In this paper, we establish some new dynamic Hardy-type inequalities with negative parameters on time scales nabla calculus by applying the reverse H ölder's inequality, integration by parts, and chain rule on time scales nabla calculus. As special cases of our results (when T=R), we get the continuous analouges of inequalities proven by Benaissa and Sarikaya, and when T=N0, the results to the best of the authors' knowledge are essentially new.
Citation: Elkhateeb S. Aly, Y. A. Madani, F. Gassem, A. I. Saied, H. M. Rezk, Wael W. Mohammed. Some dynamic Hardy-type inequalities with negative parameters on time scales nabla calculus[J]. AIMS Mathematics, 2024, 9(2): 5147-5170. doi: 10.3934/math.2024250
[1] | Haytham M. Rezk, Mohammed Zakarya, Amirah Ayidh I Al-Thaqfan, Maha Ali, Belal A. Glalah . Unveiling new reverse Hilbert-type dynamic inequalities within the framework of Delta calculus on time scales. AIMS Mathematics, 2025, 10(2): 2254-2276. doi: 10.3934/math.2025104 |
[2] | Ahmed M. Ahmed, Ahmed I. Saied, Mohammed Zakarya, Amirah Ayidh I Al-Thaqfan, Maha Ali, Haytham M. Rezk . Advanced Hardy-type inequalities with negative parameters involving monotone functions in delta calculus on time scales. AIMS Mathematics, 2024, 9(11): 31926-31946. doi: 10.3934/math.20241534 |
[3] | Ahmed A. El-Deeb, Samer D. Makharesh, Sameh S. Askar, Dumitru Baleanu . Bennett-Leindler nabla type inequalities via conformable fractional derivatives on time scales. AIMS Mathematics, 2022, 7(8): 14099-14116. doi: 10.3934/math.2022777 |
[4] | Marwa M. Ahmed, Wael S. Hassanein, Marwa Sh. Elsayed, Dumitru Baleanu, Ahmed A. El-Deeb . On Hardy-Hilbert-type inequalities with α-fractional derivatives. AIMS Mathematics, 2023, 8(9): 22097-22111. doi: 10.3934/math.20231126 |
[5] | M. Zakarya, Ghada AlNemer, A. I. Saied, H. M. Rezk . Novel generalized inequalities involving a general Hardy operator with multiple variables and general kernels on time scales. AIMS Mathematics, 2024, 9(8): 21414-21432. doi: 10.3934/math.20241040 |
[6] | Ahmed A. El-Deeb, Dumitru Baleanu, Nehad Ali Shah, Ahmed Abdeldaim . On some dynamic inequalities of Hilbert's-type on time scales. AIMS Mathematics, 2023, 8(2): 3378-3402. doi: 10.3934/math.2023174 |
[7] | Elkhateeb S. Aly, A. I. Saied, I. Ibedou, Mohamed S. Algolam, Wael W. Mohammed . Some new generalizations of reversed Minkowski's inequality for several functions via time scales. AIMS Mathematics, 2024, 9(5): 11156-11179. doi: 10.3934/math.2024547 |
[8] | Xianyong Huang, Shanhe Wu, Bicheng Yang . A Hardy-Hilbert-type inequality involving modified weight coefficients and partial sums. AIMS Mathematics, 2022, 7(4): 6294-6310. doi: 10.3934/math.2022350 |
[9] | Suriyakamol Thongjob, Kamsing Nonlaopon, Sortiris K. Ntouyas . Some (p, q)-Hardy type inequalities for (p, q)-integrable functions. AIMS Mathematics, 2021, 6(1): 77-89. doi: 10.3934/math.2021006 |
[10] | Limin Yang, Ruiyun Yang . Some new Hardy-Hilbert-type inequalities with multiparameters. AIMS Mathematics, 2022, 7(1): 840-854. doi: 10.3934/math.2022050 |
In this paper, we establish some new dynamic Hardy-type inequalities with negative parameters on time scales nabla calculus by applying the reverse H ölder's inequality, integration by parts, and chain rule on time scales nabla calculus. As special cases of our results (when T=R), we get the continuous analouges of inequalities proven by Benaissa and Sarikaya, and when T=N0, the results to the best of the authors' knowledge are essentially new.
In 1920, Hardy [1] proved that
∞∑τ=1(1ττ∑k=1h(k))ϵ≤(ϵϵ−1)ϵ∞∑τ=1hϵ(τ), | (1.1) |
where ϵ>1, h(τ)≥0 for τ≥1, and ∑∞τ=1hϵ(τ)<∞. In 1925, Hardy [2, Theorem A] showed that if ϵ>1, ϖ≥0 such that ∫∞0ϖϵ(ξ)dξ<∞, then ϖ is integrable over any finite interval (0,ξ), ξ∈(0,∞) and
∫∞0(1ξ∫ξ0ϖ(ϑ)dϑ)ϵdξ≤(ϵϵ−1)ϵ∫∞0ϖϵ(ξ)dξ. | (1.2) |
The constant (ϵ/(ϵ−1))ϵ in (1.1) and (1.2) is the best possible.
In 1927, Hardy and Littlewood [3] proved that if 0<ϵ<1, ϖ(ξ)≥0 for ξ∈(0,∞), and ∫∞0ϖϵ(ξ)dξ<∞, then
∫∞0(1ξ∫∞ξϖ(ϑ)dϑ)ϵdξ≥(ϵ1−ϵ)ϵ∫∞0ϖϵ(ξ)dξ, 0<ϵ<1, |
where the constant (ϵ/(1−ϵ))ϵ is the best possible.
The Hardy inequalities mentioned above are proved for a positive parameter 0<ϵ<1 and ϵ>1. Also, these inequalities depend on the power rule inequality in case of the positive parameter. So, some authors discovered new inequalities of Hardy type with negative parameters and noted that they proved these inequalities with a different technique which depends on the power rule inequality.
For example, in 2007, Bicheng [4] established the integral inequality of Hardy type with negative parameter and proved that if ϵ<0, r>1, ϖ(ϑ)≥0, and0<∫∞0ξ−r(ξϖ(ξ))ϵdξ<∞, then
∫∞0ξ−r(∫∞ξϖ(ϑ)dϑ)ϵdξ≤(ϵ1−r)ϵ∫∞0ξ−r(ξϖ(ξ))ϵdξ, | (1.3) |
where the constant factor (ϵ/(1−r))ϵ is the best possible. Also, in [4] it was proved that if ϵ<0, r<1, ϖ(ϑ)≥0, and0<∫∞0ξ−r(ξϖ(ξ))ϵdξ<∞, then
∫∞0ξ−r(∫ξ0ϖ(ϑ)dϑ)ϵdξ≤(ϵr−1)ϵ∫∞0ξ−r(ξϖ(ξ))ϵdξ, | (1.4) |
where the constant factor (ϵ/(r−1))ϵ is the best possible.
In 2020, Benaissa and Sarikaya [5] generalized (1.3), and proved that ifϵ<0, r>1, and ϖ, Ξ>0 such that the function ξ/Ξ(ξ) is nondecreasing, then
∫∞0Ξ−r(ξ)(∫∞ξϖ(ϑ)dϑ)ϵdξ≤(ϵ1−r)ϵ∫∞0(ξϖ(ξ))ϵΞ−r(ξ)dξ, | (1.5) |
and if ϵ<0, 0≤r<1, and ϖ, Ξ>0 such that the function ξ/Ξ(ξ) is nonincreasing, then
∫∞0Ξ−r(ξ)(∫ξ0ϖ(ϑ)dϑ)ϵdξ≤(ϵr−1)ϵ∫∞0(ξϖ(ξ))ϵΞ−r(ξ)dξ. | (1.6) |
Also, the authors of [5] proved that if ϵ<0, r<0, and ϖ, Ξ>0 such that the function ξ/Ξ(ξ) is nondecreasing, then
∫∞0Ξ−r(ξ)(∫ξ0ϖ(ϑ)dϑ)ϵdξ≤(ϵr−1)ϵ∫∞0(ξϖ(ξ))ϵΞ−r(ξ)dξ. | (1.7) |
The time scale T is an arbitrary nonempty closed subset of the real numbers. As an application on time scales, we can get the continuous and discrete forms of any inequality, i.e., T=R and T=N. For more details about the dynamic inequalities on time scales, refer to [6,7,8,9,10,11,12,13,14,15,16], and for the applications of dynamic inequalities in the study of qualitative behavior of dynamic equations, refer to [17,18,19,20,21,22,23,24]. For including an exploration of advanced methodologies, we refer to the papers [25,26].
The objective of this paper is to introduce novel generalizations of the continuous the inequalities (1.5)–(1.7) on nabla time scales. The proofs of these results rely on employing the reverse Hö lder's inequality and the chain rule formula adapted to time scales.
This paper is divided into three sections: In Section 2, we present some lemmas on time scales needed in Section 3 where we prove our results. These results as special cases when T=R give the inequalities (1.5)–(1.7), while for T=N0, the results are fundamentally original.
In 2001, Bohner and Peterson [27] introduced the time scale T as an arbitrary nonempty closed subset of the real numbers R. Also, they defined the backward jump operator by ρ(τ):=sup{s∈T:s<τ}. For any function ϖ:T→R, the notation ϖρ(τ) signifies ϖ(ρ(τ)). The time scale interval [ϱ,δ]T is defined as [ϱ,δ]T:=[ϱ,δ]∩T.
Definition 2.1. [28] A function λ:T→R is left-dense continuous or ld-continuous provided that it is continuous at left-dense points in T and its right-sided limits exist at right-dense points in T. The space of ld-continuous functions is denoted by Cld(T, R).
The set Tκ is derived from the time scale T as follows: If T has a left-scattered maximum m, then Tκ=T−{m}. Otherwise, Tκ=T. In summary,
Tκ={T∖(ρ(supT), supT]if supT<∞,Tif supT=∞. |
Definition 2.2. [28] A function ψ:T→R is said to be ∇-differentiable at ϑ∈Tκ if ψ is defined in a neighbourhood U of ϑ and there exists a unique real number ψ∇(ϑ), called the nabla derivative of ψ at ϑ, such that for each ϵ>0, there exists a neighbourhood N of ϑ with N⊆U and
|ψ(ρ(ϑ))−ψ(s)−ψ∇(ϑ)[ρ(ϑ)−s]|≤ϵ|ρ(ϑ)−s|, ∀s∈N. |
Theorem 2.1. [28] Assume ψ, Θ:T→R are nabla differentiable at ϑ∈T. Then:
(1) The product ψΘ:T→R is nabla differentiable at ϑ, and we get the product rule
(ψΘ)∇(ϑ)=ψ∇(ϑ)Θ(ϑ)+ψρ(ϑ)Θ∇(ϑ)=ψ(ϑ)Θ∇(ϑ)+ψ∇(ϑ)Θρ(ϑ). |
(2) If Θ(ϑ)Θρ(ϑ)≠0, then ψ/Θ is nabla differentiable at ϑ, and we get the quotient rule
(ψΘ)∇(ϑ)=ψ∇(ϑ)Θ(ϑ)−ψ(ϑ)Θ∇(ϑ)Θ(ϑ)Θρ(ϑ). |
Lemma 2.1. [29] Let ψ:R→R be continuously differentiable and suppose that Θ:T→R is continuous and nabla differentiable. Then, ψ∘Θ:T→R is nabla differentiable and
(ψ∘Θ)∇(ϑ)=ψ′(Θ(d))Θ∇(ϑ),d∈[ρ(ϑ),ϑ]. | (2.1) |
Definition 2.3. [28] A function Λ:T→R is called a nabla antiderivative of ψ:T→R, if Λ∇(ϑ)=ψ(ϑ) ∀ϑ∈T. We then define the nabla integral of ψ by
∫ϑϱψ(s)∇s=Λ(ϑ)−Λ(ϱ), ∀ϑ∈T. |
Lemma 2.2. [28] If ϱ, δ∈T and ϖ, Ξ:T→R are ld-continuous, then
∫δϱϖ(ϑ)Ξ∇(ϑ)∇ϑ=ϖ(ϑ)Ξ(ϑ)|δϱ−∫δϱϖ∇(ϑ)Ξρ(ϑ)∇ϑ. | (2.2) |
Lemma 2.3. [27] If ϖ∈Cld(T, R) and ϑ∈T, then
∫ϑρ(ϑ)ϖ(ξ)∇ξ=ν(ϑ)ϖ(ϑ), |
where ν(ϑ)=ϑ−ρ(ϑ).
Lemma 2.4. (Reverse Hölder's inequality [30]) If ϱ, δ∈T, α<0, 1/α+1/β=1, and ϕ, ω∈Cld([ϱ,δ]T, R+), then
∫δϱϕ(ϑ)ω(ϑ)∇ϑ≥[∫δϱϕα(ϑ)∇ϑ]1α[∫δϱωβ(ϑ)∇ϑ]1β. | (2.3) |
In this document, we will make the assumption that the functions are ld-continuous on the interval [ϱ,∞)T and we also assume the existence of the integrals under consideration. Additionally, we posit the existence of a positive constant K such that
ρ(ξ)−ϱξ−ϱ≥1K, ρ(ξ)>ϱ. | (3.1) |
Now, we can state and prove our results.
Theorem 3.1. Let ϱ∈T, ϵ<0, ϵ∗=ϵ/(ϵ−1), r>1, and ϖ, Ξ∈Cld([ϱ,∞)T,R+) where (ξ−ϱ)/Ξ(ξ) is nondecreasing. If (3.1) holds, then
∫∞ϱΞ−r(ξ)Fϵ(ξ)∇ξ≤C∫∞ϱ(ρ(ξ)−ϱ)ϵϖϵ(ξ)Ξ−r(ξ)∇ξ, | (3.2) |
where F(ξ)=∫∞ξϖ(ϑ)∇ϑ and
C={(ϵ1−r)ϵKr−1ϵ∗, 1−r≤ϵ;(ϵ1−r)ϵKr, 1−r≥ϵ. |
Proof. Note that
F(ξ)=∫∞ξϖ(ϑ)∇ϑ=∫∞ξ(ρ(ϑ)−ϱ)−1+ϵ−rϵϵ∗(ρ(ϑ)−ϱ)1+ϵ−rϵϵ∗ϖ(ϑ)∇ϑ. | (3.3) |
Applying Lemma 2.4 to
∫∞ξ(ρ(ϑ)−ϱ)−1+ϵ−rϵϵ∗(ρ(ϑ)−ϱ)1+ϵ−rϵϵ∗ϖ(ϑ)∇ϑ, |
with
ϵ<0, ϵ∗=ϵ/(ϵ−1), ϕ(ϑ)=(ρ(ϑ)−ϱ)−1+ϵ−rϵϵ∗ and ω(ϑ)=(ρ(ϑ)−ϱ)1+ϵ−rϵϵ∗ϖ(ϑ), |
we get
∫∞ξ(ρ(ϑ)−ϱ)−1+ϵ−rϵϵ∗(ρ(ϑ)−ϱ)1+ϵ−rϵϵ∗ϖ(ϑ)∇ϑ≥(∫∞ξ(ρ(ϑ)−ϱ)−1+ϵ−rϵ∇ϑ)1ϵ∗(∫∞ξ(ρ(ϑ)−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)1ϵ. | (3.4) |
Applying (2.1) to (ϑ−ϱ)r−1ϵ, we see that
ϵr−1[(ϑ−ϱ)r−1ϵ]∇=(d−ϱ)r−1−ϵϵ, d∈[ρ(ϑ),ϑ]. | (3.5) |
Since ϵ<0, r>1,and d≥ρ(ϑ), we have that (r−1−ϵ)/ϵ<0 and
(d−ϱ)r−1−ϵϵ≤(ρ(ϑ)−ϱ)r−1−ϵϵ. | (3.6) |
Substituting (3.6) into (3.5), we see that
ϵr−1[(ϑ−ϱ)−1+ϵ−rϵ+1]∇≤(ρ(ϑ)−ϱ)r−1−ϵϵ. | (3.7) |
From (3.7), (note ϵ<0 and ϵ∗=ϵ/(ϵ−1)>0), we observe that
∫∞ξ(ρ(ϑ)−ϱ)−1+ϵ−rϵ∇ϑ≥ϵr−1∫∞ξ[(ϑ−ϱ)−1+ϵ−rϵ+1]∇∇ϑ=ϵr−1∫∞ξ[(ϑ−ϱ)r−1ϵ]∇∇ϑ=ϵ1−r(ξ−ϱ)r−1ϵ |
and then
(∫∞ξ(ρ(ϑ)−ϱ)−1+ϵ−rϵ∇ϑ)1ϵ∗≥(ϵ1−r)1ϵ∗(ξ−ϱ)r−1ϵϵ∗. | (3.8) |
Substituting (3.8) into (3.4), we see that
∫∞ξ(ρ(ϑ)−ϱ)−1+ϵ−rϵϵ∗(ρ(ϑ)−ϱ)1+ϵ−rϵϵ∗ϖ(ϑ)∇ϑ≥(ϵ1−r)1ϵ∗(ξ−ϱ)r−1ϵϵ∗(∫∞ξ(ρ(ϑ)−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)1ϵ. | (3.9) |
From (3.3) and (3.9), we have for ϵ<0 that
Fϵ(ξ)≤(ϵ1−r)ϵ−1(ξ−ϱ)r−1ϵ∗(∫∞ξ(ρ(ϑ)−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ). | (3.10) |
Multiplying (3.10) by Ξ−r(ξ) and then integrating over ξ from ϱ to ∞, we get
∫∞ϱΞ−r(ξ)Fϵ(ξ)∇ξ≤(ϵ1−r)ϵ−1∫∞ϱΞ−r(ξ)(ξ−ϱ)r−1ϵ∗(∫∞ξ(ρ(ϑ)−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)∇ξ. | (3.11) |
Applying (2.2) to
∫∞ϱΞ−r(ξ)(ξ−ϱ)r−1ϵ∗(∫∞ξ(ρ(ϑ)−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)∇ξ, |
with
u1(ξ)=∫∞ξ(ρ(ϑ)−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ and v∇1(ξ)=Ξ−r(ξ)(ξ−ϱ)r−1ϵ∗, |
we have that
∫∞ϱΞ−r(ξ)(ξ−ϱ)r−1ϵ∗(∫∞ξ(ρ(ϑ)−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)∇ξ=v1(ξ)(∫∞ξ(ρ(ϑ)−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)|∞ϱ+∫∞ϱ(ρ(ξ)−ϱ)1+ϵ−rϵ∗ϖϵ(ξ)vρ1(ξ)∇ξ, |
where
v1(ξ)=∫ξϱΞ−r(ϑ)(ϑ−ϱ)r−1ϵ∗∇ϑ. |
Since v1(ϱ)=0, we observe that
∫∞ϱΞ−r(ξ)(ξ−ϱ)r−1ϵ∗(∫∞ξ(ρ(ϑ)−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)∇ξ=∫∞ϱ(ρ(ξ)−ϱ)1+ϵ−rϵ∗ϖϵ(ξ)[∫ρ(ξ)ϱΞ−r(ϑ)(ϑ−ϱ)r−1ϵ∗∇ϑ]∇ξ=∫∞ϱ(ρ(ξ)−ϱ)1+ϵ−rϵ∗ϖϵ(ξ)[∫ρ(ξ)ϱ(ϑ−ϱΞ(ϑ))r(ϑ−ϱ)r−1ϵ∗−r∇ϑ]∇ξ. | (3.12) |
Note that
∫ρ(ξ)ϱ(ϑ−ϱΞ(ϑ))r(ϑ−ϱ)r−1ϵ∗−r∇ϑ=∫ξϱ(ϑ−ϱΞ(ϑ))r(ϑ−ϱ)r−1ϵ∗−r∇ϑ−∫ξρ(ξ)(ϑ−ϱΞ(ϑ))r(ϑ−ϱ)r−1ϵ∗−r∇ϑ=∫ξϱ(ϑ−ϱΞ(ϑ))r(ϑ−ϱ)r−1ϵ∗−r∇ϑ−ν(ξ)(ξ−ϱΞ(ξ))r(ξ−ϱ)r−1ϵ∗−r. | (3.13) |
Since (ϑ−ϱ)/Ξ(ϑ) is nondecreasing and r>1, we have for ϑ≤ξ that
∫ξϱ(ϑ−ϱΞ(ϑ))r(ϑ−ϱ)r−1ϵ∗−r∇ϑ≤(ξ−ϱΞ(ξ))r∫ξϱ(ϑ−ϱ)r−1ϵ∗−r∇ϑ. | (3.14) |
Substituting (3.14) into (3.13), we observe that
∫ρ(ξ)ϱ(ϑ−ϱΞ(ϑ))r(ϑ−ϱ)r−1ϵ∗−r∇ϑ≤(ξ−ϱΞ(ξ))r∫ξϱ(ϑ−ϱ)r−1ϵ∗−r∇ϑ−ν(ξ)(ξ−ϱΞ(ξ))r(ξ−ϱ)r−1ϵ∗−r=(ξ−ϱΞ(ξ))r[∫ξϱ(ϑ−ϱ)r−1ϵ∗−r∇ϑ−ν(ξ)(ξ−ϱ)r−1ϵ∗−r]=(ξ−ϱΞ(ξ))r(∫ξϱ(ϑ−ϱ)r−1ϵ∗−r∇ϑ−∫ξρ(ξ)(ϑ−ϱ)r−1ϵ∗−r∇ϑ)=(ξ−ϱΞ(ξ))r(∫ρ(ξ)ϱ(ϑ−ϱ)r−1ϵ∗−r∇ϑ). | (3.15) |
Substituting (3.15) into (3.12), we have
∫∞ϱΞ−r(ξ)(ξ−ϱ)r−1ϵ∗(∫∞ξ(ρ(ϑ)−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)∇ξ≤∫∞ϱ(ρ(ξ)−ϱ)1+ϵ−rϵ∗(ξ−ϱ)rϖϵ(ξ)Ξ−r(ξ)(∫ρ(ξ)ϱ(ϑ−ϱ)r−1ϵ∗−r∇ϑ)∇ξ. | (3.16) |
To complete the proof, we have two cases:
Case 1: For 1−r≤ϵ.
Applying (2.1) to the term (ϑ−ϱ)r−1ϵ∗−r+1, we see that
ϵ1−r((ϑ−ϱ)r−1ϵ∗−r+1)∇=ϵ1−r((ϑ−ϱ)1−rϵ)∇=(d−ϱ)1−rϵ−1, | (3.17) |
where d∈[ρ(ϑ),ϑ]. Since ϵ<0 and 1−r≤ϵ (note (1−r)/ϵ−1≥0), we have for d≥ρ(ϑ) that
(d−ϱ)1−rϵ−1≥(ρ(ϑ)−ϱ)1−rϵ−1=(ρ(ϑ)−ϱ)r−1ϵ∗−r. | (3.18) |
From (3.17) and (3.18), we observe that
ϵ1−r((ϑ−ϱ)r−1ϵ∗−r+1)∇≥(ρ(ϑ)−ϱ)r−1ϵ∗−r. | (3.19) |
Integrating (3.19) over ϑ from ϱ to ρ(ξ), since r>1 and ϵ<0, we have that
∫ρ(ξ)ϱ(ρ(ϑ)−ϱ)r−1ϵ∗−r∇ϑ≤ϵ1−r∫ρ(ξ)ϱ((ϑ−ϱ)r−1ϵ∗−r+1)∇∇ϑ=ϵ1−r∫ρ(ξ)ϱ((ϑ−ϱ)1−rϵ)∇∇ϑ=ϵ1−r(ρ(ξ)−ϱ)1−rϵ. | (3.20) |
Using (3.1), since r−1ϵ∗−r=1−rϵ−1>0, then (3.16) becomes
∫∞ϱΞ−r(ξ)(ξ−ϱ)r−1ϵ∗(∫∞ξ(ρ(ϑ)−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)∇ξ≤Kr−1ϵ∗−r∫∞ϱ(ρ(ξ)−ϱ)1+ϵ−rϵ∗(ξ−ϱ)rϖϵ(ξ)Ξ−r(ξ)(∫ρ(ξ)ϱ(ρ(ϑ)−ϱ)r−1ϵ∗−r∇ϑ)∇ξ. | (3.21) |
Substituting (3.20) into (3.21) and using (3.1), we see that
∫∞ϱΞ−r(ξ)(ξ−ϱ)r−1ϵ∗(∫∞ξ(ρ(ϑ)−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)∇ξ≤Kr−1ϵ∗−r(ϵ1−r)∫∞ϱ(ρ(ξ)−ϱ)ϵ(ξ−ϱρ(ξ)−ϱ)rϖϵ(ξ)Ξ−r(ξ)∇ξ≤Kr−1ϵ∗(ϵ1−r)∫∞ϱ(ρ(ξ)−ϱ)ϵϖϵ(ξ)Ξ−r(ξ)∇ξ. | (3.22) |
From (3.11) and (3.22), we see that
∫∞ϱΞ−r(ξ)Fϵ(ξ)∇ξ≤(ϵ1−r)ϵKr−1ϵ∗∫∞ϱ(ρ(ξ)−ϱ)ϵϖϵ(ξ)Ξ−r(ξ)∇ξ, |
which is (3.2) with C=(ϵ/(1−r))ϵKr−1ϵ∗.
Case 2: For 1−r≥ϵ.
Applying (2.1) to (ϑ−ϱ)1−rϵ, we see that
ϵ1−r((ϑ−ϱ)1−rϵ)∇=(d−ϱ)1−rϵ−1, d∈[ρ(ϑ),ϑ]. | (3.23) |
Since ϵ<0, and 1−r≥ϵ (note that ((1−r)/ϵ)−1≤0), we have for d≤ϑ that
(d−ϱ)1−rϵ−1≥(ϑ−ϱ)1−rϵ−1=(ϑ−ϱ)r−1ϵ∗−r. | (3.24) |
From (3.23) and (3.24), we observe that
ϵ1−r((ϑ−ϱ)1−rϵ)∇≥(ϑ−ϱ)r−1ϵ∗−r. | (3.25) |
Integrating (3.25) over ϑ from ϱ to ρ(ξ), we have that
∫ρ(ξ)ϱ(ϑ−ϱ)r−1ϵ∗−r∇ϑ≤ϵ1−r∫ρ(ξ)ϱ((ϑ−ϱ)1−rϵ)∇∇ϑ=ϵ1−r(ρ(ξ)−ϱ)1−rϵ. | (3.26) |
Substituting (3.26) into (3.16), we observe that
∫∞ϱΞ−r(ξ)(ξ−ϱ)r−1ϵ∗(∫∞ξ(ρ(ϑ)−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)∇ξ≤(ϵ1−r)∫∞ϱ(ρ(ξ)−ϱ)ϵϖϵ(ξ)Ξ−r(ξ)(ξ−ϱρ(ξ)−ϱ)r∇ξ. | (3.27) |
Using (3.1), (3.27) then becomes
∫∞ϱΞ−r(ξ)(ξ−ϱ)r−1ϵ∗(∫∞ξ(ρ(ϑ)−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)∇ξ≤(ϵ1−r)Kr∫∞ϱ(ρ(ξ)−ϱ)ϵϖϵ(ξ)Ξ−r(ξ)∇ξ. | (3.28) |
From (3.11) and (3.28), we see that
∫∞ϱΞ−r(ξ)Fϵ(ξ)∇ξ≤(ϵ1−r)ϵKr∫∞ϱ(ρ(ξ)−ϱ)ϵϖϵ(ξ)Ξ−r(ξ)∇ξ, |
which is (3.2) with C=(ϵ/(1−r))ϵKr.
Remark 3.1. In Theorem 3.1, if T=R, and ϱ=0, then ρ(ξ)=ξ, and we observe that (3.1) holds with K=1. Then, we get (1.5), and for Ξ(ξ)=ξ, we get (1.3).
Corollary 3.1. If T=N0, ϱ=0, and ϖ, Ξ are positive sequences such that τ/Ξ(τ) is nondecreasing, then
∞∑τ=1Ξ−r(τ)(∞∑k=τ+1ϖ(k))ϵ≤C∞∑τ=2(τ−1)ϵΞ−r(τ)ϖϵ(τ), |
where
C={2r−1ϵ∗(ϵ1−r)ϵ, 1−r≤ϵ;2r(ϵ1−r)ϵ, 1−r≥ϵ. |
Here, we used that for ρ(τ)>ϱ, we have for τ≥2, and
ρ(τ)−ϱτ−ϱ=τ−1τ=1−1τ≥12 |
and thus inequality (3.1) holds with K=2.
Theorem 3.2. Let ϱ∈T, ϵ<0, 0≤r<1, and ϖ, Ξ∈Cld([ϱ,∞)T,R+) where (ϑ−ϱ)/Ξ(ϑ) is nonincreasing. If (3.1) holds, then
∫∞ϱΞ−r(ξ)Ωϵ(ξ)∇ξ≤D∫∞ϱ(ρ(ξ)−ϱ)ϵΞ−r(ξ)ϖϵ(ξ)∇ξ, | (3.29) |
where Ω(ξ)=∫ξϱϖ(ϑ)∇ϑ and
D={(ϵr−1)ϵKr−1ϵ, (r−1)/ϵ≥1;Kr(ϵr−1)ϵ, (r−1)/ϵ≤1. |
Proof. To establish this theorem, we have two cases:
Case 1: For (r−1)/ϵ≥1.
Note that
Ω(ξ)=∫ξϱϖ(ϑ)∇ϑ=∫ξϱ(ϑ−ϱ)r−ϵ−1ϵϵ∗(ϑ−ϱ)1+ϵ−rϵϵ∗ϖ(ϑ)∇ϑ, | (3.30) |
where ϵ∗=ϵ/(ϵ−1). Applying Lemma 2.4 to ∫ξϱ(ϑ−ϱ)r−ϵ−1ϵϵ∗(ϑ−ϱ)1+ϵ−rϵϵ∗ϖ(ϑ)∇ϑ, with
ϵ<0, ϵ∗=ϵ/(ϵ−1), ϕ(ϑ)=(ϑ−ϱ)r−ϵ−1ϵϵ∗ and ω(ϑ)=(ϑ−ϱ)1+ϵ−rϵϵ∗ϖ(ϑ), |
we get
∫ξϱ(ϑ−ϱ)r−ϵ−1ϵϵ∗(ϑ−ϱ)1+ϵ−rϵϵ∗ϖ(ϑ)∇ϑ≥(∫ξϱ(ϑ−ϱ)r−ϵ−1ϵ∇ϑ)1ϵ∗(∫ξϱ(ϑ−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)1ϵ. | (3.31) |
From (3.30), and (3.31), we see that
Ω(ξ)≥(∫ξϱ(ϑ−ϱ)r−ϵ−1ϵ∇ϑ)1ϵ∗(∫ξϱ(ϑ−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)1ϵ. | (3.32) |
Applying (2.1) to (ϑ−ϱ)r−1ϵ, we observe that
ϵr−1[(ϑ−ϱ)r−1ϵ]∇=(d−ϱ)r−ϵ−1ϵ, | (3.33) |
where d∈[ρ(ϑ),ϑ]. Since d≤ϑ, and (r−1)/ϵ≥1, we have from (3.33) that
ϵr−1[(ϑ−ϱ)r−1ϵ]∇≤(ϑ−ϱ)r−ϵ−1ϵ. | (3.34) |
By integrating (3.34) over ϑ from ϱ to ξ, we get
∫ξϱ(ϑ−ϱ)r−ϵ−1ϵ∇ϑ≥ϵr−1∫ξϱ[(ϑ−ϱ)r−1ϵ]∇∇ϑ=ϵr−1(ξ−ϱ)r−1ϵ. | (3.35) |
Substituting (3.35) into (3.32), since ϵ∗>0, we observe that
Ω(ξ)≥(ϵr−1)1ϵ∗(ξ−ϱ)r−1ϵϵ∗(∫ξϱ(ϑ−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)1ϵ |
and then we have for ϵ<0, that
Ωϵ(ξ)≤(ϵr−1)ϵ−1(ξ−ϱ)r−1ϵ∗∫ξϱ(ϑ−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ. | (3.36) |
Multiplying (3.36) with Ξ−r(ξ) and then integrating over ξ from ϱ to ∞, we see that
∫∞ϱΞ−r(ξ)Ωϵ(ξ)∇ξ≤(ϵr−1)ϵ−1∫∞ϱ(ξ−ϱ)r−1ϵ∗Ξ−r(ξ)(∫ξϱ(ϑ−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)∇ξ. | (3.37) |
Applying (2.2) to
∫∞ϱ(ξ−ϱ)r−1ϵ∗Ξ−r(ξ)(∫ξϱ(ϑ−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)∇ξ, |
with
u3(ξ)=∫ξϱ(ϑ−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ and v∇3(ξ)=(ξ−ϱ)r−1ϵ∗Ξ−r(ξ), |
we get
∫∞ϱ(ξ−ϱ)r−1ϵ∗Ξ−r(ξ)(∫ξϱ(ϑ−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)∇ξ=v3(ξ)(∫ξϱ(ϑ−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)|∞ϱ−∫∞ϱvρ3(ξ)(ξ−ϱ)1+ϵ−rϵ∗ϖϵ(ξ)∇ξ, | (3.38) |
where
v3(ξ)=−∫∞ξ(ϑ−ϱ)r−1ϵ∗Ξ−r(ϑ)∇ϑ. |
Since limξ→∞v3(ξ)=0, we have from (3.38) that
∫∞ϱ(ξ−ϱ)r−1ϵ∗Ξ−r(ξ)(∫ξϱ(ϑ−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)∇ξ=∫∞ϱ(ξ−ϱ)1+ϵ−rϵ∗ϖϵ(ξ)(∫∞ρ(ξ)(ϑ−ϱ)r−1ϵ∗Ξ−r(ϑ)∇ϑ)∇ξ=∫∞ϱ(ξ−ϱ)1+ϵ−rϵ∗ϖϵ(ξ)(∫∞ρ(ξ)(ϑ−ϱΞ(ϑ))r(ϑ−ϱ)r−1ϵ∗−r∇ϑ)∇ξ. | (3.39) |
Note that
∫∞ρ(ξ)(ϑ−ϱΞ(ϑ))r(ϑ−ϱ)r−1ϵ∗−r∇ϑ=∫ξρ(ξ)(ϑ−ϱΞ(ϑ))r(ϑ−ϱ)r−1ϵ∗−r∇ϑ+∫∞ξ(ϑ−ϱΞ(ϑ))r(ϑ−ϱ)r−1ϵ∗−r∇ϑ=ν(ξ)(ξ−ϱΞ(ξ))r(ξ−ϱ)r−1ϵ∗−r+∫∞ξ(ϑ−ϱΞ(ϑ))r(ϑ−ϱ)r−1ϵ∗−r∇ϑ. | (3.40) |
Since (ϑ−ϱ)/Ξ(ϑ) is nonincreasing, 0≤r<1, and ϑ≥ξ, we observe that
∫∞ξ(ϑ−ϱΞ(ϑ))r(ϑ−ϱ)r−1ϵ∗−r∇ϑ≤(ξ−ϱΞ(ξ))r∫∞ξ(ϑ−ϱ)r−1ϵ∗−r∇ϑ |
and then we have from (3.40) that
∫∞ρ(ξ)(ϑ−ϱΞ(ϑ))r(ϑ−ϱ)r−1ϵ∗−r∇ϑ≤ν(ξ)(ξ−ϱΞ(ξ))r(ξ−ϱ)r−1ϵ∗−r+(ξ−ϱΞ(ξ))r∫∞ξ(ϑ−ϱ)r−1ϵ∗−r∇ϑ=(ξ−ϱΞ(ξ))r[∫ξρ(ξ)(ϑ−ϱ)r−1ϵ∗−r∇ϑ+∫∞ξ(ϑ−ϱ)r−1ϵ∗−r∇ϑ]=(ξ−ϱΞ(ξ))r∫∞ρ(ξ)(ϑ−ϱ)r−1ϵ∗−r∇ϑ. | (3.41) |
Substituting (3.41) into (3.39), we observe that
∫∞ϱ(ξ−ϱ)r−1ϵ∗Ξ−r(ξ)(∫ξϱ(ϑ−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)∇ξ≤∫∞ϱ(ξ−ϱ)1+ϵ−rϵ∗ϖϵ(ξ)(ξ−ϱΞ(ξ))r(∫∞ρ(ξ)(ϑ−ϱ)r−1ϵ∗−r∇ϑ)∇ξ. | (3.42) |
Using (3.23), since (1−r)/ϵ<0 and d≤ϑ, we have that
ϵ1−r[(ϑ−ϱ)1−rϵ]∇≥(ϑ−ϱ)1−rϵ−1=(ϑ−ϱ)r−1ϵ∗−r |
and then
∫∞ρ(ξ)(ϑ−ϱ)r−1ϵ∗−r∇ϑ≤ϵ1−r∫∞ρ(ξ)[(ϑ−ϱ)1−rϵ]∇∇ϑ=ϵr−1(ρ(ξ)−ϱ)1−rϵ. | (3.43) |
Substituting (3.43) into (3.42), and then using (3.1), we observe that
∫∞ϱ(ξ−ϱ)r−1ϵ∗Ξ−r(ξ)(∫ξϱ(ϑ−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)∇ξ≤ϵr−1∫∞ϱ(ξ−ϱρ(ξ)−ϱ)r−1ϵ(ξ−ϱ)ϵΞ−r(ξ)ϖϵ(ξ)∇ξ≤ϵr−1Kr−1ϵ∫∞ϱ(ξ−ϱ)ϵΞ−r(ξ)ϖϵ(ξ)∇ξ. | (3.44) |
Substituting (3.44) into (3.37), we see that
∫∞ϱΞ−r(ξ)Ωϵ(ξ)∇ξ≤(ϵr−1)ϵKr−1ϵ∫∞ϱ(ξ−ϱ)ϵΞ−r(ξ)ϖϵ(ξ)∇ξ≤(ϵr−1)ϵKr−1ϵ∫∞ϱ(ρ(ξ)−ϱ)ϵΞ−r(ξ)ϖϵ(ξ)∇ξ, |
which is (3.29) with D=(ϵ/(r−1))ϵKr−1ϵ.
Case 2: For (r−1)/ϵ≤1.
Note that
Ω(ξ)=∫ξϱϖ(ϑ)∇ϑ=∫ξϱ(ρ(ϑ)−ϱ)r−ϵ−1ϵϵ∗(ρ(ϑ)−ϱ)1+ϵ−rϵϵ∗ϖ(ϑ)∇ϑ. | (3.45) |
Applying Lemma 2.4 to the term
∫ξϱ(ρ(ϑ)−ϱ)r−ϵ−1ϵϵ∗(ρ(ϑ)−ϱ)1+ϵ−rϵϵ∗ϖ(ϑ)∇ϑ, |
with
ϵ<0, ϵ∗=ϵ/(ϵ−1), ϕ(ϑ)=(ρ(ϑ)−ϱ)r−ϵ−1ϵϵ∗ and ω(ϑ)=(ρ(ϑ)−ϱ)1+ϵ−rϵϵ∗ϖ(ϑ), |
we get
∫ξϱ(ρ(ϑ)−ϱ)r−ϵ−1ϵϵ∗(ρ(ϑ)−ϱ)1+ϵ−rϵϵ∗ϖ(ϑ)∇ϑ≥(∫ξϱ(ρ(ϑ)−ϱ)r−ϵ−1ϵ∇ϑ)1ϵ∗(∫ξϱ(ρ(ϑ)−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)1ϵ. | (3.46) |
From (3.45), and (3.46), we see that
Ω(ξ)≥(∫ξϱ(ρ(ϑ)−ϱ)r−ϵ−1ϵ∇ϑ)1ϵ∗(∫ξϱ(ρ(ϑ)−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)1ϵ. | (3.47) |
Using (3.5), since d≥ρ(ϑ), and 0<(r−1)/ϵ≤1, we have that
ϵr−1[(ϑ−ϱ)r−1ϵ]∇≤(ρ(ϑ)−ϱ)r−ϵ−1ϵ |
and then
∫ξϱ(ρ(ϑ)−ϱ)r−ϵ−1ϵ∇ϑ≥ϵr−1∫ξϱ[(ϑ−ϱ)r−1ϵ]∇∇ϑ=ϵr−1(ξ−ϱ)r−1ϵ. | (3.48) |
Substituting (3.48) into (3.47), we see that
Ω(ξ)≥(ϵr−1)1ϵ∗(ξ−ϱ)r−1ϵϵ∗(∫ξϱ(ρ(ϑ)−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)1ϵ |
and then (note ϵ<0)
Ωϵ(ξ)≤(ϵr−1)ϵ−1(ξ−ϱ)r−1ϵ∗∫ξϱ(ρ(ϑ)−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ. | (3.49) |
Multiplying (3.49) with Ξ−r(ξ) and then integrating over ξ from ϱ to ∞, we observe that
∫∞ϱΞ−r(ξ)Ωϵ(ξ)∇ξ≤(ϵr−1)ϵ−1∫∞ϱ(ξ−ϱ)r−1ϵ∗Ξ−r(ξ)(∫ξϱ(ρ(ϑ)−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)∇ξ. | (3.50) |
Applying (2.2) to
∫∞ϱ(ξ−ϱ)r−1ϵ∗Ξ−r(ξ)(∫ξϱ(ρ(ϑ)−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)∇ξ |
with
u4(ξ)=∫ξϱ(ρ(ϑ)−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ and v∇4(ξ)=(ξ−ϱ)r−1ϵ∗Ξ−r(ξ), |
we see that
∫∞ϱ(ξ−ϱ)r−1ϵ∗Ξ−r(ξ)(∫ξϱ(ρ(ϑ)−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)∇ξ=v4(ξ)(∫ξϱ(ρ(ϑ)−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)|∞ϱ−∫∞ϱvρ4(ξ)(ρ(ξ)−ϱ)1+ϵ−rϵ∗ϖϵ(ξ)∇ξ, | (3.51) |
where
v4(ξ)=−∫∞ξ(ϑ−ϱ)r−1ϵ∗Ξ−r(ϑ)∇ϑ. |
Since limξ→∞v4(ξ)=0, we have from (3.51) that
∫∞ϱ(ξ−ϱ)r−1ϵ∗Ξ−r(ξ)(∫ξϱ(ρ(ϑ)−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)∇ξ=∫∞ϱ(∫∞ρ(ξ)(ϑ−ϱ)r−1ϵ∗Ξ−r(ϑ)∇ϑ)(ρ(ξ)−ϱ)1+ϵ−rϵ∗ϖϵ(ξ)∇ξ=∫∞ϱ(ρ(ξ)−ϱ)1+ϵ−rϵ∗ϖϵ(ξ)(∫∞ρ(ξ)[ϑ−ϱΞ(ϑ)]r(ϑ−ϱ)r−1ϵ∗−r∇ϑ)∇ξ. | (3.52) |
Using (3.41) and (3.52), we observe that
∫∞ϱ(ξ−ϱ)r−1ϵ∗Ξ−r(ξ)(∫ξϱ(ρ(ϑ)−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)∇ξ≤∫∞ϱ(ρ(ξ)−ϱ)1+ϵ−rϵ∗ϖϵ(ξ)(ξ−ϱΞ(ξ))r(∫∞ρ(ξ)(ϑ−ϱ)r−1ϵ∗−r∇ϑ)∇ξ. | (3.53) |
Using (3.23), since (1−r)/ϵ<0 and d≤ϑ, we have that
ϵ1−r[(ϑ−ϱ)1−rϵ]∇≥(ϑ−ϱ)1−rϵ−1=(ϑ−ϱ)r−1ϵ∗−r |
and then
∫∞ρ(ξ)(ϑ−ϱ)r−1ϵ∗−r∇ϑ≤ϵ1−r∫∞ρ(ξ)[(ϑ−ϱ)1−rϵ]∇∇ϑ=ϵr−1(ρ(ξ)−ϱ)1−rϵ. | (3.54) |
Substituting (3.54) into (3.53), and then using (3.1), we obtain
∫∞ϱ(ξ−ϱ)r−1ϵ∗Ξ−r(ξ)(∫ξϱ(ρ(ϑ)−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)∇ξ≤ϵr−1∫∞ϱ(ξ−ϱρ(ξ)−ϱ)rΞ−r(ξ)(ρ(ξ)−ϱ)ϵϖϵ(ξ)∇ξ≤ϵr−1Kr∫∞ϱΞ−r(ξ)(ρ(ξ)−ϱ)ϵϖϵ(ξ)∇ξ. | (3.55) |
Substituting (3.55) into (3.50), we observe that
∫∞ϱΞ−r(ξ)Ωϵ(ξ)∇ξ≤(ϵr−1)ϵKr∫∞ϱΞ−r(ξ)(ρ(ξ)−ϱ)ϵϖϵ(ξ)∇ξ, |
which is (3.29) with D=(ϵ/(r−1))ϵKr.
Remark 3.2. In Theorem 3.2, if T=R and ϱ=0, then ρ(ξ)=ξ and we see that (3.1) holds with K=1. Then, we get (1.6), and for Ξ(ξ)=ξ, we get (1.4).
Corollary 3.2. If T=N0, ϱ=0, and ϖ, Ξare positive sequences such that τ/Ξ(τ) is nonincreasing, then
∞∑τ=1Ξ−r(τ)[τ∑k=1ϖ(k)]ϵ≤D∗∞∑τ=1(τ−1)ϵΞ−r(τ)ϖϵ(τ), | (3.56) |
where
D∗={2r−1ϵ(ϵr−1)ϵ, (r−1)/ϵ≥1;2r(ϵr−1)ϵ, (r−1)/ϵ≤1. |
Here, inequality (3.1) holds with K=2.
Theorem 3.3. Assume that ϱ∈T, ϵ<0, r<0, and ϖ, Ξ∈Cld([ϱ,∞)T,R+) such that the function (ϑ−ϱ)/Ξ(ϑ) is nondecreasing. Then,
∫∞ϱΞ−r(ξ)Ωϵ(ξ)∇ξ≤E∫∞ϱ(ρ(ξ)−ϱ)ϵΞ−r(ξ)ϖϵ(ξ)∇ξ, | (3.57) |
where Ω(ξ)=∫ξϱϖ(ϑ)∇ϑ and
E={(ϵr−1)ϵ, (r−1)/ϵ≤1; (ϵr−1)ϵKr−1ϵ, (r−1)/ϵ≥1. |
Proof. To prove this theorem, we have two cases:
Case 1: For (r−1)/ϵ≤1.
Note that
Ω(ξ)=∫ξϱϖ(ϑ)∇ϑ=∫ξϱ(ρ(ϑ)−ϱ)r−ϵ−1ϵϵ∗(ρ(ϑ)−ϱ)1+ϵ−rϵϵ∗ϖ(ϑ)∇ϑ, | (3.58) |
where ϵ∗=ϵ/(ϵ−1). Applying Lemma 2.4 to ∫ξϱ(ρ(ϑ)−ϱ)r−ϵ−1ϵϵ∗(ρ(ϑ)−ϱ)1+ϵ−rϵϵ∗ϖ(ϑ)∇ϑ with
ϵ<0, ϵ∗=ϵ/(ϵ−1), ϕ(ϑ)=(ρ(ϑ)−ϱ)r−ϵ−1ϵϵ∗, and ω(ϑ)=(ρ(ϑ)−ϱ)1+ϵ−rϵϵ∗ϖ(ϑ), |
we get
∫ξϱ(ρ(ϑ)−ϱ)r−ϵ−1ϵϵ∗(ρ(ϑ)−ϱ)1+ϵ−rϵϵ∗ϖ(ϑ)∇ϑ≥(∫ξϱ(ρ(ϑ)−ϱ)r−ϵ−1ϵ∇ϑ)1ϵ∗(∫ξϱ(ρ(ϑ)−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)1ϵ. | (3.59) |
From (3.58) and (3.59), we see that
Ω(ξ)≥(∫ξϱ(ρ(ϑ)−ϱ)r−ϵ−1ϵ∇ϑ)1ϵ∗(∫ξϱ(ρ(ϑ)−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)1ϵ. | (3.60) |
Using (3.5), since d≥ρ(ϑ), and 0<(r−1)/ϵ≤1, we have that
ϵr−1[(ϑ−ϱ)r−1ϵ]∇≤(ρ(ϑ)−ϱ)r−ϵ−1ϵ |
and then
∫ξϱ(ρ(ϑ)−ϱ)r−ϵ−1ϵ∇ϑ≥ϵr−1∫ξϱ[(ϑ−ϱ)r−1ϵ]∇∇ϑ=ϵr−1(ξ−ϱ)r−1ϵ. | (3.61) |
Substituting (3.61) into (3.60), since ϵ∗>0, we see that
Ω(ξ)≥(ϵr−1)1ϵ∗(ξ−ϱ)r−1ϵϵ∗(∫ξϱ(ρ(ϑ)−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)1ϵ |
and then (note ϵ<0)
Ωϵ(ξ)≤(ϵr−1)ϵ−1(ξ−ϱ)r−1ϵ∗∫ξϱ(ρ(ϑ)−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ. | (3.62) |
Multiplying (3.62) with Ξ−r(ξ) and then integrating over ξ from ϱ to ∞, we observe that
∫∞ϱΞ−r(ξ)Ωϵ(ξ)∇ξ≤(ϵr−1)ϵ−1∫∞ϱ(ξ−ϱ)r−1ϵ∗Ξ−r(ξ)(∫ξϱ(ρ(ϑ)−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)∇ξ. | (3.63) |
Applying (2.2) to ∫∞ϱ(ξ−ϱ)r−1ϵ∗Ξ−r(ξ)(∫ξϱ(ρ(ϑ)−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)∇ξ, with
u5(ξ)=∫ξϱ(ρ(ϑ)−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ and v∇5(ξ)=(ξ−ϱ)r−1ϵ∗Ξ−r(ξ), |
we see that
∫∞ϱ(ξ−ϱ)r−1ϵ∗Ξ−r(ξ)(∫ξϱ(ρ(ϑ)−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)∇ξ=v5(ξ)(∫ξϱ(ρ(ϑ)−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)|∞ϱ−∫∞ϱvρ5(ξ)(ρ(ξ)−ϱ)1+ϵ−rϵ∗ϖϵ(ξ)∇ξ, | (3.64) |
where
v5(ξ)=−∫∞ξ(ϑ−ϱ)r−1ϵ∗Ξ−r(ϑ)∇ϑ. |
Since limξ→∞v5(ξ)=0, we have from (3.64) that
∫∞ϱ(ξ−ϱ)r−1ϵ∗Ξ−r(ξ)(∫ξϱ(ρ(ϑ)−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)∇ξ=∫∞ϱ(∫∞ρ(ξ)(ϑ−ϱ)r−1ϵ∗Ξ−r(ϑ)∇ϑ)(ρ(ξ)−ϱ)1+ϵ−rϵ∗ϖϵ(ξ)∇ξ=∫∞ϱ(∫∞ρ(ξ)[ϑ−ϱΞ(ϑ)]r(ϑ−ϱ)r−1ϵ∗−r∇ϑ)(ρ(ξ)−ϱ)1+ϵ−rϵ∗ϖϵ(ξ)∇ξ. | (3.65) |
Since
∫∞ρ(ξ)(ϑ−ϱΞ(ϑ))r(ϑ−ϱ)r−1ϵ∗−r∇ϑ=∫ξρ(ξ)(ϑ−ϱΞ(ϑ))r(ϑ−ϱ)r−1ϵ∗−r∇ϑ+∫∞ξ(ϑ−ϱΞ(ϑ))r(ϑ−ϱ)r−1ϵ∗−r∇ϑ=ν(ξ)(ξ−ϱΞ(ξ))r(ξ−ϱ)r−1ϵ∗−r+∫∞ξ(ϑ−ϱΞ(ϑ))r(ϑ−ϱ)r−1ϵ∗−r∇ϑ. | (3.66) |
Since (ϑ−ϱ)/Ξ(ϑ) is nondecreasing, r<0, and ϑ≥ξ, we see that
∫∞ξ(ϑ−ϱΞ(ϑ))r(ϑ−ϱ)r−1ϵ∗−r∇ϑ≤(ξ−ϱΞ(ξ))r∫∞ξ(ϑ−ϱ)r−1ϵ∗−r∇ϑ. |
Substituting the last inequality into (3.66), we get
∫∞ρ(ξ)(ϑ−ϱΞ(ϑ))r(ϑ−ϱ)r−1ϵ∗−r∇ϑ≤(ξ−ϱΞ(ξ))r[ν(ξ)(ξ−ϱ)r−1ϵ∗−r+∫∞ξ(ϑ−ϱ)r−1ϵ∗−r∇ϑ]=(ξ−ϱΞ(ξ))r[∫ξρ(ξ)(ϑ−ϱ)r−1ϵ∗−r∇ϑ+∫∞ξ(ϑ−ϱ)r−1ϵ∗−r∇ϑ]=(ξ−ϱΞ(ξ))r∫∞ρ(ξ)(ϑ−ϱ)r−1ϵ∗−r∇ϑ. | (3.67) |
Substituting (3.67) into (3.65), we observe that
∫∞ϱ(ξ−ϱ)r−1ϵ∗Ξ−r(ξ)(∫ξϱ(ρ(ϑ)−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)∇ξ≤∫∞ϱ(∫∞ρ(ξ)(ϑ−ϱ)r−1ϵ∗−r∇ϑ)(ξ−ϱ)r(ρ(ξ)−ϱ)1+ϵ−rϵ∗Ξ−r(ξ)ϖϵ(ξ)∇ξ. | (3.68) |
Using (3.23), since (1−r)/ϵ<0, and d≤ϑ, we have that
ϵ1−r[(ϑ−ϱ)1−rϵ]∇≥(ϑ−ϱ)1−rϵ−1=(ϑ−ϱ)r−1ϵ∗−r |
and then
∫∞ρ(ξ)(ϑ−ϱ)r−1ϵ∗−r∇ϑ≤ϵ1−r∫∞ρ(ξ)[(ϑ−ϱ)1−rϵ]∇∇ϑ=ϵr−1(ρ(ξ)−ϱ)1−rϵ. | (3.69) |
Substituting (3.69) into (3.68), we obtain
∫∞ϱ(ξ−ϱ)r−1ϵ∗Ξ−r(ξ)(∫ξϱ(ρ(ϑ)−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)∇ξ≤ϵr−1∫∞ϱ(ξ−ϱρ(ξ)−ϱ)r(ρ(ξ)−ϱ)ϵΞ−r(ξ)ϖϵ(ξ)∇ξ. | (3.70) |
Since r<0, and ξ≥ρ(ξ), inequality (3.70) becomes
∫∞ϱ(ξ−ϱ)r−1ϵ∗Ξ−r(ξ)(∫ξϱ(ρ(ϑ)−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)∇ξ≤ϵr−1∫∞ϱ(ρ(ξ)−ϱ)ϵΞ−r(ξ)ϖϵ(ξ)∇ξ. | (3.71) |
Substituting (3.71) into (3.63), we observe that
∫∞ϱΞ−r(ξ)Ωϵ(ξ)∇ξ≤(ϵr−1)ϵ∫∞ϱ(ρ(ξ)−ϱ)ϵΞ−r(ξ)ϖϵ(ξ)∇ξ, |
which is (3.57) with E=(ϵ/(r−1))ϵ.
Case 2: For (r−1)/ϵ≥1.
Note that
Ω(ξ)=∫ξϱϖ(ϑ)∇ϑ=∫ξϱ(ϑ−ϱ)r−ϵ−1ϵϵ∗(ϑ−ϱ)1+ϵ−rϵϵ∗ϖ(ϑ)∇ϑ. | (3.72) |
Applying Lemma 2.4 to ∫ξϱ(ϑ−ϱ)r−ϵ−1ϵϵ∗(ϑ−ϱ)1+ϵ−rϵϵ∗ϖ(ϑ)∇ϑ, with
ϵ<0, ϵ∗=ϵ/(ϵ−1), ϕ(ϑ)=(ϑ−ϱ)r−ϵ−1ϵϵ∗ and ω(ϑ)=(ϑ−ϱ)1+ϵ−rϵϵ∗ϖ(ϑ), |
we get
∫ξϱ(ϑ−ϱ)r−ϵ−1ϵϵ∗(ϑ−ϱ)1+ϵ−rϵϵ∗ϖ(ϑ)∇ϑ≥(∫ξϱ(ϑ−ϱ)r−ϵ−1ϵ∇ϑ)1ϵ∗(∫ξϱ(ϑ−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)1ϵ. | (3.73) |
From (3.72) and (3.73), we see that
Ω(ξ)≥(∫ξϱ(ϑ−ϱ)r−ϵ−1ϵ∇ϑ)1ϵ∗(∫ξϱ(ϑ−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)1ϵ. | (3.74) |
Using (3.5), since d≤ϑ and (r−1)/ϵ≥1, we have that
ϵr−1[(ϑ−ϱ)r−1ϵ]∇≤(ϑ−ϱ)r−ϵ−1ϵ. | (3.75) |
By integrating (3.75) over ϑ from ϱ to ξ, we get
∫ξϱ(ϑ−ϱ)r−ϵ−1ϵ∇ϑ≥ϵr−1∫ξϱ[(ϑ−ϱ)r−1ϵ]∇∇ϑ=ϵr−1(ξ−ϱ)r−1ϵ. | (3.76) |
Substituting (3.76) into (3.74), we observe that
Ω(ξ)≥(ϵr−1)1ϵ∗(ξ−ϱ)r−1ϵϵ∗(∫ξϱ(ϑ−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)1ϵ |
and then we have for ϵ<0 that
Ωϵ(ξ)≤(ϵr−1)ϵ−1(ξ−ϱ)r−1ϵ∗∫ξϱ(ϑ−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ. | (3.77) |
Multiplying (3.77) with Ξ−r(ξ) and then integrating over ξ from ϱ to ∞, we see that
∫∞ϱΞ−r(ξ)Ωϵ(ξ)∇ξ≤(ϵr−1)ϵ−1∫∞ϱ(ξ−ϱ)r−1ϵ∗Ξ−r(ξ)(∫ξϱ(ϑ−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)∇ξ. | (3.78) |
Applying (2.2) to ∫∞ϱ(ξ−ϱ)r−1ϵ∗Ξ−r(ξ)(∫ξϱ(ϑ−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)∇ξ, with
u6(ξ)=∫ξϱ(ϑ−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ and v∇6(ξ)=(ξ−ϱ)r−1ϵ∗Ξ−r(ξ), |
we get
∫∞ϱ(ξ−ϱ)r−1ϵ∗Ξ−r(ξ)(∫ξϱ(ϑ−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)∇ξ=v6(ξ)(∫ξϱ(ϑ−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)|∞ϱ−∫∞ϱvρ6(ξ)(ξ−ϱ)1+ϵ−rϵ∗ϖϵ(ξ)∇ξ, | (3.79) |
where
v6(ξ)=−∫∞ξ(ϑ−ϱ)r−1ϵ∗Ξ−r(ϑ)∇ϑ. |
Since limξ→∞v6(ξ)=0, we have from (3.79) that
∫∞ϱ(ξ−ϱ)r−1ϵ∗Ξ−r(ξ)(∫ξϱ(ϑ−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)∇ξ=∫∞ϱ(∫∞ρ(ξ)(ϑ−ϱ)r−1ϵ∗Ξ−r(ϑ)∇ϑ)(ξ−ϱ)1+ϵ−rϵ∗ϖϵ(ξ)∇ξ=∫∞ϱ(∫∞ρ(ξ)(ϑ−ϱ)r−1ϵ∗−r(ϑ−ϱΞ(ϑ))r∇ϑ)(ξ−ϱ)1+ϵ−rϵ∗ϖϵ(ξ)∇ξ. | (3.80) |
Since (ϑ−ϱ)/Ξ(ϑ) is nondecreasing and r<0, we have for ϑ≥ξ that
∫∞ξ(ϑ−ϱΞ(ϑ))r(ϑ−ϱ)r−1ϵ∗−r∇ϑ≤(ξ−ϱΞ(ξ))r∫∞ξ(ϑ−ϱ)r−1ϵ∗−r∇ϑ |
and then
∫∞ρ(ξ)(ϑ−ϱΞ(ϑ))r(ϑ−ϱ)r−1ϵ∗−r∇ϑ=∫ξρ(ξ)(ϑ−ϱΞ(ϑ))r(ϑ−ϱ)r−1ϵ∗−r∇ϑ+∫∞ξ(ϑ−ϱΞ(ϑ))r(ϑ−ϱ)r−1ϵ∗−r∇ϑ≤ν(ξ)(ξ−ϱΞ(ξ))r(ξ−ϱ)r−1ϵ∗−r+(ξ−ϱΞ(ξ))r∫∞ξ(ϑ−ϱ)r−1ϵ∗−r∇ϑ=(ξ−ϱΞ(ξ))r∫∞ρ(ξ)(ϑ−ϱ)r−1ϵ∗−r∇ϑ. | (3.81) |
Substituting (3.81) into (3.80), we see that
∫∞ϱ(ξ−ϱ)r−1ϵ∗Ξ−r(ξ)(∫ξϱ(ϑ−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)∇ξ≤∫∞ϱ(∫∞ρ(ξ)(ϑ−ϱ)r−1ϵ∗−r∇ϑ)(ξ−ϱ)1+ϵ−rϵ∗+rΞ−r(ξ)ϖϵ(ξ)∇ξ. | (3.82) |
Using (3.23), since (1−r)/ϵ<0, and d≤ϑ, we have that
ϵ1−r[(ϑ−ϱ)1−rϵ]∇≥(ϑ−ϱ)1−rϵ−1=(ϑ−ϱ)r−1ϵ∗−r |
and then
∫∞ρ(ξ)(ϑ−ϱ)r−1ϵ∗−r∇ϑ≤ϵ1−r∫∞ρ(ξ)[(ϑ−ϱ)1−rϵ]∇∇ϑ=ϵr−1(ρ(ξ)−ϱ)1−rϵ. | (3.83) |
Substituting (3.83) into (3.82), we observe that
∫∞ϱ(ξ−ϱ)r−1ϵ∗Ξ−r(ξ)(∫ξϱ(ϑ−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)∇ξ≤ϵr−1∫∞ϱ(ξ−ϱρ(ξ)−ϱ)r−1ϵ(ξ−ϱ)ϵΞ−r(ξ)ϖϵ(ξ)∇ξ |
and then we have from (3.1) that
∫∞ϱ(ξ−ϱ)r−1ϵ∗Ξ−r(ξ)(∫ξϱ(ϑ−ϱ)1+ϵ−rϵ∗ϖϵ(ϑ)∇ϑ)∇ξ≤ϵr−1Kr−1ϵ∫∞ϱ(ξ−ϱ)ϵΞ−r(ξ)ϖϵ(ξ)∇ξ. | (3.84) |
Substituting (3.84) into (3.78), we see that
∫∞ϱΞ−r(ξ)Ωϵ(ξ)∇ξ≤(ϵr−1)ϵKr−1ϵ∫∞ϱ(ξ−ϱ)ϵΞ−r(ξ)ϖϵ(ξ)∇ξ≤(ϵr−1)ϵKr−1ϵ∫∞ϱ(ρ(ξ)−ϱ)ϵΞ−r(ξ)ϖϵ(ξ)∇ξ, |
which is (3.57) with E=(ϵ/(r−1))ϵKr−1ϵ.
Remark 3.3. In Theorem 3.3, if T=R and ϱ=0, then ρ(ξ)=ξ and we see that (3.1) holds with K=1, and thus we get (1.7). In addition, if Ξ(ξ)=ξ, then we get (1.4).
Corollary 3.3. If T=N0, ϱ=0, and ϖ, Ξare positive sequences such that τ/Ξ(τ) is nondecreasing, then we see that (3.1) holds with K=2 and then
∞∑τ=1Ξ−r(τ)[τ∑k=1ϖ(k)]ϵ≤E∞∑τ=1(τ−1)ϵΞ−r(τ)ϖϵ(τ), | (3.85) |
where
E={(ϵr−1)ϵ, (r−1)/ϵ≤1; 2r−1ϵ(ϵr−1)ϵ, (r−1)/ϵ≥1. |
In this paper, we established some new generalizations of the continuous inequalities on nabla calculus time scales. These inequalities were proved by employing the reverse Hölder's inequality and the chain rule formula adapted to time scales.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number: ISP23-86.
The authors declare that they have no conflicts of interest.
[1] |
G. H. Hardy, Notes on a theorem of Hilbert, Math. Z., 6 (1920), 314–317. https://doi.org/10.1007/BF01199965 doi: 10.1007/BF01199965
![]() |
[2] | G. H. Hardy, Notes on some points in the integral calculus (LX), Mess. Math., 54 (1925), 150–156. |
[3] |
G. H. Hardy, J. E. Littlewood, Elementary theorems concerning power series with positive coefficents and moment constants of positive functions, J. Reine Angew. Math., 157 (1927), 141–158. https://doi.org/10.1515/crll.1927.157.141 doi: 10.1515/crll.1927.157.141
![]() |
[4] | Y. Bicheng, On a new Hardy type integral inequalities, Int. Math. Forum., 2 (2007), 3317–3322. |
[5] |
B. Benaissa, M. Z. Sarikaya, Generalization of some Hardy-type integral inequality with negative parameter, Bull. Transilv. Univ. Bras. III, 13 (2020), 69–76. https://doi.org/10.31926/but.mif.2020.13.62.1.6 doi: 10.31926/but.mif.2020.13.62.1.6
![]() |
[6] |
G. Al Nemer, A. I. Saied, A. M. Hassan, C. Cesarano, H. M. Rezk, M. Zakarya, On some new dynamic inequalities involving C-Monotonic functions on time scales, Axioms, 11 (2022), 644. https://doi.org/10.3390/axioms11110644 doi: 10.3390/axioms11110644
![]() |
[7] |
E. Awwad, A. I. Saied, Some new multidimensional Hardy-type inequalities with general kernels on time scales, J. Math. Inequal., 16 (2022), 393–412. https://doi.org/10.7153/jmi-2022-16-29 doi: 10.7153/jmi-2022-16-29
![]() |
[8] |
R. Bibi, M. Bohner, J. Pečarić, S. Varošanec, Minkowski and Beckenbach-Dresher inequalities and functionals on time scales, J. Math. Inequal., 7 (2013), 299–312. https://doi.org/10.7153/jmi-07-28 doi: 10.7153/jmi-07-28
![]() |
[9] |
J. A. Oguntuase, L. E. Persson, Time scales Hardy-type inequalities via superquadracity, Ann. Funct. Anal., 5 (2014), 61–73. https://doi.org/10.15352/afa/1396833503 doi: 10.15352/afa/1396833503
![]() |
[10] |
P. Řehak, Hardy inequality on time scales and its application to half-linear dynamic equations, J. Inequal. Appl., 2005 (2005), 495–507. https://doi.org/10.1155/JIA.2005.495 doi: 10.1155/JIA.2005.495
![]() |
[11] |
H. M. Rezk, A. I. Saied, G. AlNemer, M. Zakarya, On Hardy-Knopp type inequalities with Kernels via time scale calculus, J. Math., 2022 (2022), 7997299. https://doi.org/10.1155/2022/7997299 doi: 10.1155/2022/7997299
![]() |
[12] |
S. H. Saker, E. Awwad, A. I. Saied, Some new dynamic inequalities involving monotonic functions on time scales, J. Funct. Space., 2019 (2019), 7584836. https://doi.org/10.1155/2019/7584836 doi: 10.1155/2019/7584836
![]() |
[13] |
S. H. Saker, A. I. Saied, M. Krnić, Some new dynamic Hardy-type inequalities with kernels involving monotone functions, Racsam Rev. R. Acad. A, 114 (2020), 1–16. https://doi.org/10.1007/s13398-020-00876-6 doi: 10.1007/s13398-020-00876-6
![]() |
[14] |
S. H. Saker, A. I. Saied, M. Krnić, Some new weighted dynamic inequalities for Monotone functions involving Kernels, Mediterr. J. Math., 17 (2020), 1–18. https://doi.org/10.1007/s00009-020-1473-0 doi: 10.1007/s00009-020-1473-0
![]() |
[15] |
S. H. Saker, J. Alzabut, A. I. Saied, D. O'Regan, New characterizations of weights on dynamic inequalities involving a Hardy operator, J. Inequal. Appl., 2021 (2021), 1–24. https://doi.org/10.1186/s13660-021-02606-x doi: 10.1186/s13660-021-02606-x
![]() |
[16] |
S. H. Saker, A. I. Saied, D. R. Anderson, Some new characterizations of weights in dynamic inequalities involving monotonic functions, Qual. Theory Dyn. Syst., 20 (2021), 1–22. https://doi.org/10.1007/s12346-021-00489-3 doi: 10.1007/s12346-021-00489-3
![]() |
[17] |
M. Bohner, T. Li, Kamenev-type criteria for nonlinear damped dynamic equations, Sci. China Math., 58 (2015), 1445–1452. https://doi.org/10.1007/s11425-015-4974-8 doi: 10.1007/s11425-015-4974-8
![]() |
[18] |
M. J. Huntul, Identifying an unknown heat source term in the third-order pseudoparabolic equation from nonlocal integral observation, Int. Commun. Heat Mass, 128 (2021), 105550. https://doi.org/10.1016/j.icheatmasstransfer.2021.105550 doi: 10.1016/j.icheatmasstransfer.2021.105550
![]() |
[19] |
M. J. Huntul, I. Tekin, On an inverse problem for a nonlinear third order in time partial differential equation, Results Appl. Math., 15 (2022), 100314. https://doi.org/10.1016/j.rinam.2022.100314 doi: 10.1016/j.rinam.2022.100314
![]() |
[20] |
M. J. Huntul, M. Abbas, An inverse problem of fourth-order partial differential equation with nonlocal integral condition, Adv. Contin. Discrete Models, 2022 (2022), 1–27. https://doi.org/10.1186/s13662-022-03727-3 doi: 10.1186/s13662-022-03727-3
![]() |
[21] |
W. W. Mohammed, F. M. Al-Askar, C. Cesarano, On the dynamical behavior of solitary waves for coupled stochastic Korteweg-De Vries equations, Mathematics, 11 (2023), 3506. https://doi.org/10.3390/math11163506 doi: 10.3390/math11163506
![]() |
[22] |
W. W. Mohammed, F. M. Al-Askar, C. Cesarano, E. S. Aly, The soliton solutions of the stochastic shallow water wave equations in the sense of Beta-derivative, Mathematics, 11 (2023), 1338. https://doi.org/10.3390/math11061338 doi: 10.3390/math11061338
![]() |
[23] |
M. Alshammari, N. Iqbal, W. W. Mohammed, T. Botmart, The solution of fractional-order system of KdV equations with exponential-decay kernel, Results Phys., 38 (2022), 105615. https://doi.org/10.1016/j.rinp.2022.105615 doi: 10.1016/j.rinp.2022.105615
![]() |
[24] |
C. Zhang, T. Li, S. H. Saker, Oscillation of fourth-order delay differential equations, J. Math. Sci., 201 (2014), 296–309. https://doi.org/10.1007/s10958-014-1990-0 doi: 10.1007/s10958-014-1990-0
![]() |
[25] |
Y. Tian, Y. Yang, X. Ma, X. Su, Stability of discrete-time delayed systems via convex function-based summation inequality, Appl. Math. Lett., 2023 (2023), 108764. https://doi.org/10.1016/j.aml.2023.108764 doi: 10.1016/j.aml.2023.108764
![]() |
[26] |
Y. Tian, X. Su, C. Shen, X. Ma, Exponentially extended Dissipativity-based filtering of switched neural networks, Automatica, 161 (2024), 111465. https://doi.org/10.1016/j.automatica.2023.111465 doi: 10.1016/j.automatica.2023.111465
![]() |
[27] | M. Bohner, A. Peterson, Dynamic equations on time scales: An introduction with applications, Boston: Birkhäuser, 2001. |
[28] | D. Anderson, J. Bullock, L. Erbe, A. Peterson, H. Tran, Nabla dynamic equations on time scales, Panam. Math. J., 13 (2003), 1–47. |
[29] |
A. F. Güvenilir, B. Kaymakçalan, N. N. Pelen, Constantin's inequality for nabla and diamond-alpha derivative, J. Inequal. Appl., 2015 (2015), 1–17. https://doi.org/10.1186/s13660-015-0681-9 doi: 10.1186/s13660-015-0681-9
![]() |
[30] | R. P. Agarwal, D. O'Regan, S. H. Saker, Dynamic inequalities on time scales, New York: Springer Cham, 2014. https://doi.org/10.1007/978-3-319-11002-8 |
1. | Elkhateeb S. Aly, Ali M. Mahnashi, Abdullah A. Zaagan, I. Ibedou, A. I. Saied, Wael W. Mohammed, N-dimension for dynamic generalized inequalities of Hölder and Minkowski type on diamond alpha time scales, 2024, 9, 2473-6988, 9329, 10.3934/math.2024454 | |
2. | Elkhateeb S. Aly, A. I. Saied, I. Ibedou, Mohamed S. Algolam, Wael W. Mohammed, Some new generalizations of reversed Minkowski's inequality for several functions via time scales, 2024, 9, 2473-6988, 11156, 10.3934/math.2024547 | |
3. | Ahmed M. Ahmed, Ahmed I. Saied, Mohammed Zakarya, Amirah Ayidh I Al-Thaqfan, Maha Ali, Haytham M. Rezk, Advanced Hardy-type inequalities with negative parameters involving monotone functions in delta calculus on time scales, 2024, 9, 2473-6988, 31926, 10.3934/math.20241534 | |
4. | Martin Bohner, Irena Jadlovská, Ahmed I. Saied, Some New Hardy-Type Inequalities with Negative Parameters on Time Scales, 2025, 24, 1575-5460, 10.1007/s12346-025-01231-z |