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Abstract: This work focuses on exploring pointwise error estimate of three-level conservative dif-
ference scheme for supergeneralized viscous Burgers’ equation. The cut-off function method plays
an important role in constructing difference scheme and presenting numerical analysis. We study the
conservative invariant of proposed method, which is energy-preserving for all positive integers p and
g. Meanwhile, one could apply the discrete energy argument to the rigorous proof that the three-level
scheme has unique solution combining the mathematical induction. In addition, we prove the L,-norm
and L,-norm convergence of proposed scheme in pointwise sense with separate and different ways,
which is different from previous work in [1]. Numerical results verify the theoretical conclusions.
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1. Introduction

In this paper, we shall present a incisive analysis of a finite difference method for solving the fol-
lowing supergeneralized viscous Burgers’ equation in the domain [0, L] X [0, T']:

u + u’(1 —wu, = vu,,, x€(0,L),1€(0,T], (1.1)
u(x,0) =Y¥Y(x), xe€(,L), (1.2)
u0,)=0, wu(l,t)=0, re][0,T], (1.3)

here L and T are positive constants, W(x) that satisfies ¥(0) = W(L) = 0 is smooth on [0, L], p > 1 and
q > 0 are two positive integers, and positive constant v denotes the dynamic viscosity coefficient.

In the last few decades, Burgers’ equation for the case of supergeneralized viscous Burgers’ equa-
tion with p = 1 and ¢ = 0 has attracted much attention from researchers. It is caused by numerous effec-
tive applications of Burgers’ equation to many fields of science and engineering like shock wave theory,
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cosmology, gas dynamics, quantum field and traffic flow, see e.g., [2—6]. The supergeneralized viscous
Burgers’ equation is a typical evolution equation, and recently a series of numerical methods have
been developed to solve it, e.g., finite difference method [7—11], finite volume method [12—-14], ADI
method [15-18], collocation method [19,20], two-grid method [21,22] and extrapolation method [23].
Meanwhile, as the other simplified form of supergeneralized viscous Burgers’ equation with p > 1
and g = 0, the generalized Burgers’ equation also plays an important role in applied mathematics
and engineering, see e.g., [24-27]. Recently, Wang et al. [28] established two conservative fourth-
order compact schemes for Burgers’ equation. Zhang et al. [29,30] derived various efficient difference
schemes for Burgers’ type equations. Gao et al. [31] proposed a bounded high-order upwind scheme
in the normalized-variable formulation for the modified Burgers’ equations. Guo et al. [32] proposed a
BDF3 finite difference scheme for the generalized viscous Burgers’ equation. Hu et al. [33] considered
an implicit difference scheme to study the local conservation properties for Burgers’ equation. Pany
et al. [34] investigated an H'-Galerkin mixed finite element method to approximate the solution of the
Burgers’ equation. In addition, Jiwari et al. [35] studied a numerical scheme which is a composition
of forward finite difference, quasilinearization process and uniform Haar wavelets for solving Burg-
ers’ equation. Wang et al. [36] used the weak Galerkin finite element method to study a class of time
fractional generalized Burgers’ equation. Wang et al. [37-39] presented an implicit robust difference
method to solve the modified Burgers equation on graded meshes. Zhang et al. [40] provided a fourth-
order compact difference scheme for time-fractional Burgers’ equation. Zhang et al. [41] considered
a conservative decoupled difference scheme for the rotation-two-component Camassa-Holm system.
Sun et al. [42] obtained nonlinear discrete scheme for generalized Burgers’ equation with the help of
meshless method. Zhang et al. [1] constructed various difference schemes for generalized Burgers’
equation only with one positive parameter p > 1.

The previous works are mainly concerned with the simple case of the parameter p = 1 for problem
(1.1)—(1.3). Our scheme can extended the results in the previous work [1] with a positive integer p > 1.
In this paper, the main contributions are as follows:

e We construct the discretization of the nonlinear term by a second-order operator in supergeneral-
ized viscous Burgers’ equation and provide complete theoretical analysis on the proposed scheme,
including conservation, existence, uniqueness and convergence.

e We prove L,-norm and L.-norm convergence in pointwise sense by the cut-off function method,
which doesn’t have any step ratio restrictions. The L,-norm and L-norm convergence are proved
with separate and different ways, which is different from previous work in [1].

The rest of the paper is arranged as follows. We introduce some useful notations for discretization
and construct our proposed scheme in Section 2. In Section 3, we present certain conclusions about
conservative invariants and boundedness of the suggested numerical scheme, and we provide the proof
of unique solvability and convergence. The numerical test in Section 4 is given to demonstrate the
reliability of our analysis. A brief conclusion is followed in Section 5.

2. Derivation of the three-level difference scheme

Firstly, for any integer s, we denote set Ny, = {i|ll <i < s,i € Z} and N? ={il0 <i<s,i€Z}. For
two positive integers m and 71, define the spatial step & = %, and the temporal step 7 = L. Denote x; =

il
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ih,i € N2; t, = kt, k € NJ. We introduce the mesh &7 = @; X &7, where &, = {x;|i € N2}, and

@r = {tx|k € NJ}. Denote x;,.1 = 5(x; + Xir1),i € Ny_y and f,1 = 2(tk + 1),k €Ny,
LetJn = 1j1J = Go, i, » jw)} and jh ={jlj € Jn jo = jm = 0} be the spaces of grid functions
on &;. For d, j € [, introducing the following notations:
1
Oy, = ( f —d),  63d; = ﬁ(dﬁ( —2d¥ +dt,),
1
s m et 4t

m—1
s = L@ -, W= dojo+ZdJ, + i),
T
1
df = =(d +d™h,  Adf = —(d{f” —dih),
2 27
ldil = V(d,d),  lldlleo = max |d,

_ dk+1 dk—l
W(d, )i = didji + A(dj),  dF = +

m—1

(d, jy =1 ) (6:d)Gjiys)s Ml = \d, ).
i=0

Lemma 2.1. [28] Let j € J; and r € ., then
W(j,r,r =0

Lemma 2.2. [28] Set j € ., then

. VL
—(0%4, ) = ljli, ||]||ooST|]|1, 71l < —|]|1

\/_

Lemma 2.3. Suppose that U = (Uy, Uy, ..., Uz), u = (ug, Uy, . .., uz) € J, and g(u) is a second-order
smooth function. Denote ¢ = (eg,eq,...,e5) and e; = U; —u;, i € N,%. Then there are p € (0, 1) and
gi S (yi’ r,~) such that

0,(g(U) — g(u)),-+% = g'(pup + (1 —P)Mi)5x€i+%
+8"({)lpWin = uier) + (1 = p)(U; — u))o. U, 1, (2.1)

where
yi = min{pu;y1 + (1 — p)u, pUi1 + (1 — p)U3},

= max{pui, + (1 — p)u;, pUiy + (1 = p)U}.

Proof. Using the mean value theorem, one has
0.(8(U) — g(u));, 1
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1

= Z[(g(UHl) — g(uip)) — (g(U;) — g(uy))]
1

= E[(g(Ui +ho. Uy, 1) = g(u; + héu;, 1)) — (8(U;) — g(uy))]
1

= E[(g(Ui +h6. U, 1) — g(Uy) — (8(u; + héu;, 1) — g(uy))]

= ¢'(U; +ph6,U; 1)6:U; 1 — g (u; + phSu;, )0, 1.
Again, applying the mean value theorem, we have
0.(8(U) — g(u));, 1
= g'(u +ph5xui+%)5xei+% + [¢'(U; +ph§in+%) - &' (u; +ph5xui+%)]5in+%
= g(puir + (1 _P)Mi)isxe,ur%
+[g' (pUi1 + (1 = p)Up) = &' (pujsr + (1 = pJu1o:Up,s
= g'(ouin + (1 — pJu)ose;, s + 8" (G)lpeit + (1 - p)eil6.Us, 1.
The proof is finished.

In order to construct a three-level conservative numerical scheme for supergeneralized viscous
Burgers’ equation (1.1)—(1.3), we first turn problem (1.1) into an equivalent form as follows:

q
_1ym
ur + 20 CZ1 p(_'_m)_'_z(W(m)ux + (W(m)u)x) = Vlxx, (2 2)
W( )m_— ub+m ’
m) — b

where CZ1 is the binomial coefficient, 0 < m < q.

We denote U¥ = u(x;, t;), and let u* denote the nodal approximation to the exact solution computed
at the mesh point (x;, ;).

Considering (2.2) at the point (x;, ), i € Ny-1, kK € N;j—1, one gets

{ AU + mé) Cy oz Wiy U = v8LU + P, 2.3)
Wy = (UD"™.
By Taylor expansion, one gets
P < (7 + 1), (2.4)
where ¢, is a positive constant.
We consider (1.1) at the point (x;, %), i € Nj—1, noticing (1.2), and one gets
u(xi, o) = vP(x)” = (Px)’(1 = P (x)™(x;)', i€ Ny
Denote
ri =¥(x) + %[U‘P(xi)" = (W)’ (1 = Y ™(x)'], (2.5)
Riny; = (r)P™, i€ Ny_1. (2.6)
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Considering (2.2) at the point (x;, 1 ), i € Nj—1, one gets
L m ( 1)’" 2775 L po
5,U; Z c —— U (Ra, Uy = vo2U? + P, 2.7)
m=0

and
IPY| < ¢ (7% + ). (2.8)
Noticing (1.2) and (1.3), we get

UQ:\PXZ', iENm_,
{Ul" (x;) 1 (2.9)

k=0, Uk =0, keN.

Omitting the small terms P¥ in (2.3) and P? in (2.7), and replacing U* by ¥, and W, by wi.t,
i € Ns_1, k € Nj_y, respectively. Thus, we can obtain the three-level difference approximation for
(1.1)—(1.3) as follows

Ak +Zcm (_ ) S WG )i = Vo, (2.10)

st + 30—y Ryt = v @11)
powry Tp+m+2 o

Wt = @)™, i€ N, k€N, (2.12)

O =P(x,), i€Ns1, (2.13)

ug =0, ut =0, keN;. (2.14)

Noticing that substituting (2.12) into (2.10), the three-level difference scheme only contains one
variable u¥.

3. The numerical analysis of three-level difference scheme

We now begin to consider the energy conservation and boundedness of solution of the three-level
numerical scheme (2.10)—(2.14).

Theorem 3.1. Suppose that {uf, w(m)f |ie Ngl, ke Ng} is the solution of (2.10)—(2.14), we get

1 1
E(Ilulll2 + 1°1?) + velu2 [§ = (1|, (3.1)
Y= keN;:,, (3.2)
where
k
1 )
T = SQEE + AP+ 2ve ) e, ke Ny (3.3)

s=1
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Proof. 1) Taking the inner product of (2.11) with u?, one obtains

(S, u2)+z (_ )m S Ry ), u?) = VGt ),

Since u? € I by Lemmas 2.1 and 2.2, one gets

11 1
Gu?,u?) = 5! IP = 1),
T
(lp(R(m)’ u%), Lt%) =0

~(&2uz,u?) = |u?}.
Thus,
1 1112 012 12
E(Ilu I” = llee”II) + vrlu2|y = 0. (3.4)

Namely,
1 1
E(Ilulll2 + 161y + vl = |,
2) Taking the inner product of (2.10) with uF, one gets

(— )’"

q
A,y + ) Ci= SO 5, by = v(82dk, ub).
m=0

Since uf € Jn by Lemmas 2.1 and 2.2, we have

- 1 5
(A, ) = 4—(Iluk+1||2 — 1P,
T

YW ), 1) = 0
—(6u u) = |
Thus,
1 _
Z(IIM"”II2 — [l M) + vrlu'} = 0. (3.5)

Above equality can be rewritten as
Lok ke
5(‘1’ -T7)=0, keN;,.

Thus,
Y= keN;,.
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Corollary 3.2. Let {uf.‘, w(m)f.‘ |i e N;%’ k€ Ng} represent the solution of (2.10)—(2.14). Then one has
1 k
E(IIM"“II2 + (M1 + vl [} + ZVTZ W'l = lP, ke Ny,

s=1

Proof. According to Theorem 3.1,

Th=r°

1
E(Ilulll2 + [1u°l?)

012 2
I Iy

[|lu VT|u2

Thus,

1
Y+ vrjuz P = ().

Corollary 3.3. Let {uf,wi,* i € NI,k € Ny} represent the solution of (2.10)~(2.14). Then the com-

k

puted solution u; can satisfy

!l < 1u’ll,  k € N;.
Proof. From (3.4) and (3.5) in Theorem 3.1, we can get Corollary 3.3 directly.

Furthermore, we will carry out the proof of existence and uniqueness of the solution of (2.10)-
(2.14).

Theorem 3.4. The solution of (2.10)—(2.14) exists and it is unique.

Proof. According to (2.13) and (2.14), u® has been determined uniquely. From (2.11) and (2.14),
establishing a linear system with respect to u', and considering the corresponding homogeneous system

1 1Zq D" b1 .

—-u. + — Cm m)s l_ ~ 6 ’ Nﬁl— ’ 3'6
T”’ 2m:0 p+m+2l//(()u) V’” Le ! (3.6)
u(l) :0’ u}i’l = . (3'7)

Taking the inner product of (3.6) with u!, one has
u'l + = Zcm - 1)m (l#(R(m),u ) u') = V(52M1 u').
2

By Lemmas 2.1 and 2.2, one gets

W Ry, u"),u') =0

21 1 112
(ou,u)=—ul.

Therefore,
1
1,2 1,2
— + — =0
[lee” | 2Vlu |
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It is easy to obtain
lu'll = O

It implies that (2.11) and (2.14) determine u' uniquely.
Assume that u* and u*~! have been known. By (2.10), (2.12) and (2.14), we get the following linear
homogeneous system of equations with respect to u**!:

1 k+1 1 X (_ )m k+1 52 k+1
2_ui + E Z W( Winy» U )i =

T por Tp+m+2
i € Nj_1, (3.8)
W =0, W =0, (3.9)

k+1

Taking the inner product of (3.8) with #*"", one has

k+l 2 Z ( l)m k+1,w(W]((m),uk+l)) — lV(uk+l,6)2Cuk+l).

powry p+m+2 2

By Lemmas 2.1 and 2.2, one gets

(uk+1’ W(me)’ uk+l)) =0

W, 2Ty = — P
Therefore,
%”ukﬂllz + %Vlukﬂﬁ _
It is easy to obtain
1 =0

Consequently, it implies that #**! solved by (2.10), (2.12) and (2.14) is unique.
Based on mathematical induction, (2.10)—(2.14) is uniquely solvable, and this completes the proof.

In order to establish the convergence of (2.10)—(2.14), we will introduce the cut-off function method
next.
Denote

M = max  |u(x, 1), ¢ = max  {lu(x, 1)} (3.10)
(x.0)€[0.LIX[0.T] (x.0)€[0.LIX[0.T]

Define a group of second-order smooth functions

() = ul™, lul <M+ 1,
En=10,  u=M+2,

where 0 <m < q.
Denote

max w)| =&, max w)| =& and _max ") = 6.
e lgm ()l 0, max Igm( )] 15 max g, ()] 5
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Based on the cut-off function method, we construct a new difference scheme as follows:

q m
A,ujf+Zcm ) YWk, i), = véiul,

o Tp+m+2
Sou? +Zcm D WRo 1) = v62u?
t +m+2 (m)»s i x,,

W(m), = gu(u), i€ Nz, ke Ny,
=¥(x), 1€ Nj1,
=0, ut=0 kel

m

S =

u

For the above difference scheme, it is conservative.

(3.11)

(3.12)

(3.13)
(3.14)
(3.15)

Theorem 3.5. Suppose that {uf, w(m)i.‘ |ie N ke NO} represents the solution of (3.11)—(3.15), we get

m’

1 12 012 Lo 0112
E(Ilu I+ llee”|I) + vrlu2]y = eI,
Y* =7 keNp,

where
1 S
= S P + ) + 2ve Do, ke N,

Proof. The proof of (3.16) and (3.17) is similar to the proof of Theorem 3.1.
Now we prove the L,-norm and L.-norm convergence of (3.11)—(3.15).

Theorem 3.6. Assume that {ui.‘, w(m)i.c lie N ke NO} is the solution of (3.11)—(3.15) and {

m’

Ngl, ke Ng} is the solution of (1.1)—(1.3), there exists a positive constant c, such that
IU* — bl < oz + 1), ke NY.

Proof. Define

k _ k k k _ k k
e; = Ui = u;, bony; = Winy; — W -

Since (3.10), we get
gn(U}) = (U™,

Subtracting (3.11)—(3.15) from (2.3), (2.7) and (2.9) follows
Cy (-1 !
Siel + Z w(Rw), eb)=vote] + P, i€ Ny,

m( 1)’11 . . i . )
t€ + Z Dtm+ 2[¢’( (m)> U ),' - l,//(W(m),u )z] = V(Sxei + Pi’

i€ Njy_y, k€N,
bt = gm(UY) = gu(b), €N, keN;y,

Electronic Research Archive Volume 32, Issue 3,
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Ui Wany 1 €

(3.18)

(3.19)

(3.20)
(3.21)
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=0, i€Nyi,
k _ k _
et =0, e =0 kel

When k = 0, from (3.22) and (3.23), we get
lle°ll = 0.

Taking the inner product of (3.19) with ez, one gets

+m+2

¢ -1y
(Sie?,e7) + )~ (R, ), €7) = v(&le?, e2) + (P, e?).
— P
m=0

By Lemmas 2.1 and 2.2, we obtain

[ 1 1
(6e2,e2) = —(lle'IF = 1e°I1?) = —lle'II%,
2T 2T

W (Rmy» e7),€7) = 0,

p L1 1
(6ye2,e?) = —|loe2]".

Substituting (3.26)—(3.28) into (3.25), we have

1
—le'IP = —lSe?|P + (P°e?)
2T
o 1
< (P, e?)

1 1
< PR + ~lle?|P
< 2|| | 2IIe |

1 1
< PR + ZlletP.
< 2|| | 4IIe |

Thus,
-
(1- E)Ilelll2 < 7P|
When % < % noticing (2.8), one gets
le'I* < [IPO)1F < L (7 + )2
or

le'll < VLey(z? + k).
By (3.10) and Lagrange mean value theorem, one gets

k ~
A U;| < ¢4,

k| — A Lk
1bmy; | < ¢1lé€;].

(3.22)
(3.23)

(3.24)

(3.25)

(3.26)

(3.27)
(3.28)

(3.29)

(3.30)
(3.31)
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Taking the inner product of (3.20) with ¢, one gets

m( ) _ B B
(Afe e ) + Z (l/’( (m)’ k) - w(W](Cm)’ uk)a ek)
m= 0
= w82, e )+(Pk,e ), ke Ny,.
Using Lemma 2.2, one obtains
(A€, e = (||€"+1||2 lle*" 1),
(6%, b = —||(5x€ II>.

Substituting (3.33) and (3.34) into (3.32), above equality (3.32) becomes

1 -
— P = 117 + viio eI

47
T i . — L (W, UF) = 0,y ), € + (P, )
=0 P +m+2 (m)’ (m)> s ,
q
a k I 7 -
- mzo p 5!~ W Wio U = 0w ). D)+ (P D),

where ay = maxo<;<, Cy.
Noticing that

YW,y UD)i = (W, uf‘)i
= ‘/’(W(km)’ Uk)i - l//(W(km) (m)’ Uk )
= YW, (m)’ e )z + 'ﬁ(b(m), Uk)z lﬁ(b(m), e )i-

Thus, by Lemma 2.1, we have

—((WE,), U = (W, i), €5
= (w(b(m)’ Uk) ek)

= —h Z[b(m/‘A UF + Ax(bm Ui 1er

= —th(m)k kA Uk +th(m)kUkA €.

Noticing (3.30), (3.31) and (3.10), we have

|- <w( ko USY = wwh o 1), €9
m—1

< h Z ciéilefliefl] +h > MeylellIA el

i=1 i=1

(3.32)

(3.33)
(3.34)

(3.35)

(3.36)

Electronic Research Archive Volume 32, Issue 3, 1471-1497.
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IA

~ A 11k k ANk k
crclle|l - lletll + Meqlle™|| - [|Ace™|

~ A k k A k k
cieylle®|l - [le®|l + Mcqlle] - lloxe™].

IA

Substituting (3.37) into (3.35), (3.35) yields

1 -
=P = 111 P) + viI6.ef?

4T
; ap k k k % Lo o 1
< mZ—O o+ 2(515‘1”6 II - lle”[| + Mélle™|| - lloxe"|l) + ElllD I© + Elle I
ao(l +¢q) ¢,¢ (p+2)yvy 7 ao(l + M
< 0D G0y, Gl ke PHDV s g, W0 T DTG
P+2 2 2 ap(1 +q) 4(p+2)v
1 _
2P 4+ Si1efR
+2|| I~ + 2||€ |
[ao(l + Q)élél a()(l + Q)z ]” k” [610(1 + @5151 l]llel}llz
2(p+2) 4(p + 2)*v 2(p+2) 2

7 1
V6. II” + EIIPkllz-

Combining (2.4), above equality (3.38) becomes

1 k+1 k—1
4T(II I> =111
- 1
< c;llef|? + 2cqllef))? + 5Lc%(rz + h%)?
1
k112 k+1112 k=112 2,2 2\2
< allefll” + calle™ |17 + calle” 7 + §L61(T +ho)°,
_ ap(l+q)eid |, ap(1+q)’M*e _ a(l+&id | 1 "
where ¢; = 5012 TRy and ¢4 = a2 T 7 are two positive constants.

Rearranging (3.39) to yield

(1= deyDlle 1P < destllelP + (1 + deg)lle ™|

+2LC%T(T2 + 1%, ke Ny,

For k € N;_, when 4¢47 < 3, (3.40) yields

<1,
e * < 6estlef]* + (1 + 12¢4m)|le ! |* + 3Lcir(e* + h?)*.

Therefore,

max{[le % 1P} < [1 + 6(cs + 2cq)r] max{[le* |12, lle*]I*}
+3LciT(T? + W)

According to Gronwall’s inequality, we obtain

k+112 (1,k112
max{|le""|I", [le"]|"}

|| “I%)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)
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2

Lc
< Slert2el)T 2 11e012Y + 1 2 422,
< e [max{le" ||, [le"]|"} Ner t 200 264)(T )]

Noticing (3.24) and (3.29), one gets

2

Lc
k2 6(c3+2¢4)T 12 1 2 22
e < e -llle +——(t"+h
lle™]| [lle”|] 2 204)( )]

Lc%
2(c3 + 2¢4)
= @ +h), keN;,

e6(C3+2L’4)T X [LC% ](T2 + h2)2

2
Lc1

1
where ¢, = @207 . [Le2 + see ]

Namely,

lle¥ll < co(7? + BP).

Theorem 3.7. Assume that {uf, w(m)j.‘ li € Nl%, ke Ng} is the solution of (3.11)—(3.15) and {Ul(‘, W(m)i.‘ li €

N,%, ke N;?} is the solution of (1.1)—(1.3), there exists positive constants c; and cg such that
\U* =ity < c;* +h?), keNY, (3.43)
NU* = utl < (2 + H%), ke N (3.44)

Proof. We will use the mathematical induction to prove the result. When k = 0, from (3.22) and (3.23),
we get

1’ =0, |l = O. (3.45)

Therefore, the conclusion is valid for k = 0.
1) Taking the inner product of (3.19) with 57, one gets

4 Cp-1)"
eI + > ]ﬁ(w(&m, e?),8.e7) = v(6%e?, 5iet) + (P°, 6.e), (3.46)
m=0
Noticing that
&) =0, ieN,,
then (3.46) becomes
1121qCZ1(_1)m Iy I Voo v, Lo
—lle' P+ =Y —— (R € e) = — (52", ") + =(P°, e"). 3.47
el 2Tmzzop+m+2(w<<)e>e> S (0 e+ (P e) (3.47)

Using Lemmas 2.1 and 2.2, we have

4

1 1 1
' = =P’ e') < s5lle'IP + < IPVIP. (3.48)
2T T T 4

Lo
—lle’ll” +
)
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From (2.8), we get
2t 1 T
le'[3 < — ZIIPOIIZ < ;LC%(TZ + W)
When 1 < 2v, one gets
le'? < LC%(TZ + h%)?,
or
|€1|1 < ‘/ZC](TZ + hz)

2) Taking the inner product of (3.20) with Ae*, one gets

m_)m

. C ) .
1A+ > e 2 YW U = 90,1, Ar)
m=0
= &%k, A + (P ACY), ke N;).

Suppose (3.43) and (3.44) holdforO0 <k <s(l <s<n-1).
From (3.10) and Lemma 2.2, one gets

h

U, < VL&,  |UMlw < Z&, ke NY.

[\9)

When ¢7(* + h?) < 1, one gets
|y < UM+ 1ef)) < ‘/Zél +1, 1<k<sys,

L
[l leo < %(‘/Zél +1), 1<k<s.

Using Lemma 2.2, above equality (3.50) becomes

1A + Z (w< by U = w0, u), D)

Vv

4t

(e 1 = 1711 + (P*, Aeb).
Noticing that

YW, (m)a UE)Z W(W(m)a u )z
= ¢’(b<m), Uk)l + l,//(W(m), )
= b AU + Ax(b(m) Ub), + w(m>,Axe + AW e,

= b AUF + (5 by, I)U L+ (5 Dyt ])U

k
+2W(m) A, e + ((5xw(m)l_+%)ei+1 + E((sxw(m)i—%)ei_l'

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)
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By Lagrange mean value theorem and the Lemma 2.3, we have

bemyi] < Cilel],
16Dy, <6 16, |+ aélplel, |+ (1= p)letll,
16Dy 1< A6, k. éi16[plef| + (1 = p)lek 1. (3.55)

Thus, combining (3.54) and (3.55) yields
W (W, U — w<w’;m>, oY
< 22lef)- 1A U + [c1|6 &k |+ ptiealel,| + (1 = paialeflIUL|
F3leilonet |+ prlel] + (1 = ol UL

1 . _
_Cl|5xuf_%| : |ef'(_1|- (3.56)

- 1 -

A X A k k
+200|Ace;| + SC1l0xu;, 1| - e | +
2 2

2
Using Lemma 2.2, combining (3.51), (3.52) and (3.56), it is easy to get

—((WE,), U = (W, ), Ave®)

< 221l ulU) + U w@lefls + 2120l - [1Ae]
+(2&0le"|; + 61|uk|1||e"||oo) A€
L.
< VL& E el + —c1c1|e I+ 5 Eeallek) - Akl
+[22le"; + cl(«FLcl + DlleFloo] - 1A€5]
L L
< (VL& - £|6’ 1+ —Clcl|€ Iy + 25%52 . %|€k|1) A
B VL ;
+[2&0le*], + &1 (VLE, + 1) - —|e’<|1] A€
1 1
= (L&1¢) + =Le & + —=L2&3))|eM; - 1A
2 2\/5 ! !
1 _
+200 + 5 VL& (VLE, + 1)]lef; - A€
= cole!]s - 1A + crole]; - A€
p+2 ao(1 + g)cg p+2
< —||Azek||2 + 21ek P + A€ 1P
4ap(1 + q) p+2 4ap(1 + q)
ao(l + g)c
+w| k|2 (3.57)
p+2

where ¢o = (L& + 35L&/ + 2Tszczcz) and cjg = 26 + 1 \/zcl( VLE + 1).
Thus, (3.53) becomes

k2 L Yo kg2 k=12
|A€"] +E(|e+|1—|e 1)
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Loere=nn . .
= = D g VW U =0, ) (P )
m=0
q
u )
< D oglm Wi UD = gl i A+ (P M)
m=0
q 2
a p+2 ao(l + q)c p+2
< D3 Gt s e+ T e
=0
ap(1 + q)c2 . 1 1
g e+ IPP + S lAP
1 aZ 2 2 2 2
= —[IAP + M| I+ —||A,e’<||2 + M| P
4 (p+2) (p+2)?
1 1
+5||P"||2 + EIIAte"IIZ, 1<k<s, (3.58)
where ap = maxo<,<, Cqm.
Noticing (2.4), (3.58) becomes
4
E(Iek“l — 1D
a%(q+ 1)269 k2 ao(q+ 1 ZC%O i Lok
WW 1t (p+—2)2|€ I + EHP I
ek+1 2 + ek—l 2 1
< c5|ek|f + Cé% + ELC%(TZ +h)?, 1<k<s, (3.59)
a2 2 a o,
where ¢5 = 0((:;2 nd ¢ = % are two positive constants.
For 1 < k < s, rearranging (3.59) to yield
2 4 2 2Lc?
(1= 250y ko1 < TOT k2 (4 20Ty bt 02 g2y, (3.60)
4 4 \4 4
When 2% < 1 (3.60) yields
6 6¢c 3Lc?
1R < TR+ (14 ) 4 (e )
\4 4 4
Therefore,
6cs+ 6
max{|e 1R, 1R < (1 + %T) max{le" P, |12}
3L
+—r P+ ) 1<k<s. (3.61)
\4

According to Gronwall’s inequality, (3.61) yields
max({le"*" |7, le"[7)
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2
6¢5+6¢, LC
< e v T max{e®l e P} + ——— @ + )2, 1<k<s.
: : 2(cs + ¢o)

Noticing (3.45) and (3.49), one gets

s+112 bestbcs - 02 112 LC% 2, 1232
e’ 7 < e v -[max{le’|},le [{} + =————(" + h7)7]

2(cs + c6)
2
6c5+6cq LC
= ST L |22 4 Y
2(cs + c6)
= C%(T2 + h2)2’
s+ L 44
where c; = e r. [LC% + 2(cs+lc6)]2'

Namely,
le*™ ) < e7(2 + ).

Consequently, (3.43) holds for k = s + 1.
From Lemma 2.2, it is easy to get

\/_

L L
lleMle < T|e"|1 < §C7(T2 +h*) =cy(r* + ), keNy.

Corollary 3.8. Let {u*, wy* |i € N9, k € NY} be the solution of (3.11)~(3.15). When c;(t* + h?) < 1,

there exists two constants ¢y, and ¢, such that
k k 0
'y <ci, Nl < €12, k€N
Proof. When c¢7(7% + h?) < 1, one has

k k k
'y < U1 + ey

< VL& + (P + W) <cyy, ke N
By Lemma 2.2, we get ||u¥||. < %clo = coo.

This means the solution of (3.11)—(3.15) is bounded.

In the end, for the proposed scheme (2.10)—(2.14), we can obtain the following convergence.

Corollary 3.9. Let {uf, w|i € N2k € N} be the solution of (2.10)~(2.14) and {U*, W\ |i €
NO. k € NV} be the solution of (1.1)—(1.3). When cs(t* + h*) < 1, one has
|U* — || < ci3(7* + h*), keNy,
|U* — |l < c3(® +h%), keN,
where cy3 is a constant.
Proof. Let {@¥|i € N?, k € N°} be the solution of (3.11)—(3.15). When cs(z* + h*) < 1, one has
il < |Uf| + U7 = i)

< M+cg(*+h)<M+1, keNy.

Thus, g,(af) = (@7,
This means the difference scheme (2.10)—(2.14) is equivalent to (3.11)—(3.15). According to Theo-
rems 3.6 and 3.7, we finish the proof of Corollary 3.9.
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4. Numerical test

A numerical example is given to verify theoretical conclusions of the three-level difference scheme
for supergeneralized viscous Burgers’ equation.
Example 4.1. We consider (1.1)-(1.3) with 7 = L = 1, v = 1, ¥(x) = sin(zx), and p, g take some
different integer values, respectively.

To describe the numerical errors in L.,-norm for the computed solution and corresponding conver-
gence orders, we denote

E! (h,27)
1 ) _
E_(h,1)= &%ﬁ&%lu (h,t) —u;"(h, )| Orderl = log, ———— EL(h)’
h E%(2h,T)
2 k
EZ(h,T) = &gﬁg}&ilu (h,7) - uzl(2 7)|, Order2 =log, E D)
and 5 o2
E,(2h,27)
3 k _ 2k
E_ (h,7)= 52%),(,, 51<1]fl<x |u; (h, T) “21( | Order3 = log, E o)
where & and 7 are sufficiently small.
Table 1 lists the temporal convergence orders with 7 = We compute the spatial convergence

orders with 7 = 6 7 1in Table 2. Table 3 presents the temporal and spatial errors and convergence orders
with 7 = h. The corresponding error and convergence orders are presented in Figures 1-6. The results
demonstrate (2.10)—(2.14) is convergent with the convergence order of two both in space and in time.
In Figures 7-9, we compute Y* in Theorem 3.1 to verify the conservativity of the difference scheme
(2.10)—(2.14). The results demonstrate that difference scheme (2.10)—(2.14) is conservative.

Table 1. The temporal convergence orders with & = é.

T p=2,q=1 p=2,9g=3 p=3,q=4
E! (h,T) Orderl E! (h,71) Orderl E! (h,71) Orderl
1/20  2.6456e-02 - 2.5871e-02 - 2.5872e-02 -

1/40  5.8120e-03 2.1865 5.8182e-03 2.1527 5.7895e-03 2.1599
1/80  1.4154e-03 2.0379 1.4109e-03 2.0440 1.4108e-03 2.0369
1/160 3.5049¢-04 2.0137 3.5054e-04 2.0090 3.5051e-04 2.0090
1/320 8.7491e-05 2.0022 8.7498e-05 2.0022 8.7490e-05 2.0022
1/640 2.1864e-05 2.0006 2.1866e-05 2.0006 2.1864e-05 2.0006

5. Conclusions

In this paper, a three-level linearized conservative scheme approximating supergeneralized viscous
Burgers’ equation is studied. We construct the discretization of the nonlinear term by a second-order
operator in supergeneralized viscous Burgers’ equation and prove the three-level scheme is uniquely
solvable based on the mathematical induction. At last, the L,-norm and L.-norm convergence are
proved with separate and different ways.
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Table 2. The spatial convergence orders with 7 = =

1
64"

h p=2,q=1 p=2,g=3 p=3,q=4
E%(h,7) Order2 E2(h,7) Order2 E2(h,7) Order2
1/20  5.7545e-04 - 5.7530e-04 - 5.7521e-04 -
1/40  1.4410e-04 1.9977 1.4381e-04 2.0001 1.4379e-04 2.0001
1/80  3.6024e-05 2.0000 3.5952e-05 2.0000 3.5947e-05 2.0000
1/160 9.0074e-06 1.9998 8.9879e-06 2.0000 8.9866e-06 2.0000
1/320 2.2519¢-06 2.0000 2.2470e-06 2.0000 2.2466e-06 2.0000
1/640 5.6296e-07 2.0000 5.6174e-07 2.0000 5.6166e-07 2.0000

Table 3. The temporal and spatial errors and convergence orders with 7 = h.

h T p=2,qg=1 p=2,9g=3 p=3,qg=4

E3 (h,7) Order3 E3 (h,7) Order3 E3 (h,7) Order3
120 1/20  2.5727e-02 - 2.5170e-02 - 2.5171e-02 -
1/40  1/40  5.6650e-03 2.1831 5.6706e-03 2.1501 5.6420e-03 2.1575
1/80  1/80  1.3805e-03 2.0369 1.3756e-03 2.0435 1.3755e-03 2.0363
1/160 1/160 3.4173e-04 2.0142 3.4189e-04 2.0084 3.4176e-04 2.0089
1/320 1/320 8.5308e-05 2.0021 8.5337e-05 2.0023 8.5308e-05 2.0022
1/640 1/640 2.1319e-05 2.0005 2.1326e-05 2.0006 2.1319e-05 2.0005

107

Order =2 s
102 Topzhas] ; |
+

5 10°¢

&

2

10

107

10°®

10 102 107
Figure 1. The convergence orders of time when h = 6—14 forp=2,q=1.
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Figure 2. The convergence orders of time when h = 6—14 forp=2,q=3.
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Figure 3. The convergence orders of time when /h = é for p=3,q =4.
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Figure 4. The spatial convergence orders when 7 = 6—14 forp=2,q=1.
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Figure 5. The spatial convergence orders when 7 = é forp=2,q=3.
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Figure 6. The spatial convergence orders when 7 = 6—14 for p=3,q =4.
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Figure 7. Conservative invariant r* of the scheme (2.10)—(2.14) with p =2 and g = 1.
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Figure 8. Conservative invariant r* of the scheme (2.10)—(2.14) with p = 2 and g = 3.
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Figure 9. Conservative invariant r* of the scheme (2.10)—(2.14) with p = 3 and g = 4.
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