Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Some dynamic Hardy-type inequalities with negative parameters on time scales nabla calculus

  • In this paper, we establish some new dynamic Hardy-type inequalities with negative parameters on time scales nabla calculus by applying the reverse H ölder's inequality, integration by parts, and chain rule on time scales nabla calculus. As special cases of our results (when T=R), we get the continuous analouges of inequalities proven by Benaissa and Sarikaya, and when T=N0, the results to the best of the authors' knowledge are essentially new.

    Citation: Elkhateeb S. Aly, Y. A. Madani, F. Gassem, A. I. Saied, H. M. Rezk, Wael W. Mohammed. Some dynamic Hardy-type inequalities with negative parameters on time scales nabla calculus[J]. AIMS Mathematics, 2024, 9(2): 5147-5170. doi: 10.3934/math.2024250

    Related Papers:

    [1] Haytham M. Rezk, Mohammed Zakarya, Amirah Ayidh I Al-Thaqfan, Maha Ali, Belal A. Glalah . Unveiling new reverse Hilbert-type dynamic inequalities within the framework of Delta calculus on time scales. AIMS Mathematics, 2025, 10(2): 2254-2276. doi: 10.3934/math.2025104
    [2] Ahmed M. Ahmed, Ahmed I. Saied, Mohammed Zakarya, Amirah Ayidh I Al-Thaqfan, Maha Ali, Haytham M. Rezk . Advanced Hardy-type inequalities with negative parameters involving monotone functions in delta calculus on time scales. AIMS Mathematics, 2024, 9(11): 31926-31946. doi: 10.3934/math.20241534
    [3] Ahmed A. El-Deeb, Samer D. Makharesh, Sameh S. Askar, Dumitru Baleanu . Bennett-Leindler nabla type inequalities via conformable fractional derivatives on time scales. AIMS Mathematics, 2022, 7(8): 14099-14116. doi: 10.3934/math.2022777
    [4] Marwa M. Ahmed, Wael S. Hassanein, Marwa Sh. Elsayed, Dumitru Baleanu, Ahmed A. El-Deeb . On Hardy-Hilbert-type inequalities with α-fractional derivatives. AIMS Mathematics, 2023, 8(9): 22097-22111. doi: 10.3934/math.20231126
    [5] M. Zakarya, Ghada AlNemer, A. I. Saied, H. M. Rezk . Novel generalized inequalities involving a general Hardy operator with multiple variables and general kernels on time scales. AIMS Mathematics, 2024, 9(8): 21414-21432. doi: 10.3934/math.20241040
    [6] Ahmed A. El-Deeb, Dumitru Baleanu, Nehad Ali Shah, Ahmed Abdeldaim . On some dynamic inequalities of Hilbert's-type on time scales. AIMS Mathematics, 2023, 8(2): 3378-3402. doi: 10.3934/math.2023174
    [7] Elkhateeb S. Aly, A. I. Saied, I. Ibedou, Mohamed S. Algolam, Wael W. Mohammed . Some new generalizations of reversed Minkowski's inequality for several functions via time scales. AIMS Mathematics, 2024, 9(5): 11156-11179. doi: 10.3934/math.2024547
    [8] Xianyong Huang, Shanhe Wu, Bicheng Yang . A Hardy-Hilbert-type inequality involving modified weight coefficients and partial sums. AIMS Mathematics, 2022, 7(4): 6294-6310. doi: 10.3934/math.2022350
    [9] Suriyakamol Thongjob, Kamsing Nonlaopon, Sortiris K. Ntouyas . Some (p, q)-Hardy type inequalities for (p, q)-integrable functions. AIMS Mathematics, 2021, 6(1): 77-89. doi: 10.3934/math.2021006
    [10] Limin Yang, Ruiyun Yang . Some new Hardy-Hilbert-type inequalities with multiparameters. AIMS Mathematics, 2022, 7(1): 840-854. doi: 10.3934/math.2022050
  • In this paper, we establish some new dynamic Hardy-type inequalities with negative parameters on time scales nabla calculus by applying the reverse H ölder's inequality, integration by parts, and chain rule on time scales nabla calculus. As special cases of our results (when T=R), we get the continuous analouges of inequalities proven by Benaissa and Sarikaya, and when T=N0, the results to the best of the authors' knowledge are essentially new.



    In 1920, Hardy [1] proved that

    τ=1(1ττk=1h(k))ϵ(ϵϵ1)ϵτ=1hϵ(τ), (1.1)

    where ϵ>1, h(τ)0 for τ1, and τ=1hϵ(τ)<. In 1925, Hardy [2, Theorem A] showed that if ϵ>1, ϖ0 such that 0ϖϵ(ξ)dξ<, then ϖ is integrable over any finite interval (0,ξ), ξ(0,) and

    0(1ξξ0ϖ(ϑ)dϑ)ϵdξ(ϵϵ1)ϵ0ϖϵ(ξ)dξ. (1.2)

    The constant (ϵ/(ϵ1))ϵ in (1.1) and (1.2) is the best possible.

    In 1927, Hardy and Littlewood [3] proved that if 0<ϵ<1, ϖ(ξ)0 for ξ(0,), and 0ϖϵ(ξ)dξ<, then

    0(1ξξϖ(ϑ)dϑ)ϵdξ(ϵ1ϵ)ϵ0ϖϵ(ξ)dξ, 0<ϵ<1,

    where the constant (ϵ/(1ϵ))ϵ is the best possible.

    The Hardy inequalities mentioned above are proved for a positive parameter 0<ϵ<1 and ϵ>1. Also, these inequalities depend on the power rule inequality in case of the positive parameter. So, some authors discovered new inequalities of Hardy type with negative parameters and noted that they proved these inequalities with a different technique which depends on the power rule inequality.

    For example, in 2007, Bicheng [4] established the integral inequality of Hardy type with negative parameter and proved that if ϵ<0, r>1, ϖ(ϑ)0, and0<0ξr(ξϖ(ξ))ϵdξ<, then

    0ξr(ξϖ(ϑ)dϑ)ϵdξ(ϵ1r)ϵ0ξr(ξϖ(ξ))ϵdξ, (1.3)

    where the constant factor (ϵ/(1r))ϵ is the best possible. Also, in [4] it was proved that if ϵ<0, r<1, ϖ(ϑ)0, and0<0ξr(ξϖ(ξ))ϵdξ<, then

    0ξr(ξ0ϖ(ϑ)dϑ)ϵdξ(ϵr1)ϵ0ξr(ξϖ(ξ))ϵdξ, (1.4)

    where the constant factor (ϵ/(r1))ϵ is the best possible.

    In 2020, Benaissa and Sarikaya [5] generalized (1.3), and proved that ifϵ<0, r>1, and ϖ, Ξ>0 such that the function ξ/Ξ(ξ) is nondecreasing, then

    0Ξr(ξ)(ξϖ(ϑ)dϑ)ϵdξ(ϵ1r)ϵ0(ξϖ(ξ))ϵΞr(ξ)dξ, (1.5)

    and if ϵ<0, 0r<1, and ϖ, Ξ>0 such that the function ξ/Ξ(ξ) is nonincreasing, then

    0Ξr(ξ)(ξ0ϖ(ϑ)dϑ)ϵdξ(ϵr1)ϵ0(ξϖ(ξ))ϵΞr(ξ)dξ. (1.6)

    Also, the authors of [5] proved that if ϵ<0, r<0, and ϖ, Ξ>0 such that the function ξ/Ξ(ξ) is nondecreasing, then

    0Ξr(ξ)(ξ0ϖ(ϑ)dϑ)ϵdξ(ϵr1)ϵ0(ξϖ(ξ))ϵΞr(ξ)dξ. (1.7)

    The time scale T is an arbitrary nonempty closed subset of the real numbers. As an application on time scales, we can get the continuous and discrete forms of any inequality, i.e., T=R and T=N. For more details about the dynamic inequalities on time scales, refer to [6,7,8,9,10,11,12,13,14,15,16], and for the applications of dynamic inequalities in the study of qualitative behavior of dynamic equations, refer to [17,18,19,20,21,22,23,24]. For including an exploration of advanced methodologies, we refer to the papers [25,26].

    The objective of this paper is to introduce novel generalizations of the continuous the inequalities (1.5)–(1.7) on nabla time scales. The proofs of these results rely on employing the reverse Hö lder's inequality and the chain rule formula adapted to time scales.

    This paper is divided into three sections: In Section 2, we present some lemmas on time scales needed in Section 3 where we prove our results. These results as special cases when T=R give the inequalities (1.5)–(1.7), while for T=N0, the results are fundamentally original.

    In 2001, Bohner and Peterson [27] introduced the time scale T as an arbitrary nonempty closed subset of the real numbers R. Also, they defined the backward jump operator by ρ(τ):=sup{sT:s<τ}. For any function ϖ:TR, the notation ϖρ(τ) signifies ϖ(ρ(τ)). The time scale interval [ϱ,δ]T is defined as [ϱ,δ]T:=[ϱ,δ]T.

    Definition 2.1. [28] A function λ:TR is left-dense continuous or ld-continuous provided that it is continuous at left-dense points in T and its right-sided limits exist at right-dense points in T. The space of ld-continuous functions is denoted by Cld(T, R).

    The set Tκ is derived from the time scale T as follows: If T has a left-scattered maximum m, then Tκ=T{m}. Otherwise, Tκ=T. In summary,

    Tκ={T(ρ(supT)supT]if supT<,Tif supT=.

    Definition 2.2. [28] A function ψ:TR is said to be -differentiable at ϑTκ if ψ is defined in a neighbourhood U of ϑ and there exists a unique real number ψ(ϑ), called the nabla derivative of ψ at ϑ, such that for each ϵ>0, there exists a neighbourhood N of ϑ with NU and

    |ψ(ρ(ϑ))ψ(s)ψ(ϑ)[ρ(ϑ)s]|ϵ|ρ(ϑ)s|,  sN.

    Theorem 2.1. [28] Assume ψ, Θ:TR are nabla differentiable at ϑT. Then:

    (1) The product ψΘ:TR is nabla differentiable at ϑ, and we get the product rule

    (ψΘ)(ϑ)=ψ(ϑ)Θ(ϑ)+ψρ(ϑ)Θ(ϑ)=ψ(ϑ)Θ(ϑ)+ψ(ϑ)Θρ(ϑ).

    (2) If Θ(ϑ)Θρ(ϑ)0, then ψ/Θ is nabla differentiable at ϑ, and we get the quotient rule

    (ψΘ)(ϑ)=ψ(ϑ)Θ(ϑ)ψ(ϑ)Θ(ϑ)Θ(ϑ)Θρ(ϑ).

    Lemma 2.1. [29] Let ψ:RR be continuously differentiable and suppose that Θ:TR is continuous and nabla differentiable. Then, ψΘ:TR is nabla differentiable and

    (ψΘ)(ϑ)=ψ(Θ(d))Θ(ϑ),d[ρ(ϑ),ϑ]. (2.1)

    Definition 2.3. [28] A function Λ:TR is called a nabla antiderivative of ψ:TR, if Λ(ϑ)=ψ(ϑ) ϑT. We then define the nabla integral of ψ by

    ϑϱψ(s)s=Λ(ϑ)Λ(ϱ), ϑT.

    Lemma 2.2. [28] If ϱ, δT and ϖ, Ξ:TR are ld-continuous, then

    δϱϖ(ϑ)Ξ(ϑ)ϑ=ϖ(ϑ)Ξ(ϑ)|δϱδϱϖ(ϑ)Ξρ(ϑ)ϑ. (2.2)

    Lemma 2.3. [27] If ϖCld(T, R) and ϑT, then

    ϑρ(ϑ)ϖ(ξ)ξ=ν(ϑ)ϖ(ϑ),

    where ν(ϑ)=ϑρ(ϑ).

    Lemma 2.4. (Reverse Hölder's inequality [30]) If ϱ, δT, α<0, 1/α+1/β=1, and ϕ, ωCld([ϱ,δ]T, R+), then

    δϱϕ(ϑ)ω(ϑ)ϑ[δϱϕα(ϑ)ϑ]1α[δϱωβ(ϑ)ϑ]1β. (2.3)

    In this document, we will make the assumption that the functions are ld-continuous on the interval [ϱ,)T and we also assume the existence of the integrals under consideration. Additionally, we posit the existence of a positive constant K such that

    ρ(ξ)ϱξϱ1K,  ρ(ξ)>ϱ. (3.1)

    Now, we can state and prove our results.

    Theorem 3.1. Let ϱT, ϵ<0, ϵ=ϵ/(ϵ1), r>1, and ϖ, ΞCld([ϱ,)T,R+) where (ξϱ)/Ξ(ξ) is nondecreasing. If (3.1) holds, then

    ϱΞr(ξ)Fϵ(ξ)ξCϱ(ρ(ξ)ϱ)ϵϖϵ(ξ)Ξr(ξ)ξ, (3.2)

    where F(ξ)=ξϖ(ϑ)ϑ and

    C={(ϵ1r)ϵKr1ϵ,  1rϵ;(ϵ1r)ϵKr,  1rϵ.

    Proof. Note that

    F(ξ)=ξϖ(ϑ)ϑ=ξ(ρ(ϑ)ϱ)1+ϵrϵϵ(ρ(ϑ)ϱ)1+ϵrϵϵϖ(ϑ)ϑ. (3.3)

    Applying Lemma 2.4 to

    ξ(ρ(ϑ)ϱ)1+ϵrϵϵ(ρ(ϑ)ϱ)1+ϵrϵϵϖ(ϑ)ϑ,

    with

    ϵ<0, ϵ=ϵ/(ϵ1), ϕ(ϑ)=(ρ(ϑ)ϱ)1+ϵrϵϵ and ω(ϑ)=(ρ(ϑ)ϱ)1+ϵrϵϵϖ(ϑ),

    we get

    ξ(ρ(ϑ)ϱ)1+ϵrϵϵ(ρ(ϑ)ϱ)1+ϵrϵϵϖ(ϑ)ϑ(ξ(ρ(ϑ)ϱ)1+ϵrϵϑ)1ϵ(ξ(ρ(ϑ)ϱ)1+ϵrϵϖϵ(ϑ)ϑ)1ϵ. (3.4)

    Applying (2.1) to (ϑϱ)r1ϵ, we see that

    ϵr1[(ϑϱ)r1ϵ]=(dϱ)r1ϵϵ, d[ρ(ϑ),ϑ]. (3.5)

    Since ϵ<0, r>1,and dρ(ϑ), we have that (r1ϵ)/ϵ<0 and

    (dϱ)r1ϵϵ(ρ(ϑ)ϱ)r1ϵϵ. (3.6)

    Substituting (3.6) into (3.5), we see that

    ϵr1[(ϑϱ)1+ϵrϵ+1](ρ(ϑ)ϱ)r1ϵϵ. (3.7)

    From (3.7), (note ϵ<0 and ϵ=ϵ/(ϵ1)>0), we observe that

    ξ(ρ(ϑ)ϱ)1+ϵrϵϑϵr1ξ[(ϑϱ)1+ϵrϵ+1]ϑ=ϵr1ξ[(ϑϱ)r1ϵ]ϑ=ϵ1r(ξϱ)r1ϵ

    and then

    (ξ(ρ(ϑ)ϱ)1+ϵrϵϑ)1ϵ(ϵ1r)1ϵ(ξϱ)r1ϵϵ. (3.8)

    Substituting (3.8) into (3.4), we see that

    ξ(ρ(ϑ)ϱ)1+ϵrϵϵ(ρ(ϑ)ϱ)1+ϵrϵϵϖ(ϑ)ϑ(ϵ1r)1ϵ(ξϱ)r1ϵϵ(ξ(ρ(ϑ)ϱ)1+ϵrϵϖϵ(ϑ)ϑ)1ϵ. (3.9)

    From (3.3) and (3.9), we have for ϵ<0 that

    Fϵ(ξ)(ϵ1r)ϵ1(ξϱ)r1ϵ(ξ(ρ(ϑ)ϱ)1+ϵrϵϖϵ(ϑ)ϑ). (3.10)

    Multiplying (3.10) by Ξr(ξ) and then integrating over ξ from ϱ to , we get

    ϱΞr(ξ)Fϵ(ξ)ξ(ϵ1r)ϵ1ϱΞr(ξ)(ξϱ)r1ϵ(ξ(ρ(ϑ)ϱ)1+ϵrϵϖϵ(ϑ)ϑ)ξ. (3.11)

    Applying (2.2) to

    ϱΞr(ξ)(ξϱ)r1ϵ(ξ(ρ(ϑ)ϱ)1+ϵrϵϖϵ(ϑ)ϑ)ξ,

    with

    u1(ξ)=ξ(ρ(ϑ)ϱ)1+ϵrϵϖϵ(ϑ)ϑ  and  v1(ξ)=Ξr(ξ)(ξϱ)r1ϵ,

    we have that

    ϱΞr(ξ)(ξϱ)r1ϵ(ξ(ρ(ϑ)ϱ)1+ϵrϵϖϵ(ϑ)ϑ)ξ=v1(ξ)(ξ(ρ(ϑ)ϱ)1+ϵrϵϖϵ(ϑ)ϑ)|ϱ+ϱ(ρ(ξ)ϱ)1+ϵrϵϖϵ(ξ)vρ1(ξ)ξ,

    where

    v1(ξ)=ξϱΞr(ϑ)(ϑϱ)r1ϵϑ.

    Since v1(ϱ)=0, we observe that

    ϱΞr(ξ)(ξϱ)r1ϵ(ξ(ρ(ϑ)ϱ)1+ϵrϵϖϵ(ϑ)ϑ)ξ=ϱ(ρ(ξ)ϱ)1+ϵrϵϖϵ(ξ)[ρ(ξ)ϱΞr(ϑ)(ϑϱ)r1ϵϑ]ξ=ϱ(ρ(ξ)ϱ)1+ϵrϵϖϵ(ξ)[ρ(ξ)ϱ(ϑϱΞ(ϑ))r(ϑϱ)r1ϵrϑ]ξ. (3.12)

    Note that

    ρ(ξ)ϱ(ϑϱΞ(ϑ))r(ϑϱ)r1ϵrϑ=ξϱ(ϑϱΞ(ϑ))r(ϑϱ)r1ϵrϑξρ(ξ)(ϑϱΞ(ϑ))r(ϑϱ)r1ϵrϑ=ξϱ(ϑϱΞ(ϑ))r(ϑϱ)r1ϵrϑν(ξ)(ξϱΞ(ξ))r(ξϱ)r1ϵr. (3.13)

    Since (ϑϱ)/Ξ(ϑ) is nondecreasing and r>1, we have for ϑξ that

    ξϱ(ϑϱΞ(ϑ))r(ϑϱ)r1ϵrϑ(ξϱΞ(ξ))rξϱ(ϑϱ)r1ϵrϑ. (3.14)

    Substituting (3.14) into (3.13), we observe that

    ρ(ξ)ϱ(ϑϱΞ(ϑ))r(ϑϱ)r1ϵrϑ(ξϱΞ(ξ))rξϱ(ϑϱ)r1ϵrϑν(ξ)(ξϱΞ(ξ))r(ξϱ)r1ϵr=(ξϱΞ(ξ))r[ξϱ(ϑϱ)r1ϵrϑν(ξ)(ξϱ)r1ϵr]=(ξϱΞ(ξ))r(ξϱ(ϑϱ)r1ϵrϑξρ(ξ)(ϑϱ)r1ϵrϑ)=(ξϱΞ(ξ))r(ρ(ξ)ϱ(ϑϱ)r1ϵrϑ). (3.15)

    Substituting (3.15) into (3.12), we have

    ϱΞr(ξ)(ξϱ)r1ϵ(ξ(ρ(ϑ)ϱ)1+ϵrϵϖϵ(ϑ)ϑ)ξϱ(ρ(ξ)ϱ)1+ϵrϵ(ξϱ)rϖϵ(ξ)Ξr(ξ)(ρ(ξ)ϱ(ϑϱ)r1ϵrϑ)ξ. (3.16)

    To complete the proof, we have two cases:

    Case 1: For 1rϵ.

    Applying (2.1) to the term (ϑϱ)r1ϵr+1, we see that

    ϵ1r((ϑϱ)r1ϵr+1)=ϵ1r((ϑϱ)1rϵ)=(dϱ)1rϵ1, (3.17)

    where d[ρ(ϑ),ϑ]. Since ϵ<0 and 1rϵ (note (1r)/ϵ10), we have for dρ(ϑ) that

    (dϱ)1rϵ1(ρ(ϑ)ϱ)1rϵ1=(ρ(ϑ)ϱ)r1ϵr. (3.18)

    From (3.17) and (3.18), we observe that

    ϵ1r((ϑϱ)r1ϵr+1)(ρ(ϑ)ϱ)r1ϵr. (3.19)

    Integrating (3.19) over ϑ from ϱ to ρ(ξ), since r>1 and ϵ<0, we have that

    ρ(ξ)ϱ(ρ(ϑ)ϱ)r1ϵrϑϵ1rρ(ξ)ϱ((ϑϱ)r1ϵr+1)ϑ=ϵ1rρ(ξ)ϱ((ϑϱ)1rϵ)ϑ=ϵ1r(ρ(ξ)ϱ)1rϵ. (3.20)

    Using (3.1), since r1ϵr=1rϵ1>0, then (3.16) becomes

    ϱΞr(ξ)(ξϱ)r1ϵ(ξ(ρ(ϑ)ϱ)1+ϵrϵϖϵ(ϑ)ϑ)ξKr1ϵrϱ(ρ(ξ)ϱ)1+ϵrϵ(ξϱ)rϖϵ(ξ)Ξr(ξ)(ρ(ξ)ϱ(ρ(ϑ)ϱ)r1ϵrϑ)ξ. (3.21)

    Substituting (3.20) into (3.21) and using (3.1), we see that

    ϱΞr(ξ)(ξϱ)r1ϵ(ξ(ρ(ϑ)ϱ)1+ϵrϵϖϵ(ϑ)ϑ)ξKr1ϵr(ϵ1r)ϱ(ρ(ξ)ϱ)ϵ(ξϱρ(ξ)ϱ)rϖϵ(ξ)Ξr(ξ)ξKr1ϵ(ϵ1r)ϱ(ρ(ξ)ϱ)ϵϖϵ(ξ)Ξr(ξ)ξ. (3.22)

    From (3.11) and (3.22), we see that

    ϱΞr(ξ)Fϵ(ξ)ξ(ϵ1r)ϵKr1ϵϱ(ρ(ξ)ϱ)ϵϖϵ(ξ)Ξr(ξ)ξ,

    which is (3.2) with C=(ϵ/(1r))ϵKr1ϵ.

    Case 2: For 1rϵ.

    Applying (2.1) to (ϑϱ)1rϵ, we see that

    ϵ1r((ϑϱ)1rϵ)=(dϱ)1rϵ1, d[ρ(ϑ),ϑ]. (3.23)

    Since ϵ<0, and 1rϵ (note that ((1r)/ϵ)10), we have for dϑ that

    (dϱ)1rϵ1(ϑϱ)1rϵ1=(ϑϱ)r1ϵr. (3.24)

    From (3.23) and (3.24), we observe that

    ϵ1r((ϑϱ)1rϵ)(ϑϱ)r1ϵr. (3.25)

    Integrating (3.25) over ϑ from ϱ to ρ(ξ), we have that

    ρ(ξ)ϱ(ϑϱ)r1ϵrϑϵ1rρ(ξ)ϱ((ϑϱ)1rϵ)ϑ=ϵ1r(ρ(ξ)ϱ)1rϵ. (3.26)

    Substituting (3.26) into (3.16), we observe that

    ϱΞr(ξ)(ξϱ)r1ϵ(ξ(ρ(ϑ)ϱ)1+ϵrϵϖϵ(ϑ)ϑ)ξ(ϵ1r)ϱ(ρ(ξ)ϱ)ϵϖϵ(ξ)Ξr(ξ)(ξϱρ(ξ)ϱ)rξ. (3.27)

    Using (3.1), (3.27) then becomes

    ϱΞr(ξ)(ξϱ)r1ϵ(ξ(ρ(ϑ)ϱ)1+ϵrϵϖϵ(ϑ)ϑ)ξ(ϵ1r)Krϱ(ρ(ξ)ϱ)ϵϖϵ(ξ)Ξr(ξ)ξ. (3.28)

    From (3.11) and (3.28), we see that

    ϱΞr(ξ)Fϵ(ξ)ξ(ϵ1r)ϵKrϱ(ρ(ξ)ϱ)ϵϖϵ(ξ)Ξr(ξ)ξ,

    which is (3.2) with C=(ϵ/(1r))ϵKr.

    Remark 3.1. In Theorem 3.1, if T=R, and ϱ=0, then ρ(ξ)=ξ, and we observe that (3.1) holds with K=1. Then, we get (1.5), and for Ξ(ξ)=ξ, we get (1.3).

    Corollary 3.1. If T=N0, ϱ=0, and ϖ, Ξ are positive sequences such that τ/Ξ(τ) is nondecreasing, then

    τ=1Ξr(τ)(k=τ+1ϖ(k))ϵCτ=2(τ1)ϵΞr(τ)ϖϵ(τ),

    where

    C={2r1ϵ(ϵ1r)ϵ,  1rϵ;2r(ϵ1r)ϵ,  1rϵ.

    Here, we used that for ρ(τ)>ϱ, we have for τ2, and

    ρ(τ)ϱτϱ=τ1τ=11τ12

    and thus inequality (3.1) holds with K=2.

    Theorem 3.2. Let ϱT, ϵ<0, 0r<1, and ϖ, ΞCld([ϱ,)T,R+) where (ϑϱ)/Ξ(ϑ) is nonincreasing. If (3.1) holds, then

    ϱΞr(ξ)Ωϵ(ξ)ξDϱ(ρ(ξ)ϱ)ϵΞr(ξ)ϖϵ(ξ)ξ, (3.29)

    where Ω(ξ)=ξϱϖ(ϑ)ϑ and

    D={(ϵr1)ϵKr1ϵ,  (r1)/ϵ1;Kr(ϵr1)ϵ,     (r1)/ϵ1.

    Proof. To establish this theorem, we have two cases:

    Case 1: For (r1)/ϵ1.

    Note that

    Ω(ξ)=ξϱϖ(ϑ)ϑ=ξϱ(ϑϱ)rϵ1ϵϵ(ϑϱ)1+ϵrϵϵϖ(ϑ)ϑ, (3.30)

    where ϵ=ϵ/(ϵ1). Applying Lemma 2.4 to ξϱ(ϑϱ)rϵ1ϵϵ(ϑϱ)1+ϵrϵϵϖ(ϑ)ϑ, with

    ϵ<0, ϵ=ϵ/(ϵ1), ϕ(ϑ)=(ϑϱ)rϵ1ϵϵ and ω(ϑ)=(ϑϱ)1+ϵrϵϵϖ(ϑ),

    we get

    ξϱ(ϑϱ)rϵ1ϵϵ(ϑϱ)1+ϵrϵϵϖ(ϑ)ϑ(ξϱ(ϑϱ)rϵ1ϵϑ)1ϵ(ξϱ(ϑϱ)1+ϵrϵϖϵ(ϑ)ϑ)1ϵ. (3.31)

    From (3.30), and (3.31), we see that

    Ω(ξ)(ξϱ(ϑϱ)rϵ1ϵϑ)1ϵ(ξϱ(ϑϱ)1+ϵrϵϖϵ(ϑ)ϑ)1ϵ. (3.32)

    Applying (2.1) to (ϑϱ)r1ϵ, we observe that

    ϵr1[(ϑϱ)r1ϵ]=(dϱ)rϵ1ϵ, (3.33)

    where d[ρ(ϑ),ϑ]. Since dϑ, and (r1)/ϵ1, we have from (3.33) that

    ϵr1[(ϑϱ)r1ϵ](ϑϱ)rϵ1ϵ. (3.34)

    By integrating (3.34) over ϑ from ϱ to ξ, we get

    ξϱ(ϑϱ)rϵ1ϵϑϵr1ξϱ[(ϑϱ)r1ϵ]ϑ=ϵr1(ξϱ)r1ϵ. (3.35)

    Substituting (3.35) into (3.32), since ϵ>0, we observe that

    Ω(ξ)(ϵr1)1ϵ(ξϱ)r1ϵϵ(ξϱ(ϑϱ)1+ϵrϵϖϵ(ϑ)ϑ)1ϵ

    and then we have for ϵ<0, that

    Ωϵ(ξ)(ϵr1)ϵ1(ξϱ)r1ϵξϱ(ϑϱ)1+ϵrϵϖϵ(ϑ)ϑ. (3.36)

    Multiplying (3.36) with Ξr(ξ) and then integrating over ξ from ϱ to , we see that

    ϱΞr(ξ)Ωϵ(ξ)ξ(ϵr1)ϵ1ϱ(ξϱ)r1ϵΞr(ξ)(ξϱ(ϑϱ)1+ϵrϵϖϵ(ϑ)ϑ)ξ. (3.37)

    Applying (2.2) to

    ϱ(ξϱ)r1ϵΞr(ξ)(ξϱ(ϑϱ)1+ϵrϵϖϵ(ϑ)ϑ)ξ,

    with

    u3(ξ)=ξϱ(ϑϱ)1+ϵrϵϖϵ(ϑ)ϑ and v3(ξ)=(ξϱ)r1ϵΞr(ξ),

    we get

    ϱ(ξϱ)r1ϵΞr(ξ)(ξϱ(ϑϱ)1+ϵrϵϖϵ(ϑ)ϑ)ξ=v3(ξ)(ξϱ(ϑϱ)1+ϵrϵϖϵ(ϑ)ϑ)|ϱϱvρ3(ξ)(ξϱ)1+ϵrϵϖϵ(ξ)ξ, (3.38)

    where

    v3(ξ)=ξ(ϑϱ)r1ϵΞr(ϑ)ϑ.

    Since limξv3(ξ)=0, we have from (3.38) that

    ϱ(ξϱ)r1ϵΞr(ξ)(ξϱ(ϑϱ)1+ϵrϵϖϵ(ϑ)ϑ)ξ=ϱ(ξϱ)1+ϵrϵϖϵ(ξ)(ρ(ξ)(ϑϱ)r1ϵΞr(ϑ)ϑ)ξ=ϱ(ξϱ)1+ϵrϵϖϵ(ξ)(ρ(ξ)(ϑϱΞ(ϑ))r(ϑϱ)r1ϵrϑ)ξ. (3.39)

    Note that

    ρ(ξ)(ϑϱΞ(ϑ))r(ϑϱ)r1ϵrϑ=ξρ(ξ)(ϑϱΞ(ϑ))r(ϑϱ)r1ϵrϑ+ξ(ϑϱΞ(ϑ))r(ϑϱ)r1ϵrϑ=ν(ξ)(ξϱΞ(ξ))r(ξϱ)r1ϵr+ξ(ϑϱΞ(ϑ))r(ϑϱ)r1ϵrϑ. (3.40)

    Since (ϑϱ)/Ξ(ϑ) is nonincreasing, 0r<1, and ϑξ, we observe that

    ξ(ϑϱΞ(ϑ))r(ϑϱ)r1ϵrϑ(ξϱΞ(ξ))rξ(ϑϱ)r1ϵrϑ

    and then we have from (3.40) that

    ρ(ξ)(ϑϱΞ(ϑ))r(ϑϱ)r1ϵrϑν(ξ)(ξϱΞ(ξ))r(ξϱ)r1ϵr+(ξϱΞ(ξ))rξ(ϑϱ)r1ϵrϑ=(ξϱΞ(ξ))r[ξρ(ξ)(ϑϱ)r1ϵrϑ+ξ(ϑϱ)r1ϵrϑ]=(ξϱΞ(ξ))rρ(ξ)(ϑϱ)r1ϵrϑ. (3.41)

    Substituting (3.41) into (3.39), we observe that

    ϱ(ξϱ)r1ϵΞr(ξ)(ξϱ(ϑϱ)1+ϵrϵϖϵ(ϑ)ϑ)ξϱ(ξϱ)1+ϵrϵϖϵ(ξ)(ξϱΞ(ξ))r(ρ(ξ)(ϑϱ)r1ϵrϑ)ξ. (3.42)

    Using (3.23), since (1r)/ϵ<0 and dϑ, we have that

    ϵ1r[(ϑϱ)1rϵ](ϑϱ)1rϵ1=(ϑϱ)r1ϵr

    and then

    ρ(ξ)(ϑϱ)r1ϵrϑϵ1rρ(ξ)[(ϑϱ)1rϵ]ϑ=ϵr1(ρ(ξ)ϱ)1rϵ. (3.43)

    Substituting (3.43) into (3.42), and then using (3.1), we observe that

    ϱ(ξϱ)r1ϵΞr(ξ)(ξϱ(ϑϱ)1+ϵrϵϖϵ(ϑ)ϑ)ξϵr1ϱ(ξϱρ(ξ)ϱ)r1ϵ(ξϱ)ϵΞr(ξ)ϖϵ(ξ)ξϵr1Kr1ϵϱ(ξϱ)ϵΞr(ξ)ϖϵ(ξ)ξ. (3.44)

    Substituting (3.44) into (3.37), we see that

    ϱΞr(ξ)Ωϵ(ξ)ξ(ϵr1)ϵKr1ϵϱ(ξϱ)ϵΞr(ξ)ϖϵ(ξ)ξ(ϵr1)ϵKr1ϵϱ(ρ(ξ)ϱ)ϵΞr(ξ)ϖϵ(ξ)ξ,

    which is (3.29) with D=(ϵ/(r1))ϵKr1ϵ.

    Case 2: For (r1)/ϵ1.

    Note that

    Ω(ξ)=ξϱϖ(ϑ)ϑ=ξϱ(ρ(ϑ)ϱ)rϵ1ϵϵ(ρ(ϑ)ϱ)1+ϵrϵϵϖ(ϑ)ϑ. (3.45)

    Applying Lemma 2.4 to the term

    ξϱ(ρ(ϑ)ϱ)rϵ1ϵϵ(ρ(ϑ)ϱ)1+ϵrϵϵϖ(ϑ)ϑ,

    with

    ϵ<0, ϵ=ϵ/(ϵ1), ϕ(ϑ)=(ρ(ϑ)ϱ)rϵ1ϵϵ and ω(ϑ)=(ρ(ϑ)ϱ)1+ϵrϵϵϖ(ϑ),

    we get

    ξϱ(ρ(ϑ)ϱ)rϵ1ϵϵ(ρ(ϑ)ϱ)1+ϵrϵϵϖ(ϑ)ϑ(ξϱ(ρ(ϑ)ϱ)rϵ1ϵϑ)1ϵ(ξϱ(ρ(ϑ)ϱ)1+ϵrϵϖϵ(ϑ)ϑ)1ϵ. (3.46)

    From (3.45), and (3.46), we see that

    Ω(ξ)(ξϱ(ρ(ϑ)ϱ)rϵ1ϵϑ)1ϵ(ξϱ(ρ(ϑ)ϱ)1+ϵrϵϖϵ(ϑ)ϑ)1ϵ. (3.47)

    Using (3.5), since dρ(ϑ), and 0<(r1)/ϵ1, we have that

    ϵr1[(ϑϱ)r1ϵ](ρ(ϑ)ϱ)rϵ1ϵ

    and then

    ξϱ(ρ(ϑ)ϱ)rϵ1ϵϑϵr1ξϱ[(ϑϱ)r1ϵ]ϑ=ϵr1(ξϱ)r1ϵ. (3.48)

    Substituting (3.48) into (3.47), we see that

    Ω(ξ)(ϵr1)1ϵ(ξϱ)r1ϵϵ(ξϱ(ρ(ϑ)ϱ)1+ϵrϵϖϵ(ϑ)ϑ)1ϵ

    and then (note ϵ<0)

    Ωϵ(ξ)(ϵr1)ϵ1(ξϱ)r1ϵξϱ(ρ(ϑ)ϱ)1+ϵrϵϖϵ(ϑ)ϑ. (3.49)

    Multiplying (3.49) with Ξr(ξ) and then integrating over ξ from ϱ to , we observe that

    ϱΞr(ξ)Ωϵ(ξ)ξ(ϵr1)ϵ1ϱ(ξϱ)r1ϵΞr(ξ)(ξϱ(ρ(ϑ)ϱ)1+ϵrϵϖϵ(ϑ)ϑ)ξ. (3.50)

    Applying (2.2) to

    ϱ(ξϱ)r1ϵΞr(ξ)(ξϱ(ρ(ϑ)ϱ)1+ϵrϵϖϵ(ϑ)ϑ)ξ

    with

    u4(ξ)=ξϱ(ρ(ϑ)ϱ)1+ϵrϵϖϵ(ϑ)ϑ and  v4(ξ)=(ξϱ)r1ϵΞr(ξ),

    we see that

    ϱ(ξϱ)r1ϵΞr(ξ)(ξϱ(ρ(ϑ)ϱ)1+ϵrϵϖϵ(ϑ)ϑ)ξ=v4(ξ)(ξϱ(ρ(ϑ)ϱ)1+ϵrϵϖϵ(ϑ)ϑ)|ϱϱvρ4(ξ)(ρ(ξ)ϱ)1+ϵrϵϖϵ(ξ)ξ, (3.51)

    where

    v4(ξ)=ξ(ϑϱ)r1ϵΞr(ϑ)ϑ.

    Since limξv4(ξ)=0, we have from (3.51) that

    ϱ(ξϱ)r1ϵΞr(ξ)(ξϱ(ρ(ϑ)ϱ)1+ϵrϵϖϵ(ϑ)ϑ)ξ=ϱ(ρ(ξ)(ϑϱ)r1ϵΞr(ϑ)ϑ)(ρ(ξ)ϱ)1+ϵrϵϖϵ(ξ)ξ=ϱ(ρ(ξ)ϱ)1+ϵrϵϖϵ(ξ)(ρ(ξ)[ϑϱΞ(ϑ)]r(ϑϱ)r1ϵrϑ)ξ. (3.52)

    Using (3.41) and (3.52), we observe that

    ϱ(ξϱ)r1ϵΞr(ξ)(ξϱ(ρ(ϑ)ϱ)1+ϵrϵϖϵ(ϑ)ϑ)ξϱ(ρ(ξ)ϱ)1+ϵrϵϖϵ(ξ)(ξϱΞ(ξ))r(ρ(ξ)(ϑϱ)r1ϵrϑ)ξ. (3.53)

    Using (3.23), since (1r)/ϵ<0 and dϑ, we have that

    ϵ1r[(ϑϱ)1rϵ](ϑϱ)1rϵ1=(ϑϱ)r1ϵr

    and then

    ρ(ξ)(ϑϱ)r1ϵrϑϵ1rρ(ξ)[(ϑϱ)1rϵ]ϑ=ϵr1(ρ(ξ)ϱ)1rϵ. (3.54)

    Substituting (3.54) into (3.53), and then using (3.1), we obtain

    ϱ(ξϱ)r1ϵΞr(ξ)(ξϱ(ρ(ϑ)ϱ)1+ϵrϵϖϵ(ϑ)ϑ)ξϵr1ϱ(ξϱρ(ξ)ϱ)rΞr(ξ)(ρ(ξ)ϱ)ϵϖϵ(ξ)ξϵr1KrϱΞr(ξ)(ρ(ξ)ϱ)ϵϖϵ(ξ)ξ. (3.55)

    Substituting (3.55) into (3.50), we observe that

    ϱΞr(ξ)Ωϵ(ξ)ξ(ϵr1)ϵKrϱΞr(ξ)(ρ(ξ)ϱ)ϵϖϵ(ξ)ξ,

    which is (3.29) with D=(ϵ/(r1))ϵKr.

    Remark 3.2. In Theorem 3.2, if T=R and ϱ=0, then ρ(ξ)=ξ and we see that (3.1) holds with K=1. Then, we get (1.6), and for Ξ(ξ)=ξ, we get (1.4).

    Corollary 3.2. If T=N0, ϱ=0, and ϖ, Ξare positive sequences such that τ/Ξ(τ) is nonincreasing, then

    τ=1Ξr(τ)[τk=1ϖ(k)]ϵDτ=1(τ1)ϵΞr(τ)ϖϵ(τ), (3.56)

    where

    D={2r1ϵ(ϵr1)ϵ, (r1)/ϵ1;2r(ϵr1)ϵ, (r1)/ϵ1.

    Here, inequality (3.1) holds with K=2.

    Theorem 3.3. Assume that ϱT, ϵ<0, r<0, and ϖ, ΞCld([ϱ,)T,R+) such that the function (ϑϱ)/Ξ(ϑ) is nondecreasing. Then,

    ϱΞr(ξ)Ωϵ(ξ)ξEϱ(ρ(ξ)ϱ)ϵΞr(ξ)ϖϵ(ξ)ξ, (3.57)

    where Ω(ξ)=ξϱϖ(ϑ)ϑ and

    E={(ϵr1)ϵ,  (r1)/ϵ1; (ϵr1)ϵKr1ϵ,  (r1)/ϵ1.

    Proof. To prove this theorem, we have two cases:

    Case 1: For (r1)/ϵ1.

    Note that

    Ω(ξ)=ξϱϖ(ϑ)ϑ=ξϱ(ρ(ϑ)ϱ)rϵ1ϵϵ(ρ(ϑ)ϱ)1+ϵrϵϵϖ(ϑ)ϑ, (3.58)

    where ϵ=ϵ/(ϵ1). Applying Lemma 2.4 to ξϱ(ρ(ϑ)ϱ)rϵ1ϵϵ(ρ(ϑ)ϱ)1+ϵrϵϵϖ(ϑ)ϑ with

    ϵ<0, ϵ=ϵ/(ϵ1), ϕ(ϑ)=(ρ(ϑ)ϱ)rϵ1ϵϵ, and ω(ϑ)=(ρ(ϑ)ϱ)1+ϵrϵϵϖ(ϑ),

    we get

    ξϱ(ρ(ϑ)ϱ)rϵ1ϵϵ(ρ(ϑ)ϱ)1+ϵrϵϵϖ(ϑ)ϑ(ξϱ(ρ(ϑ)ϱ)rϵ1ϵϑ)1ϵ(ξϱ(ρ(ϑ)ϱ)1+ϵrϵϖϵ(ϑ)ϑ)1ϵ. (3.59)

    From (3.58) and (3.59), we see that

    Ω(ξ)(ξϱ(ρ(ϑ)ϱ)rϵ1ϵϑ)1ϵ(ξϱ(ρ(ϑ)ϱ)1+ϵrϵϖϵ(ϑ)ϑ)1ϵ. (3.60)

    Using (3.5), since dρ(ϑ), and 0<(r1)/ϵ1, we have that

    ϵr1[(ϑϱ)r1ϵ](ρ(ϑ)ϱ)rϵ1ϵ

    and then

    ξϱ(ρ(ϑ)ϱ)rϵ1ϵϑϵr1ξϱ[(ϑϱ)r1ϵ]ϑ=ϵr1(ξϱ)r1ϵ. (3.61)

    Substituting (3.61) into (3.60), since ϵ>0, we see that

    Ω(ξ)(ϵr1)1ϵ(ξϱ)r1ϵϵ(ξϱ(ρ(ϑ)ϱ)1+ϵrϵϖϵ(ϑ)ϑ)1ϵ

    and then (note ϵ<0)

    Ωϵ(ξ)(ϵr1)ϵ1(ξϱ)r1ϵξϱ(ρ(ϑ)ϱ)1+ϵrϵϖϵ(ϑ)ϑ. (3.62)

    Multiplying (3.62) with Ξr(ξ) and then integrating over ξ from ϱ to , we observe that

    ϱΞr(ξ)Ωϵ(ξ)ξ(ϵr1)ϵ1ϱ(ξϱ)r1ϵΞr(ξ)(ξϱ(ρ(ϑ)ϱ)1+ϵrϵϖϵ(ϑ)ϑ)ξ. (3.63)

    Applying (2.2) to ϱ(ξϱ)r1ϵΞr(ξ)(ξϱ(ρ(ϑ)ϱ)1+ϵrϵϖϵ(ϑ)ϑ)ξ, with

     u5(ξ)=ξϱ(ρ(ϑ)ϱ)1+ϵrϵϖϵ(ϑ)ϑ and v5(ξ)=(ξϱ)r1ϵΞr(ξ),

    we see that

    ϱ(ξϱ)r1ϵΞr(ξ)(ξϱ(ρ(ϑ)ϱ)1+ϵrϵϖϵ(ϑ)ϑ)ξ=v5(ξ)(ξϱ(ρ(ϑ)ϱ)1+ϵrϵϖϵ(ϑ)ϑ)|ϱϱvρ5(ξ)(ρ(ξ)ϱ)1+ϵrϵϖϵ(ξ)ξ, (3.64)

    where

    v5(ξ)=ξ(ϑϱ)r1ϵΞr(ϑ)ϑ.

    Since limξv5(ξ)=0, we have from (3.64) that

    ϱ(ξϱ)r1ϵΞr(ξ)(ξϱ(ρ(ϑ)ϱ)1+ϵrϵϖϵ(ϑ)ϑ)ξ=ϱ(ρ(ξ)(ϑϱ)r1ϵΞr(ϑ)ϑ)(ρ(ξ)ϱ)1+ϵrϵϖϵ(ξ)ξ=ϱ(ρ(ξ)[ϑϱΞ(ϑ)]r(ϑϱ)r1ϵrϑ)(ρ(ξ)ϱ)1+ϵrϵϖϵ(ξ)ξ. (3.65)

    Since

    ρ(ξ)(ϑϱΞ(ϑ))r(ϑϱ)r1ϵrϑ=ξρ(ξ)(ϑϱΞ(ϑ))r(ϑϱ)r1ϵrϑ+ξ(ϑϱΞ(ϑ))r(ϑϱ)r1ϵrϑ=ν(ξ)(ξϱΞ(ξ))r(ξϱ)r1ϵr+ξ(ϑϱΞ(ϑ))r(ϑϱ)r1ϵrϑ. (3.66)

    Since (ϑϱ)/Ξ(ϑ) is nondecreasing, r<0, and ϑξ, we see that

    ξ(ϑϱΞ(ϑ))r(ϑϱ)r1ϵrϑ(ξϱΞ(ξ))rξ(ϑϱ)r1ϵrϑ.

    Substituting the last inequality into (3.66), we get

    ρ(ξ)(ϑϱΞ(ϑ))r(ϑϱ)r1ϵrϑ(ξϱΞ(ξ))r[ν(ξ)(ξϱ)r1ϵr+ξ(ϑϱ)r1ϵrϑ]=(ξϱΞ(ξ))r[ξρ(ξ)(ϑϱ)r1ϵrϑ+ξ(ϑϱ)r1ϵrϑ]=(ξϱΞ(ξ))rρ(ξ)(ϑϱ)r1ϵrϑ. (3.67)

    Substituting (3.67) into (3.65), we observe that

    ϱ(ξϱ)r1ϵΞr(ξ)(ξϱ(ρ(ϑ)ϱ)1+ϵrϵϖϵ(ϑ)ϑ)ξϱ(ρ(ξ)(ϑϱ)r1ϵrϑ)(ξϱ)r(ρ(ξ)ϱ)1+ϵrϵΞr(ξ)ϖϵ(ξ)ξ. (3.68)

    Using (3.23), since (1r)/ϵ<0, and dϑ, we have that

    ϵ1r[(ϑϱ)1rϵ](ϑϱ)1rϵ1=(ϑϱ)r1ϵr

    and then

    ρ(ξ)(ϑϱ)r1ϵrϑϵ1rρ(ξ)[(ϑϱ)1rϵ]ϑ=ϵr1(ρ(ξ)ϱ)1rϵ. (3.69)

    Substituting (3.69) into (3.68), we obtain

    ϱ(ξϱ)r1ϵΞr(ξ)(ξϱ(ρ(ϑ)ϱ)1+ϵrϵϖϵ(ϑ)ϑ)ξϵr1ϱ(ξϱρ(ξ)ϱ)r(ρ(ξ)ϱ)ϵΞr(ξ)ϖϵ(ξ)ξ. (3.70)

    Since r<0, and ξρ(ξ), inequality (3.70) becomes

    ϱ(ξϱ)r1ϵΞr(ξ)(ξϱ(ρ(ϑ)ϱ)1+ϵrϵϖϵ(ϑ)ϑ)ξϵr1ϱ(ρ(ξ)ϱ)ϵΞr(ξ)ϖϵ(ξ)ξ. (3.71)

    Substituting (3.71) into (3.63), we observe that

    ϱΞr(ξ)Ωϵ(ξ)ξ(ϵr1)ϵϱ(ρ(ξ)ϱ)ϵΞr(ξ)ϖϵ(ξ)ξ,

    which is (3.57) with E=(ϵ/(r1))ϵ.

    Case 2: For (r1)/ϵ1.

    Note that

    Ω(ξ)=ξϱϖ(ϑ)ϑ=ξϱ(ϑϱ)rϵ1ϵϵ(ϑϱ)1+ϵrϵϵϖ(ϑ)ϑ. (3.72)

    Applying Lemma 2.4 to ξϱ(ϑϱ)rϵ1ϵϵ(ϑϱ)1+ϵrϵϵϖ(ϑ)ϑ, with

    ϵ<0, ϵ=ϵ/(ϵ1), ϕ(ϑ)=(ϑϱ)rϵ1ϵϵ and ω(ϑ)=(ϑϱ)1+ϵrϵϵϖ(ϑ),

    we get

    ξϱ(ϑϱ)rϵ1ϵϵ(ϑϱ)1+ϵrϵϵϖ(ϑ)ϑ(ξϱ(ϑϱ)rϵ1ϵϑ)1ϵ(ξϱ(ϑϱ)1+ϵrϵϖϵ(ϑ)ϑ)1ϵ. (3.73)

    From (3.72) and (3.73), we see that

    Ω(ξ)(ξϱ(ϑϱ)rϵ1ϵϑ)1ϵ(ξϱ(ϑϱ)1+ϵrϵϖϵ(ϑ)ϑ)1ϵ. (3.74)

    Using (3.5), since dϑ and (r1)/ϵ1, we have that

    ϵr1[(ϑϱ)r1ϵ](ϑϱ)rϵ1ϵ. (3.75)

    By integrating (3.75) over ϑ from ϱ to ξ, we get

    ξϱ(ϑϱ)rϵ1ϵϑϵr1ξϱ[(ϑϱ)r1ϵ]ϑ=ϵr1(ξϱ)r1ϵ. (3.76)

    Substituting (3.76) into (3.74), we observe that

    Ω(ξ)(ϵr1)1ϵ(ξϱ)r1ϵϵ(ξϱ(ϑϱ)1+ϵrϵϖϵ(ϑ)ϑ)1ϵ

    and then we have for ϵ<0 that

    Ωϵ(ξ)(ϵr1)ϵ1(ξϱ)r1ϵξϱ(ϑϱ)1+ϵrϵϖϵ(ϑ)ϑ. (3.77)

    Multiplying (3.77) with Ξr(ξ) and then integrating over ξ from ϱ to , we see that

    ϱΞr(ξ)Ωϵ(ξ)ξ(ϵr1)ϵ1ϱ(ξϱ)r1ϵΞr(ξ)(ξϱ(ϑϱ)1+ϵrϵϖϵ(ϑ)ϑ)ξ. (3.78)

    Applying (2.2) to ϱ(ξϱ)r1ϵΞr(ξ)(ξϱ(ϑϱ)1+ϵrϵϖϵ(ϑ)ϑ)ξ, with

    u6(ξ)=ξϱ(ϑϱ)1+ϵrϵϖϵ(ϑ)ϑ and v6(ξ)=(ξϱ)r1ϵΞr(ξ),

    we get

    ϱ(ξϱ)r1ϵΞr(ξ)(ξϱ(ϑϱ)1+ϵrϵϖϵ(ϑ)ϑ)ξ=v6(ξ)(ξϱ(ϑϱ)1+ϵrϵϖϵ(ϑ)ϑ)|ϱϱvρ6(ξ)(ξϱ)1+ϵrϵϖϵ(ξ)ξ, (3.79)

    where

    v6(ξ)=ξ(ϑϱ)r1ϵΞr(ϑ)ϑ.

    Since limξv6(ξ)=0, we have from (3.79) that

    ϱ(ξϱ)r1ϵΞr(ξ)(ξϱ(ϑϱ)1+ϵrϵϖϵ(ϑ)ϑ)ξ=ϱ(ρ(ξ)(ϑϱ)r1ϵΞr(ϑ)ϑ)(ξϱ)1+ϵrϵϖϵ(ξ)ξ=ϱ(ρ(ξ)(ϑϱ)r1ϵr(ϑϱΞ(ϑ))rϑ)(ξϱ)1+ϵrϵϖϵ(ξ)ξ. (3.80)

    Since (ϑϱ)/Ξ(ϑ) is nondecreasing and r<0, we have for ϑξ that

    ξ(ϑϱΞ(ϑ))r(ϑϱ)r1ϵrϑ(ξϱΞ(ξ))rξ(ϑϱ)r1ϵrϑ

    and then

    ρ(ξ)(ϑϱΞ(ϑ))r(ϑϱ)r1ϵrϑ=ξρ(ξ)(ϑϱΞ(ϑ))r(ϑϱ)r1ϵrϑ+ξ(ϑϱΞ(ϑ))r(ϑϱ)r1ϵrϑν(ξ)(ξϱΞ(ξ))r(ξϱ)r1ϵr+(ξϱΞ(ξ))rξ(ϑϱ)r1ϵrϑ=(ξϱΞ(ξ))rρ(ξ)(ϑϱ)r1ϵrϑ. (3.81)

    Substituting (3.81) into (3.80), we see that

    ϱ(ξϱ)r1ϵΞr(ξ)(ξϱ(ϑϱ)1+ϵrϵϖϵ(ϑ)ϑ)ξϱ(ρ(ξ)(ϑϱ)r1ϵrϑ)(ξϱ)1+ϵrϵ+rΞr(ξ)ϖϵ(ξ)ξ. (3.82)

    Using (3.23), since (1r)/ϵ<0, and dϑ, we have that

    ϵ1r[(ϑϱ)1rϵ](ϑϱ)1rϵ1=(ϑϱ)r1ϵr

    and then

    ρ(ξ)(ϑϱ)r1ϵrϑϵ1rρ(ξ)[(ϑϱ)1rϵ]ϑ=ϵr1(ρ(ξ)ϱ)1rϵ. (3.83)

    Substituting (3.83) into (3.82), we observe that

    ϱ(ξϱ)r1ϵΞr(ξ)(ξϱ(ϑϱ)1+ϵrϵϖϵ(ϑ)ϑ)ξϵr1ϱ(ξϱρ(ξ)ϱ)r1ϵ(ξϱ)ϵΞr(ξ)ϖϵ(ξ)ξ

    and then we have from (3.1) that

    ϱ(ξϱ)r1ϵΞr(ξ)(ξϱ(ϑϱ)1+ϵrϵϖϵ(ϑ)ϑ)ξϵr1Kr1ϵϱ(ξϱ)ϵΞr(ξ)ϖϵ(ξ)ξ. (3.84)

    Substituting (3.84) into (3.78), we see that

    ϱΞr(ξ)Ωϵ(ξ)ξ(ϵr1)ϵKr1ϵϱ(ξϱ)ϵΞr(ξ)ϖϵ(ξ)ξ(ϵr1)ϵKr1ϵϱ(ρ(ξ)ϱ)ϵΞr(ξ)ϖϵ(ξ)ξ,

    which is (3.57) with E=(ϵ/(r1))ϵKr1ϵ.

    Remark 3.3. In Theorem 3.3, if T=R and ϱ=0, then ρ(ξ)=ξ and we see that (3.1) holds with K=1, and thus we get (1.7). In addition, if Ξ(ξ)=ξ, then we get (1.4).

    Corollary 3.3. If T=N0, ϱ=0, and ϖ, Ξare positive sequences such that τ/Ξ(τ) is nondecreasing, then we see that (3.1) holds with K=2 and then

    τ=1Ξr(τ)[τk=1ϖ(k)]ϵEτ=1(τ1)ϵΞr(τ)ϖϵ(τ), (3.85)

    where

    E={(ϵr1)ϵ,  (r1)/ϵ1; 2r1ϵ(ϵr1)ϵ,  (r1)/ϵ1.

    In this paper, we established some new generalizations of the continuous inequalities on nabla calculus time scales. These inequalities were proved by employing the reverse Hölder's inequality and the chain rule formula adapted to time scales.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number: ISP23-86.

    The authors declare that they have no conflicts of interest.



    [1] G. H. Hardy, Notes on a theorem of Hilbert, Math. Z., 6 (1920), 314–317. https://doi.org/10.1007/BF01199965 doi: 10.1007/BF01199965
    [2] G. H. Hardy, Notes on some points in the integral calculus (LX), Mess. Math., 54 (1925), 150–156.
    [3] G. H. Hardy, J. E. Littlewood, Elementary theorems concerning power series with positive coefficents and moment constants of positive functions, J. Reine Angew. Math., 157 (1927), 141–158. https://doi.org/10.1515/crll.1927.157.141 doi: 10.1515/crll.1927.157.141
    [4] Y. Bicheng, On a new Hardy type integral inequalities, Int. Math. Forum., 2 (2007), 3317–3322.
    [5] B. Benaissa, M. Z. Sarikaya, Generalization of some Hardy-type integral inequality with negative parameter, Bull. Transilv. Univ. Bras. III, 13 (2020), 69–76. https://doi.org/10.31926/but.mif.2020.13.62.1.6 doi: 10.31926/but.mif.2020.13.62.1.6
    [6] G. Al Nemer, A. I. Saied, A. M. Hassan, C. Cesarano, H. M. Rezk, M. Zakarya, On some new dynamic inequalities involving C-Monotonic functions on time scales, Axioms, 11 (2022), 644. https://doi.org/10.3390/axioms11110644 doi: 10.3390/axioms11110644
    [7] E. Awwad, A. I. Saied, Some new multidimensional Hardy-type inequalities with general kernels on time scales, J. Math. Inequal., 16 (2022), 393–412. https://doi.org/10.7153/jmi-2022-16-29 doi: 10.7153/jmi-2022-16-29
    [8] R. Bibi, M. Bohner, J. Pečarić, S. Varošanec, Minkowski and Beckenbach-Dresher inequalities and functionals on time scales, J. Math. Inequal., 7 (2013), 299–312. https://doi.org/10.7153/jmi-07-28 doi: 10.7153/jmi-07-28
    [9] J. A. Oguntuase, L. E. Persson, Time scales Hardy-type inequalities via superquadracity, Ann. Funct. Anal., 5 (2014), 61–73. https://doi.org/10.15352/afa/1396833503 doi: 10.15352/afa/1396833503
    [10] P. Řehak, Hardy inequality on time scales and its application to half-linear dynamic equations, J. Inequal. Appl., 2005 (2005), 495–507. https://doi.org/10.1155/JIA.2005.495 doi: 10.1155/JIA.2005.495
    [11] H. M. Rezk, A. I. Saied, G. AlNemer, M. Zakarya, On Hardy-Knopp type inequalities with Kernels via time scale calculus, J. Math., 2022 (2022), 7997299. https://doi.org/10.1155/2022/7997299 doi: 10.1155/2022/7997299
    [12] S. H. Saker, E. Awwad, A. I. Saied, Some new dynamic inequalities involving monotonic functions on time scales, J. Funct. Space., 2019 (2019), 7584836. https://doi.org/10.1155/2019/7584836 doi: 10.1155/2019/7584836
    [13] S. H. Saker, A. I. Saied, M. Krnić, Some new dynamic Hardy-type inequalities with kernels involving monotone functions, Racsam Rev. R. Acad. A, 114 (2020), 1–16. https://doi.org/10.1007/s13398-020-00876-6 doi: 10.1007/s13398-020-00876-6
    [14] S. H. Saker, A. I. Saied, M. Krnić, Some new weighted dynamic inequalities for Monotone functions involving Kernels, Mediterr. J. Math., 17 (2020), 1–18. https://doi.org/10.1007/s00009-020-1473-0 doi: 10.1007/s00009-020-1473-0
    [15] S. H. Saker, J. Alzabut, A. I. Saied, D. O'Regan, New characterizations of weights on dynamic inequalities involving a Hardy operator, J. Inequal. Appl., 2021 (2021), 1–24. https://doi.org/10.1186/s13660-021-02606-x doi: 10.1186/s13660-021-02606-x
    [16] S. H. Saker, A. I. Saied, D. R. Anderson, Some new characterizations of weights in dynamic inequalities involving monotonic functions, Qual. Theory Dyn. Syst., 20 (2021), 1–22. https://doi.org/10.1007/s12346-021-00489-3 doi: 10.1007/s12346-021-00489-3
    [17] M. Bohner, T. Li, Kamenev-type criteria for nonlinear damped dynamic equations, Sci. China Math., 58 (2015), 1445–1452. https://doi.org/10.1007/s11425-015-4974-8 doi: 10.1007/s11425-015-4974-8
    [18] M. J. Huntul, Identifying an unknown heat source term in the third-order pseudoparabolic equation from nonlocal integral observation, Int. Commun. Heat Mass, 128 (2021), 105550. https://doi.org/10.1016/j.icheatmasstransfer.2021.105550 doi: 10.1016/j.icheatmasstransfer.2021.105550
    [19] M. J. Huntul, I. Tekin, On an inverse problem for a nonlinear third order in time partial differential equation, Results Appl. Math., 15 (2022), 100314. https://doi.org/10.1016/j.rinam.2022.100314 doi: 10.1016/j.rinam.2022.100314
    [20] M. J. Huntul, M. Abbas, An inverse problem of fourth-order partial differential equation with nonlocal integral condition, Adv. Contin. Discrete Models, 2022 (2022), 1–27. https://doi.org/10.1186/s13662-022-03727-3 doi: 10.1186/s13662-022-03727-3
    [21] W. W. Mohammed, F. M. Al-Askar, C. Cesarano, On the dynamical behavior of solitary waves for coupled stochastic Korteweg-De Vries equations, Mathematics, 11 (2023), 3506. https://doi.org/10.3390/math11163506 doi: 10.3390/math11163506
    [22] W. W. Mohammed, F. M. Al-Askar, C. Cesarano, E. S. Aly, The soliton solutions of the stochastic shallow water wave equations in the sense of Beta-derivative, Mathematics, 11 (2023), 1338. https://doi.org/10.3390/math11061338 doi: 10.3390/math11061338
    [23] M. Alshammari, N. Iqbal, W. W. Mohammed, T. Botmart, The solution of fractional-order system of KdV equations with exponential-decay kernel, Results Phys., 38 (2022), 105615. https://doi.org/10.1016/j.rinp.2022.105615 doi: 10.1016/j.rinp.2022.105615
    [24] C. Zhang, T. Li, S. H. Saker, Oscillation of fourth-order delay differential equations, J. Math. Sci., 201 (2014), 296–309. https://doi.org/10.1007/s10958-014-1990-0 doi: 10.1007/s10958-014-1990-0
    [25] Y. Tian, Y. Yang, X. Ma, X. Su, Stability of discrete-time delayed systems via convex function-based summation inequality, Appl. Math. Lett., 2023 (2023), 108764. https://doi.org/10.1016/j.aml.2023.108764 doi: 10.1016/j.aml.2023.108764
    [26] Y. Tian, X. Su, C. Shen, X. Ma, Exponentially extended Dissipativity-based filtering of switched neural networks, Automatica, 161 (2024), 111465. https://doi.org/10.1016/j.automatica.2023.111465 doi: 10.1016/j.automatica.2023.111465
    [27] M. Bohner, A. Peterson, Dynamic equations on time scales: An introduction with applications, Boston: Birkhäuser, 2001.
    [28] D. Anderson, J. Bullock, L. Erbe, A. Peterson, H. Tran, Nabla dynamic equations on time scales, Panam. Math. J., 13 (2003), 1–47.
    [29] A. F. Güvenilir, B. Kaymakçalan, N. N. Pelen, Constantin's inequality for nabla and diamond-alpha derivative, J. Inequal. Appl., 2015 (2015), 1–17. https://doi.org/10.1186/s13660-015-0681-9 doi: 10.1186/s13660-015-0681-9
    [30] R. P. Agarwal, D. O'Regan, S. H. Saker, Dynamic inequalities on time scales, New York: Springer Cham, 2014. https://doi.org/10.1007/978-3-319-11002-8
  • This article has been cited by:

    1. Elkhateeb S. Aly, Ali M. Mahnashi, Abdullah A. Zaagan, I. Ibedou, A. I. Saied, Wael W. Mohammed, N-dimension for dynamic generalized inequalities of Hölder and Minkowski type on diamond alpha time scales, 2024, 9, 2473-6988, 9329, 10.3934/math.2024454
    2. Elkhateeb S. Aly, A. I. Saied, I. Ibedou, Mohamed S. Algolam, Wael W. Mohammed, Some new generalizations of reversed Minkowski's inequality for several functions via time scales, 2024, 9, 2473-6988, 11156, 10.3934/math.2024547
    3. Ahmed M. Ahmed, Ahmed I. Saied, Mohammed Zakarya, Amirah Ayidh I Al-Thaqfan, Maha Ali, Haytham M. Rezk, Advanced Hardy-type inequalities with negative parameters involving monotone functions in delta calculus on time scales, 2024, 9, 2473-6988, 31926, 10.3934/math.20241534
    4. Martin Bohner, Irena Jadlovská, Ahmed I. Saied, Some New Hardy-Type Inequalities with Negative Parameters on Time Scales, 2025, 24, 1575-5460, 10.1007/s12346-025-01231-z
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1252) PDF downloads(94) Cited by(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog