has been determined uniquely. From (2.11) and (2.14), establishing a linear system with respect to u1, and considering the corresponding homogeneous system

    1τu1i+12qm=0Cmq(1)mp+m+2ψ(R(m),u1)i=12νδ2xu1i,iN˜m1, (3.6)
    u10=0,u1˜m=0. (3.7)

    Taking the inner product of (3.6) with u1, one has

    1τu12+12qm=0Cmq(1)mp+m+2(ψ(R(m),u1),u1)=12ν(δ2xu1,u1).

    By Lemmas 2.1 and 2.2, one gets

    (ψ(R(m),u1),u1)=0,(δ2xu1,u1)=|u1|21.

    Therefore,

    1τu12+12ν|u1|21=0.

    It is easy to obtain

    u1=0.

    It implies that (2.11) and (2.14) determine u1 uniquely.

    Assume that uk and uk1 have been known. By (2.10), (2.12) and (2.14), we get the following linear homogeneous system of equations with respect to uk+1:

    12τuk+1i+12qm=0Cmq(1)mp+m+2ψ(wk(m),uk+1)i=12νδ2xuk+1i,iN˜m1, (3.8)
    uk+10=0,uk+1˜m=0. (3.9)

    Taking the inner product of (3.8) with uk+1, one has

    12τuk+12+12qm=0Cmq(1)mp+m+2(uk+1,ψ(wk(m),uk+1))=12ν(uk+1,δ2xuk+1).

    By Lemmas 2.1 and 2.2, one gets

    (uk+1,ψ(wk(m),uk+1))=0,(uk+1,δ2xuk+1)=|uk+1|21.

    Therefore,

    12τuk+12+12ν|uk+1|21=0.

    It is easy to obtain

    uk+1=0.

    Consequently, it implies that uk+1 solved by (2.10), (2.12) and (2.14) is unique.

    Based on mathematical induction, (2.10)–(2.14) is uniquely solvable, and this completes the proof.

    In order to establish the convergence of (2.10)–(2.14), we will introduce the cut-off function method next.

    Denote

    M=max(x,t)[0,L]×[0,T]|u(x,t)|,~c1=max(x,t)[0,L]×[0,T]{|ux(x,t)|}. (3.10)

    Define a group of second-order smooth functions

    gm(u)={up+m,|u|M+1,0,|u|M+2,

    where 0mq.

    Denote

    maxuR,0mq|gm(u)|=^c0,maxuR,0mq|gm(u)|=^c1, and maxuR,0mq|gm(u)|=^c2.

    Based on the cut-off function method, we construct a new difference scheme as follows:

    Δtuki+qm=0Cmq(1)mp+m+2ψ(wk(m),uˉk)i=νδ2xuˉki, (3.11)
    δtu12i+qm=0Cmq(1)mp+m+2ψ(R(m),u12)i=νδ2xu12i, (3.12)
    w(m)ki=gm(uki),iN˜m1,kN˜n1, (3.13)
    u0i=Ψ(xi),iN˜m1, (3.14)
    uk0=0,uk˜m=0,kN0˜n. (3.15)

    For the above difference scheme, it is conservative.

    Theorem 3.5. Suppose that {uki,w(m)ki|iN0˜m,kN0˜n} represents the solution of (3.11)–(3.15), we get

    12(u12+u02)+ντ|u12|21=u02, (3.16)
    Υk=Υ0,kN˜n1, (3.17)

    where

    Υk=12(uk+12+uk2)+2ντks=1|uˉs|21,kN0˜n1.

    Proof. The proof of (3.16) and (3.17) is similar to the proof of Theorem 3.1.

    Now we prove the L2-norm and L-norm convergence of (3.11)–(3.15).

    Theorem 3.6. Assume that {uki,w(m)ki|iN0˜m,kN0˜n} is the solution of (3.11)–(3.15) and {Uki,W(m)ki|iN0˜m,kN0˜n} is the solution of (1.1)–(1.3), there exists a positive constant c2 such that

    Ukukc2(τ2+h2),kN0˜n. (3.18)

    Proof. Define

    eki=Ukiuki,b(m)ki=W(m)kiw(m)ki.

    Since (3.10), we get

    gm(Uki)=(Uki)p+m.

    Subtracting (3.11)–(3.15) from (2.3), (2.7) and (2.9) follows

    δte12i+qm=0Cmq(1)mp+m+2ψ(R(m),e12)i=νδ2xe12i+P0i,iN˜m1, (3.19)
    Δteki+qm=0Cmq(1)mp+m+2[ψ(Wk(m),Uˉk)iψ(wk(m),uˉk)i]=νδ2xeˉki+Pki,iN˜m1,kN˜n1, (3.20)
    b(m)ki=gm(Uki)gm(uki),iN0˜m,kN˜n1, (3.21)
    e0i=0,iN˜m1, (3.22)
    ek0=0,ek˜m=0,kN0˜n. (3.23)

    When k=0, from (3.22) and (3.23), we get

    e0=0. (3.24)

    Taking the inner product of (3.19) with e12, one gets

    (δte12,e12)+qm=0Cmq(1)mp+m+2(ψ(R(m),e12),e12)=ν(δ2xe12,e12)+(P0,e12). (3.25)

    By Lemmas 2.1 and 2.2, we obtain

    (δte12,e12)=12τ(e12e02)=12τe12, (3.26)
    (ψ(R(m),e12),e12)=0, (3.27)
    (δ2xe12,e12)=δxe122. (3.28)

    Substituting (3.26)–(3.28) into (3.25), we have

    12τe12=δxe122+(P0,e12)(P0,e12)12P02+12e12212P02+14e12.

