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Abstract: This work focuses on exploring pointwise error estimate of three-level conservative dif-
ference scheme for supergeneralized viscous Burgers’ equation. The cut-off function method plays
an important role in constructing difference scheme and presenting numerical analysis. We study the
conservative invariant of proposed method, which is energy-preserving for all positive integers p and
q. Meanwhile, one could apply the discrete energy argument to the rigorous proof that the three-level
scheme has unique solution combining the mathematical induction. In addition, we prove the L2-norm
and L∞-norm convergence of proposed scheme in pointwise sense with separate and different ways,
which is different from previous work in [1]. Numerical results verify the theoretical conclusions.
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1. Introduction

In this paper, we shall present a incisive analysis of a finite difference method for solving the fol-
lowing supergeneralized viscous Burgers’ equation in the domain [0, L] × [0,T ]:

ut + up(1 − u)qux = νuxx, x ∈ (0, L), t ∈ (0,T ], (1.1)
u(x, 0) = Ψ(x), x ∈ (0, L), (1.2)
u(0, t) = 0, u(L, t) = 0, t ∈ [0,T ], (1.3)

here L and T are positive constants, Ψ(x) that satisfies Ψ(0) = Ψ(L) = 0 is smooth on [0, L], p ≥ 1 and
q ≥ 0 are two positive integers, and positive constant ν denotes the dynamic viscosity coefficient.

In the last few decades, Burgers’ equation for the case of supergeneralized viscous Burgers’ equa-
tion with p = 1 and q = 0 has attracted much attention from researchers. It is caused by numerous effec-
tive applications of Burgers’ equation to many fields of science and engineering like shock wave theory,
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cosmology, gas dynamics, quantum field and traffic flow, see e.g., [2–6]. The supergeneralized viscous
Burgers’ equation is a typical evolution equation, and recently a series of numerical methods have
been developed to solve it, e.g., finite difference method [7–11], finite volume method [12–14], ADI
method [15–18], collocation method [19,20], two-grid method [21,22] and extrapolation method [23].
Meanwhile, as the other simplified form of supergeneralized viscous Burgers’ equation with p ≥ 1
and q = 0, the generalized Burgers’ equation also plays an important role in applied mathematics
and engineering, see e.g., [24–27]. Recently, Wang et al. [28] established two conservative fourth-
order compact schemes for Burgers’ equation. Zhang et al. [29,30] derived various efficient difference
schemes for Burgers’ type equations. Gao et al. [31] proposed a bounded high-order upwind scheme
in the normalized-variable formulation for the modified Burgers’ equations. Guo et al. [32] proposed a
BDF3 finite difference scheme for the generalized viscous Burgers’ equation. Hu et al. [33] considered
an implicit difference scheme to study the local conservation properties for Burgers’ equation. Pany
et al. [34] investigated an H1-Galerkin mixed finite element method to approximate the solution of the
Burgers’ equation. In addition, Jiwari et al. [35] studied a numerical scheme which is a composition
of forward finite difference, quasilinearization process and uniform Haar wavelets for solving Burg-
ers’ equation. Wang et al. [36] used the weak Galerkin finite element method to study a class of time
fractional generalized Burgers’ equation. Wang et al. [37–39] presented an implicit robust difference
method to solve the modified Burgers equation on graded meshes. Zhang et al. [40] provided a fourth-
order compact difference scheme for time-fractional Burgers’ equation. Zhang et al. [41] considered
a conservative decoupled difference scheme for the rotation-two-component Camassa-Holm system.
Sun et al. [42] obtained nonlinear discrete scheme for generalized Burgers’ equation with the help of
meshless method. Zhang et al. [1] constructed various difference schemes for generalized Burgers’
equation only with one positive parameter p ≥ 1.

The previous works are mainly concerned with the simple case of the parameter p = 1 for problem
(1.1)–(1.3). Our scheme can extended the results in the previous work [1] with a positive integer p ≥ 1.
In this paper, the main contributions are as follows:

• We construct the discretization of the nonlinear term by a second-order operator in supergeneral-
ized viscous Burgers’ equation and provide complete theoretical analysis on the proposed scheme,
including conservation, existence, uniqueness and convergence.
• We prove L2-norm and L∞-norm convergence in pointwise sense by the cut-off function method,

which doesn’t have any step ratio restrictions. The L2-norm and L∞-norm convergence are proved
with separate and different ways, which is different from previous work in [1].

The rest of the paper is arranged as follows. We introduce some useful notations for discretization
and construct our proposed scheme in Section 2. In Section 3, we present certain conclusions about
conservative invariants and boundedness of the suggested numerical scheme, and we provide the proof
of unique solvability and convergence. The numerical test in Section 4 is given to demonstrate the
reliability of our analysis. A brief conclusion is followed in Section 5.

2. Derivation of the three-level difference scheme

Firstly, for any integer s, we denote set Ns = {i|1 ≤ i ≤ s, i ∈ Z} and N0
s = {i|0 ≤ i ≤ s, i ∈ Z}. For

two positive integers m̃ and ñ, define the spatial step h = L
m̃ , and the temporal step τ = T

ñ . Denote xi =
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ih, i ∈ N0
m̃; tk = kτ, k ∈ N0

ñ . We introduce the mesh ω̃LT = ω̃L × ω̃T , where ω̃L = {xi | i ∈ N0
m̃}, and

ω̃T = {tk | k ∈ N0
ñ }. Denote xi+ 1

2
= 1

2 (xi + xi+1), i ∈ N0
m̃−1 and tk+ 1

2
= 1

2 (tk + tk+1), k ∈ N0
ñ−1.

Let Jh = { j | j = ( j0, j1, · · · , jm̃)} and
◦

Jh = { j | j ∈ Jh, j0 = jm̃ = 0} be the spaces of grid functions
on ω̃L. For d, j ∈ Jh, introducing the following notations:

δxdk
i+ 1

2
=

1
h

(dk
i+1 − dk

i ), δ2
xd

k
i =

1
h2 (dk

i−1 − 2dk
i + dk

i+1),

∆xdk
i =

1
2h

(dk
i+1 − dk

i−1), dk+ 1
2

i =
1
2

(dk
i + dk+1

i ),

δtd
k+ 1

2
i =

1
τ

(dk+1
i − dk

i ), (d, j) = h(
1
2

d0 j0 +

m̃−1∑
i=1

di ji +
1
2

dm̃ jm̃),

dk̄
i =

1
2

(dk+1
i + dk−1

i ), ∆tdk
i =

1
2τ

(dk+1
i − dk−1

i ),

∥d∥ =
√

(d, d), ∥d∥∞ = max
0≤i≤m̃

|di|,

ψ(d, j)i = di∆x ji + ∆x(d j)i, dk̄
i =

dk+1 + dk−1

2
,

⟨d, j⟩ = h
m̃−1∑
i=0

(δxdi+ 1
2
)(δx ji+ 1

2
), |d|1 =

√
⟨d, d⟩.

Lemma 2.1. [28] Let j ∈ Jh and r ∈
◦

Jh, then

(ψ( j, r), r) = 0.

Lemma 2.2. [28] Set j ∈
◦

Jh, then

−(δ2
x j, j) = | j|21, ∥ j∥∞ ≤

√
L

2
| j|1, ∥ j∥ ≤

L
√

6
| j|1.

Lemma 2.3. Suppose that U = (U0,U1, . . . ,Um̃), u = (u0, u1, . . . , um̃) ∈ Jh and g(u) is a second-order
smooth function. Denote e = (e0, e1, . . . , em̃) and ei = Ui − ui, i ∈ N0

m̃. Then there are ρ ∈ (0, 1) and
ζi ∈ (yi, ri) such that

δx(g(U) − g(u))i+ 1
2
= g′(ρui+1 + (1 − ρ)ui)δxei+ 1

2

+g′′(ζi)[ρ(Ui+1 − ui+1) + (1 − ρ)(Ui − ui)]δxUi+ 1
2
, (2.1)

where
yi = min{ρui+1 + (1 − ρ)ui, ρUi+1 + (1 − ρ)Ui},

ri = max{ρui+1 + (1 − ρ)ui, ρUi+1 + (1 − ρ)Ui}.

Proof. Using the mean value theorem, one has

δx(g(U) − g(u))i+ 1
2
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=
1
h

[(g(Ui+1) − g(ui+1)) − (g(Ui) − g(ui))]

=
1
h

[(g(Ui + hδxUi+ 1
2
) − g(ui + hδxui+ 1

2
)) − (g(Ui) − g(ui))]

=
1
h

[(g(Ui + hδxUi+ 1
2
) − g(Ui)) − (g(ui + hδxui+ 1

2
) − g(ui))]

= g′(Ui + ρhδxUi+ 1
2
)δxUi+ 1

2
− g′(ui + ρhδxui+ 1

2
)δxui+ 1

2
.

Again, applying the mean value theorem, we have

δx(g(U) − g(u))i+ 1
2

= g′(ui + ρhδxui+ 1
2
)δxei+ 1

2
+ [g′(Ui + ρhδxUi+ 1

2
) − g′(ui + ρhδxui+ 1

2
)]δxUi+ 1

2

= g′(ρui+1 + (1 − ρ)ui)δxei+ 1
2

+[g′(ρUi+1 + (1 − ρ)Ui) − g′(ρui+1 + (1 − ρ)ui)]δxUi+ 1
2

= g′(ρui+1 + (1 − ρ)ui)δxei+ 1
2
+ g′′(ζi)[ρei+1 + (1 − ρ)ei]δxUi+ 1

2
.

The proof is finished.

In order to construct a three-level conservative numerical scheme for supergeneralized viscous
Burgers’ equation (1.1)–(1.3), we first turn problem (1.1) into an equivalent form as follows: ut +

q∑
m=0

Cm
q

(−1)m

p+m+2 (W(m)ux + (W(m)u)x) = vuxx,

W(m) = up+m,
(2.2)

where Cm
q is the binomial coefficient, 0 ≤ m ≤ q.

We denote Uk
i = u(xi, tk), and let uk

i denote the nodal approximation to the exact solution computed
at the mesh point (xi, tk).

Considering (2.2) at the point (xi, tk), i ∈ Nm̃−1, k ∈ Nñ−1, one gets ∆tUk
i +

q∑
m=0

Cm
q

(−1)m

p+m+2ψ(Wk
(m),U

k̄)i = νδ
2
xU

k̄
i + Pk

i ,

W(m)
k
i = (Uk

i )p+m
.

(2.3)

By Taylor expansion, one gets

|Pk
i | ≤ c1(τ2 + h2), (2.4)

where c1 is a positive constant.
We consider (1.1) at the point (xi, t0), i ∈ Nm̃−1, noticing (1.2), and one gets

ut(xi, t0) = υΨ(xi)′′ − (Ψ(xi))p(1 − Ψ(xi))qΨ(xi)′, i ∈ Nm̃−1.

Denote

ri = Ψ(xi) +
τ

2
[υΨ(xi)′′ − (Ψ(xi))p(1 − Ψ(xi))qΨ(xi)′], (2.5)

R(m)i = (ri)p+m, i ∈ Nm̃−1. (2.6)
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Considering (2.2) at the point (xi, t 1
2
), i ∈ Nm̃−1, one gets

δtU
1
2
i +

q∑
m=0

Cm
q

(−1)m

p + m + 2
ψ(R(m),U

1
2 )i = νδ

2
xU

1
2
i + P0

i , (2.7)

and

|P0
i | ≤ c1(τ2 + h2). (2.8)

Noticing (1.2) and (1.3), we get{
U0

i = Ψ(xi), i ∈ Nm̃−1,
Uk

0 = 0, Uk
m̃ = 0, k ∈ N0

ñ .
(2.9)

Omitting the small terms Pk
i in (2.3) and P0

i in (2.7), and replacing Uk
i by uk

i , and W(m)
k
i by w(m)

k
i ,

i ∈ Nm̃−1, k ∈ Nñ−1, respectively. Thus, we can obtain the three-level difference approximation for
(1.1)–(1.3) as follows

∆tuk
i +

q∑
m=0

Cm
q

(−1)m

p + m + 2
ψ(wk

(m), u
k̄)i = νδ

2
xu

k̄
i , (2.10)

δtu
1
2
i +

q∑
m=0

Cm
q

(−1)m

p + m + 2
ψ(R(m), u

1
2 )i = νδ

2
xu

1
2
i , (2.11)

w(m)
k
i = (uk

i )
p+m

, i ∈ N0
m̃, k ∈ Nñ−1, (2.12)

u0
i = Ψ(xi), i ∈ Nm̃−1, (2.13)

uk
0 = 0, uk

m̃ = 0, k ∈ N0
ñ . (2.14)

Noticing that substituting (2.12) into (2.10), the three-level difference scheme only contains one
variable uk

i .

3. The numerical analysis of three-level difference scheme

We now begin to consider the energy conservation and boundedness of solution of the three-level
numerical scheme (2.10)–(2.14).

Theorem 3.1. Suppose that {uk
i ,w(m)

k
i | i ∈ N0

m̃, k ∈ N0
ñ } is the solution of (2.10)–(2.14), we get

1
2

(∥u1∥2 + ∥u0∥2) + ντ|u
1
2 |21 = ∥u

0∥2, (3.1)

Υk = Υ0, k ∈ Nñ−1, (3.2)

where

Υk =
1
2

(∥uk+1∥2 + ∥uk∥2) + 2ντ
k∑

s=1

|us̄|21, k ∈ N0
ñ−1. (3.3)
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Proof. 1) Taking the inner product of (2.11) with u
1
2 , one obtains

(δtu
1
2 , u

1
2 ) +

q∑
m=0

Cm
q

(−1)m

p + m + 2
(ψ(R(m), u

1
2 ), u

1
2 ) = ν(δ2

xu
1
2 , u

1
2 ).

Since u
1
2 ∈

◦

Jh, by Lemmas 2.1 and 2.2, one gets

(δtu
1
2 , u

1
2 ) =

1
2τ

(∥u1∥2 − ∥u0∥2),

(ψ(R(m), u
1
2 ), u

1
2 ) = 0,

−(δ2
xu

1
2 , u

1
2 ) = |u

1
2 |21.

Thus,

1
2

(∥u1∥2 − ∥u0∥2) + ντ|u
1
2 |21 = 0. (3.4)

Namely,
1
2

(∥u1∥2 + ∥u0∥2) + ντ|u
1
2 |21 = ∥u

0∥2.

2) Taking the inner product of (2.10) with uk̄, one gets

(∆tuk, uk̄) +
q∑

m=0

Cm
q

(−1)m

p + m + 2
(ψ(wk

(m), u
k̄), uk̄) = ν(δ2

xu
k̄, uk̄).

Since uk̄ ∈
◦

Jh, by Lemmas 2.1 and 2.2, we have

(∆tuk, uk̄) =
1
4τ

(∥uk+1∥2 − ∥uk−1∥2),

(ψ(wk
(m), u

k̄), uk̄) = 0,

−(δ2
xu

k̄, uk̄) = |uk̄|21.

Thus,

1
4

(∥uk+1∥2 − ∥uk−1∥2) + ντ|uk̄|21 = 0. (3.5)

Above equality can be rewritten as

1
2

(Υk − Υk−1) = 0, k ∈ Nñ−1.

Thus,
Υk = Υ0, k ∈ Nñ−1.
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Corollary 3.2. Let {uk
i ,w(m)

k
i | i ∈ N0

m̃, k ∈ N0
ñ } represent the solution of (2.10)–(2.14). Then one has

1
2

(∥uk+1∥2 + ∥uk∥2) + ντ|u
1
2 |21 + 2ντ

k∑
s=1

|us̄|21 = ∥u
0∥2, k ∈ N0

ñ−1.

Proof. According to Theorem 3.1,

Υk = Υ0 =
1
2

(∥u1∥2 + ∥u0∥2)

= ∥u0∥2 − ντ|u
1
2 |21.

Thus,

Υk + ντ|u
1
2 |21 = ∥u

0∥2.

Corollary 3.3. Let {uk
i ,w(m)

k
i | i ∈ N0

m̃, k ∈ N0
ñ } represent the solution of (2.10)–(2.14). Then the com-

puted solution uk
i can satisfy

∥uk∥ ≤ ∥u0∥, k ∈ Nñ.

Proof. From (3.4) and (3.5) in Theorem 3.1, we can get Corollary 3.3 directly.

Furthermore, we will carry out the proof of existence and uniqueness of the solution of (2.10)–
(2.14).

Theorem 3.4. The solution of (2.10)–(2.14) exists and it is unique.

Proof. According to (2.13) and (2.14), u0 has been determined uniquely. From (2.11) and (2.14),
establishing a linear system with respect to u1, and considering the corresponding homogeneous system

1
τ

u1
i +

1
2

q∑
m=0

Cm
q

(−1)m

p + m + 2
ψ(R(m), u1)i =

1
2
νδ2

xu
1
i , i ∈ Nm̃−1, (3.6)

u1
0 = 0, u1

m̃ = 0. (3.7)

Taking the inner product of (3.6) with u1, one has

1
τ
∥u1∥2 +

1
2

q∑
m=0

Cm
q

(−1)m

p + m + 2
(ψ(R(m), u1), u1) =

1
2
ν(δ2

xu
1, u1).

By Lemmas 2.1 and 2.2, one gets

(ψ(R(m), u1), u1) = 0,
(δ2

xu
1, u1) = −|u1|21.

Therefore,
1
τ
∥u1∥2 +

1
2
ν|u1|21 = 0.
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It is easy to obtain
∥u1∥ = 0.

It implies that (2.11) and (2.14) determine u1 uniquely.
Assume that uk and uk−1 have been known. By (2.10), (2.12) and (2.14), we get the following linear

homogeneous system of equations with respect to uk+1:

1
2τ

uk+1
i +

1
2

q∑
m=0

Cm
q

(−1)m

p + m + 2
ψ(wk

(m), u
k+1)i =

1
2
νδ2

xu
k+1
i ,

i ∈ Nm̃−1, (3.8)
uk+1

0 = 0, uk+1
m̃ = 0. (3.9)

Taking the inner product of (3.8) with uk+1, one has

1
2τ
∥uk+1∥2 +

1
2

q∑
m=0

Cm
q

(−1)m

p + m + 2
(uk+1, ψ(wk

(m), u
k+1)) =

1
2
ν(uk+1, δ2

xu
k+1).

By Lemmas 2.1 and 2.2, one gets

(uk+1, ψ(wk
(m), u

k+1)) = 0,
(uk+1, δ2

xu
k+1) = −|uk+1|21.

Therefore,
1
2τ
∥uk+1∥2 +

1
2
ν|uk+1|21 = 0.

It is easy to obtain
∥uk+1∥ = 0.

Consequently, it implies that uk+1 solved by (2.10), (2.12) and (2.14) is unique.
Based on mathematical induction, (2.10)–(2.14) is uniquely solvable, and this completes the proof.

In order to establish the convergence of (2.10)–(2.14), we will introduce the cut-off function method
next.

Denote

M = max
(x,t)∈[0,L]×[0,T ]

|u(x, t)|, c̃1 = max
(x,t)∈[0,L]×[0,T ]

{|ux(x, t)|}. (3.10)

Define a group of second-order smooth functions

gm(u) =
{

up+m, |u| ≤ M + 1,
0, |u| ≥ M + 2,

where 0 ≤ m ≤ q.
Denote

max
u∈R,0≤m≤q

|gm(u)| = ĉ0, max
u∈R,0≤m≤q

|g
′

m(u)| = ĉ1, and max
u∈R,0≤m≤q

|g
′′

m(u)| = ĉ2.
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Based on the cut-off function method, we construct a new difference scheme as follows:

∆tuk
i +

q∑
m=0

Cm
q

(−1)m

p + m + 2
ψ(wk

(m), u
k̄)i = νδ

2
xu

k̄
i , (3.11)

δtu
1
2
i +

q∑
m=0

Cm
q

(−1)m

p + m + 2
ψ(R(m), u

1
2 )i = νδ

2
xu

1
2
i , (3.12)

w(m)
k
i = gm(uk

i ), i ∈ Nm̃−1, k ∈ Nñ−1, (3.13)
u0

i = Ψ(xi), i ∈ Nm̃−1, (3.14)
uk

0 = 0, uk
m̃ = 0, k ∈ N0

ñ . (3.15)

For the above difference scheme, it is conservative.

Theorem 3.5. Suppose that {uk
i ,w(m)

k
i | i ∈ N0

m̃, k ∈ N0
ñ } represents the solution of (3.11)–(3.15), we get

1
2

(∥u1∥2 + ∥u0∥2) + ντ|u
1
2 |21 = ∥u

0∥2, (3.16)

Υk = Υ0, k ∈ Nñ−1, (3.17)

where

Υk =
1
2

(∥uk+1∥2 + ∥uk∥2) + 2ντ
k∑

s=1

|us̄|21, k ∈ N0
ñ−1.

Proof. The proof of (3.16) and (3.17) is similar to the proof of Theorem 3.1.

Now we prove the L2-norm and L∞-norm convergence of (3.11)–(3.15).

Theorem 3.6. Assume that {uk
i ,w(m)

k
i | i ∈ N0

m̃, k ∈ N0
ñ } is the solution of (3.11)–(3.15) and {Uk

i ,W(m)
k
i | i ∈

N0
m̃, k ∈ N0

ñ } is the solution of (1.1)–(1.3), there exists a positive constant c2 such that

∥Uk − uk∥ ≤ c2(τ2 + h2), k ∈ N0
ñ . (3.18)

Proof. Define
ek

i = Uk
i − uk

i , b(m)
k
i = W(m)

k
i − w(m)

k
i .

Since (3.10), we get
gm(Uk

i ) = (Uk
i )p+m.

Subtracting (3.11)–(3.15) from (2.3), (2.7) and (2.9) follows

δte
1
2
i +

q∑
m=0

Cm
q (−1)m

p + m + 2
ψ(R(m), e

1
2 )i = νδ

2
xe

1
2
i + P0

i , i ∈ Nm̃−1, (3.19)

∆tek
i +

q∑
m=0

Cm
q (−1)m

p + m + 2
[ψ(Wk

(m),U
k̄)i − ψ(wk

(m), u
k̄)i] = νδ2

xe
k̄
i + Pk

i ,

i ∈ Nm̃−1, k ∈ Nñ−1, (3.20)
b(m)

k
i = gm(Uk

i ) − gm(uk
i ), i ∈ N0

m̃, k ∈ Nñ−1, (3.21)
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e0
i = 0, i ∈ Nm̃−1, (3.22)

ek
0 = 0, ek

m̃ = 0, k ∈ N0
ñ . (3.23)

When k = 0, from (3.22) and (3.23), we get

∥e0∥ = 0. (3.24)

Taking the inner product of (3.19) with e
1
2 , one gets

(δte
1
2 , e

1
2 ) +

q∑
m=0

Cm
q (−1)m

p + m + 2
(ψ(R(m), e

1
2 ), e

1
2 ) = ν(δ2

xe
1
2 , e

1
2 ) + (P0, e

1
2 ). (3.25)

By Lemmas 2.1 and 2.2, we obtain

(δte
1
2 , e

1
2 ) =

1
2τ

(∥e1∥2 − ∥e0∥2) =
1
2τ
∥e1∥2, (3.26)

(ψ(R(m), e
1
2 ), e

1
2 ) = 0, (3.27)

(δ2
xe

1
2 , e

1
2 ) = −∥δxe

1
2 ∥2. (3.28)

Substituting (3.26)–(3.28) into (3.25), we have

1
2τ
∥e1∥2 = −∥δxe

1
2 ∥2 + (P0, e

1
2 )

≤ (P0, e
1
2 )

≤
1
2
∥P0∥2 +

1
2
∥e

1
2 ∥2

≤
1
2
∥P0∥2 +

1
4
∥e1∥2.

Thus,

(1 −
τ

2
)∥e1∥2 ≤ τ∥P0∥2.

When τ
2 ≤

1
3 , noticing (2.8), one gets

∥e1∥2 ≤ ∥P0∥2 ≤ Lc2
1(τ2 + h2)2.

or

∥e1∥ ≤
√

Lc1(τ2 + h2). (3.29)

By (3.10) and Lagrange mean value theorem, one gets

|∆xUk
i | ≤ c̃1, (3.30)

|b(m)
k
i | ≤ ĉ1|ek

i |. (3.31)
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Taking the inner product of (3.20) with ek̄, one gets

(∆tek, ek̄) +
q∑

m=0

Cm
q (−1)m

p + m + 2
(ψ(Wk

(m),U
k̄) − ψ(wk

(m), u
k̄), ek̄)

= ν(δ2
xe

k̄, ek̄) + (Pk, ek̄), k ∈ Nñ−1. (3.32)

Using Lemma 2.2, one obtains

(∆tek, ek̄) =
1
4τ

(∥ek+1∥2 − ∥ek−1∥2), (3.33)

(δ2
xe

k̄, ek̄) = −∥δxek̄∥2. (3.34)

Substituting (3.33) and (3.34) into (3.32), above equality (3.32) becomes

1
4τ

(∥ek+1∥2 − ∥ek−1∥2) + ν∥δxek̄∥2

= −

q∑
m=0

Cm
q (−1)m

p + m + 2
(ψ(Wk

(m),U
k̄) − ψ(wk

(m), u
k̄), ek̄) + (Pk, ek̄)

≤

q∑
m=0

a0

p + 2
| − (ψ(Wk

(m),U
k̄) − ψ(wk

(m), u
k̄), ek̄)| + |(Pk, ek̄)|, (3.35)

where a0 = max0≤m≤q Cm
q .

Noticing that

ψ(Wk
(m),U

k̄)i − ψ(wk
(m), u

k̄)i

= ψ(Wk
(m),U

k̄)i − ψ(Wk
(m) − bk

(m),U
k̄ − ek̄)i

= ψ(Wk
(m), e

k̄)i + ψ(bk
(m),U

k̄)i − ψ(bk
(m), e

k̄)i.

Thus, by Lemma 2.1, we have

−(ψ(Wk
(m),U

k̄) − ψ(wk
(m), u

k̄), ek̄)

= −(ψ(bk
(m),U

k̄), ek̄)

= −h
m̃−1∑
i=1

[b(m)
k
i∆xU k̄

i + ∆x(b(m)
kU k̄)i]ek̄

i

= −h
m̃−1∑
i=1

b(m)
k
i e

k̄
i∆xU k̄

i + h
m̃−1∑
i=1

b(m)
k
i U

k̄
i ∆xek̄

i . (3.36)

Noticing (3.30), (3.31) and (3.10), we have

| − (ψ(Wk
(m),U

k̄) − ψ(wk
(m), u

k̄), ek̄)|

≤ h
m̃−1∑
i=1

c̃1ĉ1|ek
i ||e

k̄
i | + h

m̃−1∑
i=1

Mĉ1|ek
i ||∆xek̄

i |
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≤ c̃1ĉ1∥ek∥ · ∥ek̄∥ + Mĉ1∥ek∥ · ∥∆xek̄∥

≤ c̃1ĉ1∥ek∥ · ∥ek̄∥ + Mĉ1∥ek∥ · ∥δxek̄∥. (3.37)

Substituting (3.37) into (3.35), (3.35) yields

1
4τ

(∥ek+1∥2 − ∥ek−1∥2) + ν∥δxek̄∥2

≤

q∑
m=0

a0

p + 2
(c̃1ĉ1∥ek∥ · ∥ek̄∥ + Mĉ1∥ek∥ · ∥δxek̄∥) +

1
2
∥Pk∥2 +

1
2
∥ek̄∥2

≤
a0(1 + q)

p + 2
(
c̃1ĉ1

2
∥ek∥2 +

c̃1ĉ1

2
∥ek̄∥2 +

(p + 2)ν
a0(1 + q)

∥δxek̄∥2 +
a0(1 + q)M2ĉ2

1

4(p + 2)ν
∥ek∥2)

+
1
2
∥Pk∥2 +

1
2
∥ek̄∥2

= [
a0(1 + q)c̃1ĉ1

2(p + 2)
+

a2
0(1 + q)2M2ĉ2

1

4(p + 2)2ν
]∥ek∥2 + [

a0(1 + q)c̃1ĉ1

2(p + 2)
+

1
2

]∥ek̄∥2

+ν∥δxek̄∥2 +
1
2
∥Pk∥2. (3.38)

Combining (2.4), above equality (3.38) becomes

1
4τ

(∥ek+1∥2 − ∥ek−1∥2)

≤ c3∥ek∥2 + 2c4∥ek̄∥2 +
1
2

Lc2
1(τ2 + h2)2

≤ c3∥ek∥2 + c4∥ek+1∥2 + c4∥ek−1∥2 +
1
2

Lc2
1(τ2 + h2)2, (3.39)

where c3 =
a0(1+q)c̃1ĉ1

2(p+2) +
a2

0(1+q)2 M2ĉ2
1

4(p+2)2ν
and c4 =

a0(1+q)c̃1ĉ1
4(p+2) +

1
4 are two positive constants.

Rearranging (3.39) to yield

(1 − 4c4τ)∥ek+1∥2 ≤ 4c3τ∥ek∥2 + (1 + 4c4τ)∥ek−1∥2

+2Lc2
1τ(τ2 + h2)2, k ∈ Nñ−1. (3.40)

For k ∈ Nñ−1, when 4c4τ ≤
1
3 , (3.40) yields

∥ek+1∥2 ≤ 6c3τ∥ek∥2 + (1 + 12c4τ)∥ek−1∥2 + 3Lc2
1τ(τ2 + h2)2. (3.41)

Therefore,

max{∥ek+1∥2, ∥ek∥2} ≤ [1 + 6(c3 + 2c4)τ] max{∥ek−1∥2, ∥ek∥2}

+3Lc2
1τ(τ2 + h2)2. (3.42)

According to Gronwall’s inequality, we obtain

max{∥ek+1∥2, ∥ek∥2}
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≤ e6(c3+2c4)T · [max{∥e1∥2, ∥e0∥2} +
Lc2

1

2(c3 + 2c4)
(τ2 + h2)2].

Noticing (3.24) and (3.29), one gets

∥ek∥2 ≤ e6(c3+2c4)T · [∥e1∥2 +
Lc2

1

2(c3 + 2c4)
(τ2 + h2)2]

= e6(c3+2c4)T · [Lc2
1 +

Lc2
1

2(c3 + 2c4)
](τ2 + h2)2

≡ c2
2(τ2 + h2)2, k ∈ Nñ,

where c2 = e6(c3+2c4)T · [Lc2
1 +

Lc2
1

2(c3+2c4) ]
1
2 .

Namely,

∥ek∥ ≤ c2(τ2 + h2).

Theorem 3.7. Assume that {uk
i ,w(m)

k
i | i ∈ N0

m̃, k ∈ N0
ñ } is the solution of (3.11)–(3.15) and {Uk

i ,W(m)
k
i | i ∈

N0
m̃, k ∈ N0

ñ } is the solution of (1.1)–(1.3), there exists positive constants c7 and c8 such that

|Uk − uk|1 ≤ c7(τ2 + h2), k ∈ N0
ñ , (3.43)

∥Uk − uk∥∞ ≤ c8(τ2 + h2), k ∈ N0
ñ . (3.44)

Proof. We will use the mathematical induction to prove the result. When k = 0, from (3.22) and (3.23),
we get

|e0|1 = 0, ∥e0∥∞ = 0. (3.45)

Therefore, the conclusion is valid for k = 0.
1) Taking the inner product of (3.19) with δte

1
2 , one gets

∥δte
1
2 ∥2 +

q∑
m=0

Cm
q (−1)m

p + m + 2
(ψ(R(m), e

1
2 ), δte

1
2 ) = ν(δ2

xe
1
2 , δte

1
2 ) + (P0, δte

1
2 ). (3.46)

Noticing that

e0
i = 0, i ∈ N0

m̃,

then (3.46) becomes

1
τ2 ∥e

1∥2 +
1
2τ

q∑
m=0

Cm
q (−1)m

p + m + 2
(ψ(R(m), e1), e1) =

ν

2τ
(δ2

xe
1, e1) +

1
τ

(P0, e1). (3.47)

Using Lemmas 2.1 and 2.2, we have

1
τ2 ∥e

1∥2 +
ν

2τ
|e1|21 =

1
τ

(P0, e1) ≤
1
τ2 ∥e

1∥2 +
1
4
∥P0∥2. (3.48)
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From (2.8), we get

|e1|21 ≤
2τ
ν
·

1
4
∥P0∥2 ≤

τ

2ν
Lc2

1(τ2 + h2)2.

When τ ≤ 2ν, one gets

|e1|21 ≤ Lc2
1(τ2 + h2)2,

or

|e1|1 ≤
√

Lc1(τ2 + h2). (3.49)

2) Taking the inner product of (3.20) with ∆tek, one gets

∥∆tek∥2 +

q∑
m=0

Cm
q (−1)m

p + m + 2
(ψ(Wk

(m),U
k̄) − ψ(wk

(m), u
k̄),∆tek)

= ν(δ2
xe

k̄,∆tek) + (Pk,∆tek), k ∈ Nñ−1. (3.50)

Suppose (3.43) and (3.44) hold for 0 ≤ k ≤ s (1 ≤ s ≤ ñ − 1).
From (3.10) and Lemma 2.2, one gets

|Uk|1 ≤
√

Lc̃1, ∥Uk∥∞ ≤
L
2

c̃1, k ∈ N0
ñ . (3.51)

When c7(τ2 + h2) ≤ 1, one gets

|uk|1 ≤ |Uk|1 + |ek|1 ≤
√

Lc̃1 + 1, 1 ≤ k ≤ s,

∥uk∥∞ ≤

√
L

2
(
√

Lc̃1 + 1), 1 ≤ k ≤ s. (3.52)

Using Lemma 2.2, above equality (3.50) becomes

∥∆tek∥2 +

q∑
m=0

Cm
q (−1)m

p + m + 2
(ψ(Wk

(m),U
k̄) − ψ(wk

(m), u
k̄),∆tek)

= −
ν

4τ
(|ek+1|21 − |e

k−1|21) + (Pk,∆tek). (3.53)

Noticing that

ψ(Wk
(m),U

k̄)i − ψ(wk
(m), u

k̄)i

= ψ(bk
(m),U

k̄)i + ψ(wk
(m), e

k̄)i

= b(m)
k
i∆xU k̄

i + ∆x(bk
(m)U

k̄)i + w(m)
k
i∆xek̄

i + ∆x(wk
(m)e

k̄)i

= 2b(m)
k
i∆xU k̄

i +
1
2

(δxb(m)
k
i+ 1

2
)U k̄

i+1 +
1
2

(δxb(m)
k
i− 1

2
)U k̄

i−1

+2w(m)
k
i∆xek̄

i +
1
2

(δxw(m)
k
i+ 1

2
)ek̄

i+1 +
1
2

(δxw(m)
k
i− 1

2
)ek̄

i−1. (3.54)
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By Lagrange mean value theorem and the Lemma 2.3, we have

|b(m)
k
i | ≤ ĉ1|ek

i |,

|δxb(m)
k
i+ 1

2
| ≤ ĉ1|δxek

i+ 1
2
| + c̃1ĉ2[ρ|ek

i+1| + (1 − ρ)|ek
i |],

|δxb(m)
k
i− 1

2
| ≤ ĉ1|δxek

i− 1
2
| + c̃1ĉ2[ρ|ek

i | + (1 − ρ)|ek
i−1|]. (3.55)

Thus, combining (3.54) and (3.55) yields

|ψ(Wk
(m),U

k̄)i − ψ(wk
(m), u

k̄)i|

≤ 2ĉ1|ek
i | · |∆xU k̄

i | +
1
2

[ĉ1|δxek
i+ 1

2
| + ρc̃1ĉ2|ek

i+1| + (1 − ρ)c̃1ĉ2|ek
i |]|U

k̄
i+1|

+
1
2

[ĉ1|δxek
i− 1

2
| + ρc̃1ĉ2|ek

i | + (1 − ρ)c̃1ĉ2|ek
i−1|]|U

k̄
i−1|

+2ĉ0|∆xek̄
i | +

1
2

ĉ1|δxuk
i+ 1

2
| · |ek̄

i+1| +
1
2

ĉ1|δxuk
i− 1

2
| · |ek̄

i−1|. (3.56)

Using Lemma 2.2, combining (3.51), (3.52) and (3.56), it is easy to get

−(ψ(Wk
(m),U

k̄) − ψ(wk
(m), u

k̄),∆tek)

≤ [2ĉ1∥ek∥∞|U k̄|1 + ∥U k̄∥∞(ĉ1|ek|1 + c̃1ĉ2∥ek∥)] · ∥∆tek∥

+(2ĉ0|ek̄|1 + ĉ1|uk|1∥ek̄∥∞) · ∥∆tek∥

≤ (2
√

Lĉ1c̃1∥ek∥∞ +
L
2

ĉ1c̃1|ek|1 +
L
2

c̃2
1ĉ2∥ek∥) · ∥∆tek∥

+[2ĉ0|ek̄|1 + ĉ1(
√

Lc̃1 + 1)∥ek̄∥∞] · ∥∆tek∥

≤ (2
√

Lĉ1c̃1 ·

√
L

2
|ek|1 +

L
2

ĉ1c̃1|ek|1 +
L
2

c̃2
1ĉ2 ·

L
√

6
|ek|1) · ∥∆tek∥

+[2ĉ0|ek̄|1 + ĉ1(
√

Lc̃1 + 1) ·

√
L

2
|ek̄|1] · ∥∆tek∥

= (Lĉ1c̃1 +
1
2

Lĉ1c̃1 +
1

2
√

6
L2ĉ2c̃2

1)|ek|1 · ∥∆tek∥

+[2ĉ0 +
1
2

√
Lĉ1(
√

Lc̃1 + 1)]|ek̄|1 · ∥∆tek∥

= c9|ek|1 · ∥∆tek∥ + c10|ek̄|1 · ∥∆tek∥

≤
p + 2

4a0(1 + q)
∥∆tek∥2 +

a0(1 + q)c2
9

p + 2
|ek|21 +

p + 2
4a0(1 + q)

∥∆tek∥2

+
a0(1 + q)c2

10

p + 2
|ek̄|21, (3.57)

where c9 = (Lĉ1c̃1 +
1
2 Lĉ1c̃1 +

1
2
√

6
L2ĉ2c̃2

1) and c10 = 2ĉ0 +
1
2

√
Lĉ1(
√

Lc̃1 + 1).
Thus, (3.53) becomes

∥∆tek∥2 +
ν

4τ
(|ek+1|21 − |e

k−1|21)
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= −

q∑
m=0

Cm
q (−1)m

p + m + 2
(ψ(Wk

(m),U
k̄) − ψ(wk

(m), u
k̄),∆tek) + (Pk,∆tek)

≤

q∑
m=0

a0

p + 2
| − (ψ(Wk

(m),U
k̄) − ψ(wk

(m), u
k̄),∆tek)| + |(Pk,∆tek)|

≤

q∑
m=0

a0

p + 2
(

p + 2
4a0(1 + q)

∥∆tek∥2 +
a0(1 + q)c2

9

p + 2
|ek|21 +

p + 2
4a0(1 + q)

∥∆tek∥2

+
a0(1 + q)c2

10

p + 2
|ek̄|21) +

1
2
∥Pk∥2 +

1
2
∥∆tek∥2

=
1
4
∥∆tek∥2 +

a2
0(q + 1)2c2

9

(p + 2)2 |e
k|21 +

1
4
∥∆tek∥2 +

a2
0(q + 1)2c2

10

(p + 2)2 |ek̄|21

+
1
2
∥Pk∥2 +

1
2
∥∆tek∥2, 1 ≤ k ≤ s, (3.58)

where a0 = max0≤m≤q Cm
q .

Noticing (2.4), (3.58) becomes

ν

4τ
(|ek+1|21 − |e

k−1|21)

≤
a2

0(q + 1)2c2
9

(p + 2)2 |e
k|21 +

a2
0(q + 1)2c2

10

(p + 2)2 |ek̄|21 +
1
2
∥Pk∥2

≤ c5|ek|21 + c6
|ek+1|21 + |e

k−1|21

2
+

1
2

Lc2
1(τ2 + h2)2, 1 ≤ k ≤ s, (3.59)

where c5 =
a2

0(q+1)2c2
9

(p+2)2 and c6 =
a2

0(q+1)2c2
10

(p+2)2 are two positive constants.
For 1 ≤ k ≤ s, rearranging (3.59) to yield

(1 −
2c6τ

ν
)|ek+1|21 ≤

4c5τ

ν
|ek|21 + (1 +

2c6τ

ν
)|ek−1|21 +

2Lc2
1

ν
τ(τ2 + h2)2. (3.60)

When 2c6τ
ν
≤ 1

3 , (3.60) yields

|ek+1|21 ≤
6c5τ

ν
|ek|21 + (1 +

6c6τ

ν
)|ek−1|21 +

3Lc2
1

ν
τ(τ2 + h2)2.

Therefore,

max{|ek+1|21, |e
k|21} ≤ (1 +

6c5 + 6c6

ν
τ) max{|ek−1|21, |e

k|21}

+
3Lc2

1

ν
τ(τ2 + h2)2, 1 ≤ k ≤ s. (3.61)

According to Gronwall’s inequality, (3.61) yields

max{|ek+1|21, |e
k|21}
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≤ e
6c5+6c6

ν T · [max{|e0|21, |e
1|21} +

Lc2
1

2(c5 + c6)
(τ2 + h2)2], 1 ≤ k ≤ s.

Noticing (3.45) and (3.49), one gets

|es+1|21 ≤ e
6c5+6c6

ν T · [max{|e0|21, |e
1|21} +

Lc2
1

2(c5 + c6)
(τ2 + h2)2]

= e
6c5+6c6

ν T · [Lc2
1 +

Lc2
1

2(c5 + c6)
](τ2 + h2)2

≡ c2
7(τ2 + h2)2,

where c7 = e
3c5+3c6

ν T · [Lc2
1 +

Lc2
1

2(c5+c6) ]
1
2 .

Namely,

|es+1|1 ≤ c7(τ2 + h2).

Consequently, (3.43) holds for k = s + 1.
From Lemma 2.2, it is easy to get

∥ek∥∞ ≤

√
L

2
|ek|1 ≤

√
L

2
c7(τ2 + h2) ≡ c8(τ2 + h2), k ∈ N0

ñ .

Corollary 3.8. Let {uk
i ,w(m)

k
i | i ∈ N0

m̃, k ∈ N0
ñ } be the solution of (3.11)–(3.15). When c7(τ2 + h2) ≤ 1,

there exists two constants c11 and c12 such that

|uk|1 ≤ c11, ∥uk∥∞ ≤ c12, k ∈ N0
ñ .

Proof. When c7(τ2 + h2) ≤ 1, one has

|uk|1 ≤ |Uk|1 + |ek|1

≤
√

Lc̃1 + c7(τ2 + h2) ≤ c11, k ∈ N0
ñ .

By Lemma 2.2, we get ∥uk∥∞ ≤
√

L
2 c10 ≡ c12.

This means the solution of (3.11)–(3.15) is bounded.

In the end, for the proposed scheme (2.10)–(2.14), we can obtain the following convergence.

Corollary 3.9. Let {uk
i ,w(m)

k
i | i ∈ N0

m̃, k ∈ N0
ñ } be the solution of (2.10)–(2.14) and {Uk

i ,W(m)
k
i | i ∈

N0
m̃, k ∈ N0

ñ } be the solution of (1.1)–(1.3). When c8(τ2 + h2) ≤ 1, one has

∥Uk − uk∥ ≤ c13(τ2 + h2), k ∈ N0
ñ ,

∥Uk − uk∥∞ ≤ c13(τ2 + h2), k ∈ N0
ñ ,

where c13 is a constant.

Proof. Let {ûk
i | i ∈ N0

m̃, k ∈ N0
ñ } be the solution of (3.11)–(3.15). When c8(τ2 + h2) ≤ 1, one has

|ûk
i | ≤ |U

k
i | + |U

k
i − ûk

i |

≤ M + c8(τ2 + h2) ≤ M + 1, k ∈ N0
ñ .

Thus, gm(ûk
i ) = (ûk

i )
p+m.

This means the difference scheme (2.10)–(2.14) is equivalent to (3.11)–(3.15). According to Theo-
rems 3.6 and 3.7, we finish the proof of Corollary 3.9.

Electronic Research Archive Volume 32, Issue 3, 1471–1497.



1488

4. Numerical test

A numerical example is given to verify theoretical conclusions of the three-level difference scheme
for supergeneralized viscous Burgers’ equation.

Example 4.1. We consider (1.1)–(1.3) with T = L = 1, ν = 1, Ψ(x) = sin(πx), and p, q take some
different integer values, respectively.

To describe the numerical errors in L∞-norm for the computed solution and corresponding conver-
gence orders, we denote

E1
∞(h, τ) = max

0≤i≤m̃
max
0≤k≤ñ
|uk

i (h, τ) − u2k
i (h,

τ

2
)|, Order1 = log2

E1
∞(h, 2τ)

E1
∞(h, τ)

,

E2
∞(h, τ) = max

0≤i≤m̃
max
0≤k≤ñ
|uk

i (h, τ) − uk
2i(

h
2
, τ)|, Order2 = log2

E2
∞(2h, τ)

E2
∞(h, τ)

,

and

E3
∞(h, τ) = max

0≤i≤m̃
max
0≤k≤ñ
|uk

i (h, τ) − u2k
2i (

h
2
,
τ

2
)|, Order3 = log2

E3
∞(2h, 2τ)
E3
∞(h, τ)

,

where h and τ are sufficiently small.
Table 1 lists the temporal convergence orders with h = 1

64 . We compute the spatial convergence
orders with τ = 1

64 in Table 2. Table 3 presents the temporal and spatial errors and convergence orders
with τ = h. The corresponding error and convergence orders are presented in Figures 1–6. The results
demonstrate (2.10)–(2.14) is convergent with the convergence order of two both in space and in time.

In Figures 7–9, we compute Υk in Theorem 3.1 to verify the conservativity of the difference scheme
(2.10)–(2.14). The results demonstrate that difference scheme (2.10)–(2.14) is conservative.

Table 1. The temporal convergence orders with h = 1
64 .

τ p = 2, q = 1 p = 2, q = 3 p = 3, q = 4
E1
∞(h, τ) Order1 E1

∞(h, τ) Order1 E1
∞(h, τ) Order1

1/20 2.6456e-02 - 2.5871e-02 - 2.5872e-02 -
1/40 5.8120e-03 2.1865 5.8182e-03 2.1527 5.7895e-03 2.1599
1/80 1.4154e-03 2.0379 1.4109e-03 2.0440 1.4108e-03 2.0369
1/160 3.5049e-04 2.0137 3.5054e-04 2.0090 3.5051e-04 2.0090
1/320 8.7491e-05 2.0022 8.7498e-05 2.0022 8.7490e-05 2.0022
1/640 2.1864e-05 2.0006 2.1866e-05 2.0006 2.1864e-05 2.0006

5. Conclusions

In this paper, a three-level linearized conservative scheme approximating supergeneralized viscous
Burgers’ equation is studied. We construct the discretization of the nonlinear term by a second-order
operator in supergeneralized viscous Burgers’ equation and prove the three-level scheme is uniquely
solvable based on the mathematical induction. At last, the L2-norm and L∞-norm convergence are
proved with separate and different ways.
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Table 2. The spatial convergence orders with τ = 1
64 .

h p = 2, q = 1 p = 2, q = 3 p = 3, q = 4
E2
∞(h, τ) Order2 E2

∞(h, τ) Order2 E2
∞(h, τ) Order2

1/20 5.7545e-04 - 5.7530e-04 - 5.7521e-04 -
1/40 1.4410e-04 1.9977 1.4381e-04 2.0001 1.4379e-04 2.0001
1/80 3.6024e-05 2.0000 3.5952e-05 2.0000 3.5947e-05 2.0000
1/160 9.0074e-06 1.9998 8.9879e-06 2.0000 8.9866e-06 2.0000
1/320 2.2519e-06 2.0000 2.2470e-06 2.0000 2.2466e-06 2.0000
1/640 5.6296e-07 2.0000 5.6174e-07 2.0000 5.6166e-07 2.0000

Table 3. The temporal and spatial errors and convergence orders with τ = h.

h τ p = 2, q = 1 p = 2, q = 3 p = 3, q = 4
E3
∞(h, τ) Order3 E3

∞(h, τ) Order3 E3
∞(h, τ) Order3

1/20 1/20 2.5727e-02 - 2.5170e-02 - 2.5171e-02 -
1/40 1/40 5.6650e-03 2.1831 5.6706e-03 2.1501 5.6420e-03 2.1575
1/80 1/80 1.3805e-03 2.0369 1.3756e-03 2.0435 1.3755e-03 2.0363
1/160 1/160 3.4173e-04 2.0142 3.4189e-04 2.0084 3.4176e-04 2.0089
1/320 1/320 8.5308e-05 2.0021 8.5337e-05 2.0023 8.5308e-05 2.0022
1/640 1/640 2.1319e-05 2.0005 2.1326e-05 2.0006 2.1319e-05 2.0005
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Figure 1. The convergence orders of time when h = 1
64 for p = 2, q = 1.
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Figure 2. The convergence orders of time when h = 1
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Figure 3. The convergence orders of time when h = 1
64 for p = 3, q = 4.
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Figure 4. The spatial convergence orders when τ = 1
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Figure 6. The spatial convergence orders when τ = 1
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Figure 7. Conservative invariant Υk of the scheme (2.10)–(2.14) with p = 2 and q = 1.
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