    Thus,

    (1τ2)e12τP02.

    When τ213, noticing (2.8), one gets

    e12P02Lc21(τ2+h2)2.

    or

    e1Lc1(τ2+h2). (3.29)

    By (3.10) and Lagrange mean value theorem, one gets

    |ΔxUki|˜c1, (3.30)
    |b(m)ki|ˆc1|eki|. (3.31)

    Taking the inner product of (3.20) with eˉk, one gets

    (Δtek,eˉk)+qm=0Cmq(1)mp+m+2(ψ(Wk(m),Uˉk)ψ(wk(m),uˉk),eˉk)=ν(δ2xeˉk,eˉk)+(Pk,eˉk),kN˜n1. (3.32)

    Using Lemma 2.2, one obtains

    (Δtek,eˉk)=14τ(ek+12ek12), (3.33)
    (δ2xeˉk,eˉk)=δxeˉk2. (3.34)

    Substituting (3.33) and (3.34) into (3.32), above equality (3.32) becomes

    14τ(ek+12ek12)+νδxeˉk2=qm=0Cmq(1)mp+m+2(ψ(Wk(m),Uˉk)ψ(wk(m),uˉk),eˉk)+(Pk,eˉk)qm=0a0p+2|(ψ(Wk(m),Uˉk)ψ(wk(m),uˉk),eˉk)|+|(Pk,eˉk)|, (3.35)

    where a0=max0mqCmq.

    Noticing that

    ψ(Wk(m),Uˉk)iψ(wk(m),uˉk)i=ψ(Wk(m),Uˉk)iψ(Wk(m)bk(m),Uˉkeˉk)i=ψ(Wk(m),eˉk)i+ψ(bk(m),Uˉk)iψ(bk(m),eˉk)i.

    Thus, by Lemma 2.1, we have

    (ψ(Wk(m),Uˉk)ψ(wk(m),uˉk),eˉk)=(ψ(bk(m),Uˉk),eˉk)=h˜m1i=1[b(m)kiΔxUˉki+Δx(b(m)kUˉk)i]eˉki=h˜m1i=1b(m)kieˉkiΔxUˉki+h˜m1i=1b(m)kiUˉkiΔxeˉki. (3.36)

    Noticing (3.30), (3.31) and (3.10), we have

    |(ψ(Wk(m),Uˉk)ψ(wk(m),uˉk),eˉk)|h˜m1i=1˜c1ˆc1|eki||eˉki|+h˜m1i=1Mˆc1|eki||Δxeˉki|˜c1ˆc1ekeˉk+Mˆc1ekΔxeˉk˜c1ˆc1ekeˉk+Mˆc1ekδxeˉk. (3.37)

    Substituting (3.37) into (3.35), (3.35) yields

    14τ(ek+12ek12)+νδxeˉk2qm=0a0p+2(˜c1ˆc1ekeˉk+Mˆc1ekδxeˉk)+12Pk2+12eˉk2a0(1+q)p+2(˜c1ˆc12ek2+˜c1ˆc12eˉk2+(p+2)νa0(1+q)δxeˉk2+a0(1+q)M2ˆc214(p+2)νek2)+12Pk2+12eˉk2=[a0(1+q)˜c1ˆc12(p+2)+a20(1+q)2M2ˆc214(p+2)2ν]ek2+[a0(1+q)˜c1ˆc12(p+2)+12]eˉk2+νδxeˉk2+12Pk2. (3.38)

    Combining (2.4), above equality (3.38) becomes

    14τ(ek+12ek12)c3ek2+2c4eˉk2+12Lc21(τ2+h2)2c3ek2+c4ek+12+c4ek12+12Lc21(τ2+h2)2, (3.39)

    where c3=a0(1+q)˜c1ˆc12(p+2)+a20(1+q)2M2ˆc214(p+2)2ν and c4=a0(1+q)˜c1ˆc14(p+2)+14 are two positive constants.

    Rearranging (3.39) to yield

    (14c4τ)ek+124c3τek2+(1+4c4τ)ek12+2Lc21τ(τ2+h2)2,kN˜n1. (3.40)

    For kN˜n1, when 4c4τ13, (3.40) yields

    ek+126c3τek2+(1+12c4τ)ek12+3Lc21τ(τ2+h2)2. (3.41)

    Therefore,

    max{ek+12,ek2}[1+6(c3+2c4)τ]max{ek12,ek2}+3Lc21τ(τ2+h2)2. (3.42)

    According to Gronwall's inequality, we obtain

    max{ek+12,ek2}e6(c3+2c4)T[max{e12,e02}+Lc212(c3+2c4)(τ2+h2)2].

    Noticing (3.24) and (3.29), one gets

    ek2e6(c3+2c4)T[e12+Lc212(c3+2c4)(τ2+h2)2]=e6(c3+2c4)T[Lc21+Lc212(c3+2c4)](τ2+h2)2c22(τ2+h2)2,kN˜n,

    where c2=e6(c3+2c4)T[Lc21+Lc212(c3+2c4)]12.

    Namely,

    ekc2(τ2+h2).

    Theorem 3.7. Assume that {uki,w(m)ki|iN0˜m,kN0˜n} is the solution of (3.11)–(3.15) and {Uki,W(m)ki|iN0˜m,kN0˜n} is the solution of (1.1)–(1.3), there exists positive constants c7 and c8 such that

    |Ukuk|1c7(τ2+h2),kN0˜n, (3.43)
    Ukukc8(τ2+h2),kN0˜n. (3.44)

    Proof. We will use the mathematical induction to prove the result. When k=0, from (3.22) and (3.23), we get

    |e0|1=0,e0=0. (3.45)

    Therefore, the conclusion is valid for k=0.

    1) Taking the inner product of (3.19) with δte12, one gets

    δte122+qm=0Cmq(1)mp+m+2(ψ(R(m),e12),δte12)=ν(δ2xe12,δte12)+(P0,δte12). (3.46)

    Noticing that

    e0i=0,iN0˜m,

    then (3.46) becomes

    1τ2e12+12τqm=0Cmq(1)mp+m+2(ψ(R(m),e1),e1)=ν2τ(δ2xe1,e1)+1τ(P0,e1). (3.47)

    Using Lemmas 2.1 and 2.2, we have

    1τ2e12+ν2τ|e1|21=1τ(P0,e1)1τ2e12+14P02. (3.48)

    From (2.8), we get

    |e1|212τν14P02τ2νLc21(τ2+h2)2.

    When τ2ν, one gets

    |e1|21Lc21(τ2+h2)2,

    or

    |e1|1Lc1(τ2+h2). (3.49)

    2) Taking the inner product of (3.20) with Δtek, one gets

    Δtek2+qm=0Cmq(1)mp+m+2(ψ(Wk(m),Uˉk)ψ(wk(m),uˉk),Δtek)=ν(δ2xeˉk,Δtek)+(Pk,Δtek),kN˜n1. (3.50)

    Suppose (3.43) and (3.44) hold for 0ks (1s˜n1).

    From (3.10) and Lemma 2.2, one gets

    |Uk|1L˜c1,UkL2˜c1,kN0˜n. (3.51)

    When c7(τ2+h2)1, one gets

    |uk|1|Uk|1+|ek|1L˜c1+1,1ks,ukL2(L˜c1+1),1ks. (3.52)

    Using Lemma 2.2, above equality (3.50) becomes

    Δtek2+qm=0Cmq(1)mp+m+2(ψ(Wk(m),Uˉk)ψ(wk(m),uˉk),Δtek)=ν4τ(|ek+1|21|ek1|21)+(Pk,Δtek). (3.53)

    Noticing that

    ψ(Wk(m),Uˉk)iψ(wk(m),uˉk)i=ψ(bk(m),Uˉk)i+ψ(wk(m),eˉk)i=b(m)kiΔxUˉki+Δx(bk(m)Uˉk)i+w(m)kiΔxeˉki+Δx(wk(m)eˉk)i=2b(m)kiΔxUˉki+12(δxb(m)ki+12)Uˉki+1+12(δxb(m)ki12)Uˉki1+2w(m)kiΔxeˉki+12(δxw(m)ki+12)eˉki+1+12(δxw(m)ki12)eˉki1. (3.54)

    By Lagrange mean value theorem and the Lemma 2.3, we have

    |b(m)ki|^c1|eki|,|δxb(m)ki+12|^c1|δxeki+12|+~c1^c2[ρ|eki+1|+(1ρ)|eki|],|δxb(m)ki12|^c1|δxeki12|+~c1^c2[ρ|eki|+(1ρ)|eki1|]. (3.55)

    Thus, combining (3.54) and (3.55) yields

    |ψ(Wk(m),Uˉk)iψ(wk(m),uˉk)i|2ˆc1|eki||ΔxUˉki|+12[ˆc1|δxeki+12|+ρ˜c1ˆc2|eki+1|+(1ρ)˜c1ˆc2|eki|]|Uˉki+1|+12[ˆc1|δxeki12|+ρ˜c1ˆc2|eki|+(1ρ)˜c1ˆc2|eki1|]|Uˉki1|+2ˆc0|Δxeˉki|+12ˆc1|δxuki+12||eˉki+1|+12ˆc1|δxuki12||eˉki1|. (3.56)

    Using Lemma 2.2, combining (3.51), (3.52) and (3.56), it is easy to get

    (ψ(Wk(m),Uˉk)ψ(wk(m),uˉk),Δtek)[2ˆc1ek|Uˉk|1+Uˉk(ˆc1|ek|1+˜c1ˆc2ek)]Δtek+(2ˆc0|eˉk|1+ˆc1|uk|1eˉk)Δtek(2Lˆc1˜c1ek+L2ˆc1˜c1|ek|1+L2˜c21ˆc2ek)Δtek+[2ˆc0|eˉk|1+ˆc1(L˜c1+1)eˉk]Δtek(2Lˆc1˜c1L2|ek|1+L2ˆc1˜c1|ek|1+L2˜c21ˆc2L6|ek|1)Δtek+[2ˆc0|eˉk|1+ˆc1(L˜c1+1)L2|eˉk|1]Δtek=(Lˆc1˜c1+12Lˆc1˜c1+126L2ˆc2˜c21)|ek|1Δtek+[2ˆc0+12Lˆc1(L˜c1+1)]|eˉk|1Δtek=c9|ek|1Δtek+c10|eˉk|1Δtekp+24a0(1+q)Δtek2+a0(1+q)c29p+2|ek|21+p+24a0(1+q)Δtek2+a0(1+q)c210p+2|eˉk|21, (3.57)

    where c9=(Lˆc1˜c1+12Lˆc1˜c1+126L2ˆc2˜c21) and c10=2ˆc0+12Lˆc1(L˜c1+1).

    Thus, (3.53) becomes

    Δtek2+ν4τ(|ek+1|21|ek1|21)=qm=0Cmq(1)mp+m+2(ψ(Wk(m),Uˉk)ψ(wk(m),uˉk),Δtek)+(Pk,Δtek)qm=0a0p+2|(ψ(Wk(m),Uˉk)ψ(wk(m),uˉk),Δtek)|+|(Pk,Δtek)|qm=0a0p+2(p+24a0(1+q)Δtek2+a0(1+q)c29p+2|ek|21+p+24a0(1+q)Δtek2+a0(1+q)c210p+2|eˉk|21)+12Pk2+12Δtek2=14Δtek2+a20(q+1)2c29(p+2)2|ek|21+14Δtek2+a20(q+1)2c210(p+2)2|eˉk|21+12Pk2+12Δtek2,1ks, (3.58)

    where a0=max0mqCmq.

    Noticing (2.4), (3.58) becomes

    ν4τ(|ek+1|21|ek1|21)a20(q+1)2c29(p+2)2|ek|21+a20(q+1)2c210(p+2)2|eˉk|21+12Pk2c5|ek|21+c6|ek+1|21+|ek1|212+12Lc21(τ2+h2)2,1ks, (3.59)

    where c5=a20(q+1)2c29(p+2)2 and c6=a20(q+1)2c210(p+2)2 are two positive constants.

    For 1ks, rearranging (3.59) to yield

    (12c6τν)|ek+1|214c5τν|ek|21+(1+2c6τν)|ek1|21+2Lc21ντ(τ2+h2)2. (3.60)

    When 2c6τν13, (3.60) yields

    |ek+1|216c5τν|ek|21+(1+6c6τν)|ek1|21+3Lc21ντ(τ2+h2)2.

    Therefore,

    max{|ek+1|21,|ek|21}(1+6c5+6c6ντ)max{|ek1|21,|ek|21}+3Lc21ντ(τ2+h2)2,1ks. (3.61)

    According to Gronwall's inequality, (3.61) yields

    max{|ek+1|21,|ek|21}e6c5+6c6νT[max{|e0|21,|e1|21}+Lc212(c5+c6)(τ2+h2)2],1ks.

    Noticing (3.45) and (3.49), one gets

    |es+1|21e6c5+6c6νT[max{|e0|21,|e1|21}+Lc212(c5+c6)(τ2+h2)2]=e6c5+6c6νT[Lc21+Lc212(c5+c6)](τ2+h2)2c27(τ2+h2)2,

    where c7=e3c5+3c6νT[Lc21+Lc212(c5+c6)]12.

    Namely,

    |es+1|1c7(τ2+h2).

    Consequently, (3.43) holds for k=s+1.

    From Lemma 2.2, it is easy to get

    ekL2|ek|1L2c7(τ2+h2)c8(τ2+h2),kN0˜n.

    Corollary 3.8. Let {uki,w(m)ki|iN0˜m,kN0˜n} be the solution of (3.11)–(3.15). When c7(τ2+h2)1, there exists two constants c11 and c12 such that

    |uk|1c11,ukc12,kN0˜n.

    Proof. When c7(τ2+h2)1, one has

    |uk|1|Uk|1+|ek|1L˜c1+c7(τ2+h2)c11,kN0˜n.

    By Lemma 2.2, we get ukL2c10c12.

    This means the solution of (3.11)–(3.15) is bounded.

    In the end, for the proposed scheme (2.10)–(2.14), we can obtain the following convergence.

    Corollary 3.9. Let {uki,w(m)ki|iN0˜m,kN0˜n} be the solution of (2.10)–(2.14) and {Uki,W(m)ki|iN0˜m,kN0˜n} be the solution of (1.1)–(1.3). When c8(τ2+h2)1, one has

    Ukukc13(τ2+h2),kN0˜n,Ukukc13(τ2+h2),kN0˜n,

    where c13 is a constant.

    Proof. Let {ˆuki|iN0˜m,kN0˜n} be the solution of (3.11)–(3.15). When c8(τ2+h2)1, one has

    |ˆuki||Uki|+|Ukiˆuki|M+c8(τ2+h2)M+1,kN0˜n.

    Thus, gm(ˆuki)=(ˆuki)p+m.

    This means the difference scheme (2.10)–(2.14) is equivalent to (3.11)–(3.15). According to Theorems 3.6 and 3.7, we finish the proof of Corollary 3.9.

    A numerical example is given to verify theoretical conclusions of the three-level difference scheme for supergeneralized viscous Burgers' equation.

    Example 4.1. We consider (1.1)–(1.3) with T=L=1, ν=1, Ψ(x)=sin(πx), and p, q take some different integer values, respectively.

    To describe the numerical errors in L-norm for the computed solution and corresponding convergence orders, we denote

    E1(h,τ)=max0i˜mmax0k˜n|uki(h,τ)u2ki(h,τ2)|,Order1=log2E1(h,2τ)E1(h,τ),
    E2(h,τ)=max0i˜mmax0k˜n|uki(h,τ)uk2i(h2,τ)|,Order2=log2E2(2h,τ)E2(h,τ),

    and

    E3(h,τ)=max0i˜mmax0k˜n|uki(h,τ)u2k2i(h2,τ2)|,Order3=log2E3(2h,2τ)E3(h,τ),

    where h and τ are sufficiently small.

    Table 1 lists the temporal convergence orders with h=164. We compute the spatial convergence orders with τ=164 in Table 2. Table 3 presents the temporal and spatial errors and convergence orders with τ=h. The corresponding error and convergence orders are presented in Figures 16. The results demonstrate (2.10)–(2.14) is convergent with the convergence order of two both in space and in time.

    Table 1.  The temporal convergence orders with h=164.
    τ p=2,q=1 p=2,q=3 p=3,q=4
    E1(h,τ) Order1 E1(h,τ) Order1 E1(h,τ) Order1
    1/20 2.6456e-02 - 2.5871e-02 - 2.5872e-02 -
    1/40 5.8120e-03 2.1865 5.8182e-03 2.1527 5.7895e-03 2.1599
    1/80 1.4154e-03 2.0379 1.4109e-03 2.0440 1.4108e-03 2.0369
    1/160 3.5049e-04 2.0137 3.5054e-04 2.0090 3.5051e-04 2.0090
    1/320 8.7491e-05 2.0022 8.7498e-05 2.0022 8.7490e-05 2.0022
    1/640 2.1864e-05 2.0006 2.1866e-05 2.0006 2.1864e-05 2.0006

     | Show Table
    DownLoad: CSV
    Table 2.  The spatial convergence orders with τ=164.
    h p=2,q=1 p=2,q=3 p=3,q=4
    E2(h,τ) Order2 E2(h,τ) Order2 E2(h,τ) Order2
    1/20 5.7545e-04 - 5.7530e-04 - 5.7521e-04 -
    1/40 1.4410e-04 1.9977 1.4381e-04 2.0001 1.4379e-04 2.0001
    1/80 3.6024e-05 2.0000 3.5952e-05 2.0000 3.5947e-05 2.0000
    1/160 9.0074e-06 1.9998 8.9879e-06 2.0000 8.9866e-06 2.0000
    1/320 2.2519e-06 2.0000 2.2470e-06 2.0000 2.2466e-06 2.0000
    1/640 5.6296e-07 2.0000 5.6174e-07 2.0000 5.6166e-07 2.0000

     | Show Table
    DownLoad: CSV
    Table 3.  The temporal and spatial errors and convergence orders with τ=h.
    h τ p=2,q=1 p=2,q=3 p=3,q=4
    E3(h,τ) Order3 E3(h,τ) Order3 E3(h,τ) Order3
    1/20 1/20 2.5727e-02 - 2.5170e-02 - 2.5171e-02 -
    1/40 1/40 5.6650e-03 2.1831 5.6706e-03 2.1501 5.6420e-03 2.1575
    1/80 1/80 1.3805e-03 2.0369 1.3756e-03 2.0435 1.3755e-03 2.0363
    1/160 1/160 3.4173e-04 2.0142 3.4189e-04 2.0084 3.4176e-04 2.0089
    1/320 1/320 8.5308e-05 2.0021 8.5337e-05 2.0023 8.5308e-05 2.0022
    1/640 1/640 2.1319e-05 2.0005 2.1326e-05 2.0006 2.1319e-05 2.0005

     | Show Table
    DownLoad: CSV
    Figure 1.  The convergence orders of time when h=164 for p=2,q=1.
    Figure 2.  The convergence orders of time when h=164 for p=2,q=3.
    Figure 3.  The convergence orders of time when h=164 for p=3,q=4.
    Figure 4.  The spatial convergence orders when τ=164 for p=2,q=1.
    Figure 5.  The spatial convergence orders when τ=164 for p=2,q=3.
    Figure 6.  The spatial convergence orders when τ=164 for p=3,q=4.

    In Figures 79, we compute Υk in Theorem 3.1 to verify the conservativity of the difference scheme (2.10)–(2.14). The results demonstrate that difference scheme (2.10)–(2.14) is conservative.

    Figure 7.  Conservative invariant Υk of the scheme (2.10)–(2.14) with p=2 and q=1.
    Figure 8.  Conservative invariant Υk of the scheme (2.10)–(2.14) with p=2 and q=3.
    Figure 9.  Conservative invariant Υk of the scheme (2.10)–(2.14) with p=3 and q=4.

    In this paper, a three-level linearized conservative scheme approximating supergeneralized viscous Burgers' equation is studied. We construct the discretization of the nonlinear term by a second-order operator in supergeneralized viscous Burgers' equation and prove the three-level scheme is uniquely solvable based on the mathematical induction. At last, the L2-norm and L-norm convergence are proved with separate and different ways.

    The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors declare no conflict of interest.



    [1] Q. F. Zhang, Y. F. Qin, X. P. Wang, Z. Z. Sun, The study of exact and numerical solutions of the generalized viscous Burgers' equation, Appl. Math. Lett., 112 (2021), 106719. https://doi.org/10.1016/j.aml.2020.106719 doi: 10.1016/j.aml.2020.106719
    [2] M. P. Bonkile, A. Awasthi, C. Lakshmi, V. Mukundan, V. S. Aswin, A systematic literature review of Burgers' equation with recent advances, Pramana, 90 (2018), 1–21. https://doi.org/10.1007/s12043-018-1559-4 doi: 10.1007/s12043-018-1559-4
    [3] X. Y. Peng, D. Xu, W. L. Qiu, Pointwise error estimates of compact difference scheme for mixed-type time-fractional Burgers' equation, Math. Comput. Simulat., 208 (2023), 702–726. https://doi.org/10.1016/j.matcom.2023.02.004 doi: 10.1016/j.matcom.2023.02.004
    [4] Z. Y. Chen, J. Yepez, D. G. Cory, Simulation of the Burgers equation by NMR quantum-information processing, Phys. Rev. A, 7 (2006), 042321. https://doi.org/10.1103/PhysRevA.74.042321 doi: 10.1103/PhysRevA.74.042321
    [5] J. D. Murray, On Burgers' model equations for turbulence, J. Fluid Mech., 59 (1973), 263–279. https://doi.org/10.1017/S0022112073001564 doi: 10.1017/S0022112073001564
    [6] J. Yepez, Open quantum system model of the one-dimensional Burgers equation with tunable shear viscosity, Phys. Rev. A, 74 (2006), 042322. https://doi.org/10.1103/PhysRevA.74.042322 doi: 10.1103/PhysRevA.74.042322
    [7] Q. Q. Tian, H. X. Zhang, X. H. Yang, X. X. Jiang, An implicit difference scheme for the fourth-order nonlinear non-local PIDEs with a weakly singular kernel, Comput. Appl. Math., 41(7) (2022), 328. https://doi.org/10.1007/s40314-022-02040-9 doi: 10.1007/s40314-022-02040-9
    [8] C. J. Li, H. X. Zhang, X. H. Yang, A new α-robust nonlinear numerical algorithm for the time fractional nonlinear KdV equation, Commun. Anal. Mech., 16 (2024), 147–168. https://doi.org/10.3934/cam.2024007 doi: 10.3934/cam.2024007
    [9] Z. Y. Zhou, H. X. Zhang, X. H. Yang, The compact difference scheme for the fourth-order nonlocal evolution equation with a weakly singular kernel, Math. Method Appl. Sci., 46(5) (2023), 5422–5447. https://doi.org/10.1002/mma.8842 doi: 10.1002/mma.8842
    [10] L. Wu, H. Zhang, X. Yang, The finite difference method for the fourth-order partial integro-differential equations with the multi-term weakly singular kernel, Math. Method Appl. Sci., 46(2) (2023), 2517–2537. https://doi.org/10.1002/mma.8658 doi: 10.1002/mma.8658
    [11] L. Wu, H. Zhang, X. Yang, F. Wang, A second-order finite difference method for the multi-term fourth-order integral-differential equations on graded meshes, Comput. Appl. Math., 41(7) (2022), 313. https://doi.org/10.1007/s40314-022-02026-7 doi: 10.1007/s40314-022-02026-7
    [12] X. H. Yang, Z. M. Zhang, On conservative, positivity preserving, nonlinear FV scheme on distorted meshes for the multi-term nonlocal Nagumo-type equations, Appl. Math. Lett., 150 (2024), 108972. https://doi.org/10.1016/j.aml.2023.108972 doi: 10.1016/j.aml.2023.108972
    [13] X. H. Yang, H. X. Zhang, Q. Zhang, G. Y. Yuan, Simple positivity-preserving nonlinear finite volume scheme for subdiffusion equations on general non-conforming distorted meshes, Nonlinear Dyn., 108 (2022), 3859–3886. https://doi.org/10.1007/s11071-022-07399-2 doi: 10.1007/s11071-022-07399-2
    [14] X. H. Yang, H. X. Zhang, The uniform l1 long-time behavior of time discretization for time-fractional partial differential equations with nonsmooth data, Appl. Math. Lett., 124 (2022), 107644. https://doi.org/10.1016/j.aml.2021.107644 doi: 10.1016/j.aml.2021.107644
    [15] W. Xiao, X. H. Yang, Z. Z. Zhou, Pointwise-in-time α-robust error estimate of the ADI difference scheme for three-dimensional fractional subdiffusion equations with variable coefficients, Commun. Anal. Mech., 16 (2024), 53–70. https://doi.org/10.3934/cam.2024003 doi: 10.3934/cam.2024003
    [16] H. X. Zhang, Y. Liu, X. H. Yang, An efficient ADI difference scheme for the nonlocal evolution problem in three-dimensional space J. Appl. Math. Comput., 69 (2023), 651–674. https://doi.org/10.1007/s12190-022-01760-9
    [17] Z. Y. Zhou, H. X. Zhang, X. H. Yang, J. Tang, An efficient ADI difference scheme for the nonlocal evolution equation with multi-term weakly singular kernels in three dimensions, Int. J. Comput. Math., (2023), 1–18. https://doi.org/10.1080/00207160.2023.2212307
    [18] X. Yang, W. Qiu, H. Chen, H. Zhang, Second-order BDF ADI Galerkin finite element method for the evolutionary equation with a nonlocal term in three-dimensional space, Appl. Numer. Math., 172 (2022), 497–513. https://doi.org/10.1016/j.apnum.2021.11.004 doi: 10.1016/j.apnum.2021.11.004
    [19] X. H. Yang, L. J. Wu, H. X. Zhang, A space-time spectral order sinc-collocation method for the fourth-order nonlocal heat model arising in viscoelasticity, Appl. Math. Comput., 457 (2023), 128192. https://doi.org/10.1016/j.amc.2023.128192 doi: 10.1016/j.amc.2023.128192
    [20] H. X. Zhang, X. H. Yang, Q. Tang, D. Xu, A robust error analysis of the OSC method for a multi-term fourth-order sub-diffusion equation, Comput. Math. Appl., 109 (2022), 180–190. https://doi.org/10.1016/j.camwa.2022.01.007 doi: 10.1016/j.camwa.2022.01.007
    [21] H. X. Zhang, X. X. Jiang, F. R. Wang, X. H, Yang, The time two-grid algorithm combined with difference scheme for 2D nonlocal nonlinear wave equation, J. Appl. Math. Comput., (2024), 1–24. https://doi.org/10.1007/s12190-024-02000-y
    [22] F. Wang, X. Yang, H. Zhang, L. Wu, A time two-grid algorithm for the two dimensional nonlinear fractional PIDE with a weakly singular kernel, Math. Comput. Simulat., 199, (2022), 38–59. https://doi.org/10.1016/j.matcom.2022.03.004
    [23] C. J. Li, H. X. Zhang, X. H. Yang, A high-precision Richardson extrapolation method for a class of elliptic Dirichlet boundary value calculation, J. Hunan Univ. Technol., 38 (2024), 91–97. https://doi.org/10.3969/j.issn.1673-9833.2024.01.013 doi: 10.3969/j.issn.1673-9833.2024.01.013
    [24] T. Guo, M. A. Zaky, A. S. Hendy, W. L. Qiu, Pointwise error analysis of the BDF3 compact finite difference scheme for viscous Burgers' equations, Appl. Numer. Math., 185 (2023), 260–277. https://doi.org/10.1016/j.apnum.2022.11.023 doi: 10.1016/j.apnum.2022.11.023
    [25] D. T. Blackstock, Generalized Burgers equation for plane waves, J. Acoust. Soc. Am., 77 (1985), 2050–2053. https://doi.org/10.1121/1.391778 doi: 10.1121/1.391778
    [26] N. Sugimoto, T. Kakutani, 'Generalized Burgers' equation' for nonlinear viscoelastic waves, Wave Motion, 7 (1985), 447–458. https://doi.org/10.1016/0165-2125(85)90019-8 doi: 10.1016/0165-2125(85)90019-8
    [27] D. K. Tong, L. T. Shan, Exact solutions for generalized Burgers' fluid in an annular pipe, Meccanica, 44 (2009), 427–431. https://doi.org/10.1007/s11012-008-9179-6 doi: 10.1007/s11012-008-9179-6
    [28] X. P. Wang, Q. F. Zhang, Z. Z. Sun, The pointwise error estimates of two energy-preserving fourth-order compact schemes for viscous Burgers' equation, Adv. Comput. Math., 47 (2021), 1–42. https://doi.org/10.1007/s10444-021-09848-9 doi: 10.1007/s10444-021-09848-9
    [29] Q. F. Zhang, L. L. Liu, Convergence and stability in maximum norms of linearized fourth-order conservative compact scheme for Benjamin-Bona-Mahony-Burgers' equation, J. Sci. Comput., 87 (2021), 1–31. https://doi.org/10.1007/s10915-021-01474-3 doi: 10.1007/s10915-021-01474-3
    [30] Q. F. Zhang, Y. F. Qin, Z. Z. Sun, Linearly compact scheme for 2D Sobolev equation with Burgers' type nonlinearity, Numer. Algorithms, 91 (2022), 1081–1114. https://doi.org/10.1007/s11075-022-01293-z doi: 10.1007/s11075-022-01293-z
    [31] W. Gao, Y. Liu, B. Cao, H. Li, A High-Order NVD/TVD-Based Polynomial Upwind Scheme for the Modified Burgers' Equations, Adv. Appl. Math. Mech., 4 (2012), 617–635. https://doi.org/10.4208/aamm.10-m1139 doi: 10.4208/aamm.10-m1139
    [32] T. Guo, D. Xu, W. L. Qiu, Efficient third-order BDF finite difference scheme for the generalized viscous Burgers' equation, Appl. Math. Lett., 140 (2023), 108570. https://doi.org/10.1016/j.aml.2023.108570 doi: 10.1016/j.aml.2023.108570
    [33] W. P. Hu, Z. C. Deng, S. M. Han, An implicit difference scheme focusing on the local conservation properties for Burgers equation, Int. J. Comp. Meth., 9 (2012), 1240028. https://doi.org/10.1142/S0219876212400282 doi: 10.1142/S0219876212400282
    [34] A. K. Pany, N. Nataraj, S. Singh, A new mixed finite element method for Burgers' equation, J. Appl. Math. Comput., 23 (2007), 43–55. https://doi.org/10.1007/BF02831957 doi: 10.1007/BF02831957
    [35] R. Jiwari, A hybrid numerical scheme for the numerical solution of the Burgers' equation, Comput. Phys. Commun., 188 (2015), 59–67. https://doi.org/10.1016/j.cpc.2014.11.004 doi: 10.1016/j.cpc.2014.11.004
    [36] H. F. Wang, D. Xu, J. Zhou, J. Guo, Weak Galerkin finite element method for a class of time fractional generalized Burgers' equation, Numer. Meth. Part. Differ. Equations, 37 (2021), 732–749. https://doi.org/10.1002/num.22549 doi: 10.1002/num.22549
    [37] J. W. Wang, X. X. Jiang, X. H. Yang, H. X. Zhang, A nonlinear compact method based on double reduction order scheme for the nonlocal fourth-order PDEs with Burgers' type nonlinearity, J. Appl. Math. Comput., (2024), 1–23. https://doi.org/10.1007/s12190-023-01975-4
    [38] J. W. Wang, X. X. Jiang, H. X. Zhang, A BDF3 and new nonlinear fourth-order difference scheme for the generalized viscous Burgers' equation, Appl. Math. Lett., 151 (2024), 109002. https://doi.org/10.1016/j.aml.2024.109002 doi: 10.1016/j.aml.2024.109002
    [39] J. W. Wang, H. X. Zhang, X. H. Yang, A predictor-corrector compact difference scheme for a class of nonlinear Burgers equations, J. Hunan Univ. Technol., 38 (2024), 98–104. https://doi.org/10.3969/j.issn.1673-9833.2024.01.014 doi: 10.3969/j.issn.1673-9833.2024.01.014
    [40] Q. F. Zhang, C. C. Sun, Z. W. Fang, H. W. Sun, Pointwise error estimate and stability analysis of fourth-order compact difference scheme for time-fractional Burgers' equation, Appl. Math. Comput., 418 (2022), 126824. https://doi.org/10.1016/j.amc.2021.126824 doi: 10.1016/j.amc.2021.126824
    [41] Q. F. Zhang, L. L. Liu, Z. M. Zhang, Linearly implicit invariant-preserving decoupled difference scheme for the rotation-two-component Camassa-Holm system, SIAM J. Sci. Comput., 44 (2022), A2226–A2252. https://doi.org/10.1137/21M1452020 doi: 10.1137/21M1452020
    [42] F. X. Sun, J. F. Wang, A meshless method for the numerical solution of the generalized Burgers equation, Appl. Mech. Mater., 101 (2012), 275–278. https://doi.org/10.4028/www.scientific.net/AMM.101-102.275 doi: 10.4028/www.scientific.net/AMM.101-102.275
  • This article has been cited by:

    1. Rafał Kaźmierczak, Robert Skowroński, Cezary Kowalczyk, Grzegorz Grunwald, Creating Interactive Scenes in 3D Educational Games: Using Narrative and Technology to Explore History and Culture, 2024, 14, 2076-3417, 4795, 10.3390/app14114795
    2. Huanhuan Li, Lei Kang, Meng Li, Xianbing Luo, Shuwen Xiang, Hamiltonian conserved Crank-Nicolson schemes for a semi-linear wave equation based on the exponential scalar auxiliary variables approach, 2024, 32, 2688-1594, 4433, 10.3934/era.2024200
    3. Ruonan Liu, Tomás Caraballo, Random dynamics for a stochastic nonlocal reaction-diffusion equation with an energy functional, 2024, 9, 2473-6988, 8020, 10.3934/math.2024390
    4. Wan Wang, Haixiang Zhang, Ziyi Zhou, Xuehua Yang, A fast compact finite difference scheme for the fourth-order diffusion-wave equation, 2024, 101, 0020-7160, 170, 10.1080/00207160.2024.2323985
    5. Caojie Li, Haixiang Zhang, Xuehua Yang, A new nonlinear compact difference scheme for a fourth-order nonlinear Burgers type equation with a weakly singular kernel, 2024, 70, 1598-5865, 2045, 10.1007/s12190-024-02039-x
    6. Jiantang Lu, Junfeng Xu, On the Zeros of the Differential Polynomials φfl(f(k))n−a, 2024, 12, 2227-7390, 1196, 10.3390/math12081196
    7. Nicolás J. Garrido, Félix González-Martínez, Susana Losada, Adrián Plaza, Eneida del Olmo, Jorge Mateo, Innovation through Artificial Intelligence in Triage Systems for Resource Optimization in Future Pandemics, 2024, 9, 2313-7673, 440, 10.3390/biomimetics9070440
    8. Lili Li, Boya Zhou, Huiqin Wei, Fengyan Wu, Analysis of a fourth-order compact $ \theta $-method for delay parabolic equations, 2024, 32, 2688-1594, 2805, 10.3934/era.2024127
    9. Abdelhamid Mohammed Djaouti, Zareen A. Khan, Muhammad Imran Liaqat, Ashraf Al-Quran, A Novel Technique for Solving the Nonlinear Fractional-Order Smoking Model, 2024, 8, 2504-3110, 286, 10.3390/fractalfract8050286
    10. Caojie Li, Haixiang Zhang, Xuehua Yang, A fourth-order accurate extrapolation nonlinear difference method for fourth-order nonlinear PIDEs with a weakly singular kernel, 2024, 43, 2238-3603, 10.1007/s40314-024-02812-5
    11. M. Sivakumar, M. Mallikarjuna, R. Senthamarai, A kinetic non-steady state analysis of immobilized enzyme systems with external mass transfer resistance, 2024, 9, 2473-6988, 18083, 10.3934/math.2024882
    12. Olga A. Zagubnaya, Yaroslav R. Nartsissov, An Algorithm for Creating a Synaptic Cleft Digital Phantom Suitable for Further Numerical Modeling, 2024, 17, 1999-4893, 451, 10.3390/a17100451
    13. Jingyun Lv, Xiaoyan Lu, Convergence of finite element solution of stochastic Burgers equation, 2024, 32, 2688-1594, 1663, 10.3934/era.2024076
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1609) PDF downloads(130) Cited by(13)

Figures and Tables

Figures(9)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog