Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Dandelion optimization based feature selection with machine learning for digital transaction fraud detection

  • Received: 15 November 2023 Revised: 30 December 2023 Accepted: 03 January 2024 Published: 16 January 2024
  • MSC : 49-04, 92B20

  • Digital transactions relying on credit cards are gradually improving in recent days due to their convenience. Due to the tremendous growth of e-services (e.g., mobile payments, e-commerce, and e-finance) and the promotion of credit cards, fraudulent transaction counts are rapidly increasing. Machine learning (ML) is crucial in investigating customer data for detecting and preventing fraud. Conversely, the advent of irrelevant and redundant features in most real-time credit card details reduces the execution of ML techniques. The feature selection (FS) approach's purpose is to detect the most prominent attributes required for developing an effective ML approach, making sure that the classification and computational complexity are improved and decreased, respectively. Therefore, this study presents an evolutionary computing with fuzzy autoencoder based data analytics for credit card fraud detection (ECFAE-CCFD) technique. The purpose of the ECFAE-CCFD technique is to recognize the presence of credit card fraud (CCF) in real time. To achieve this, the ECFAE-CCFD technique performs data normalization in the earlier stage. For selecting features, the ECFAE-CCFD technique applies the dandelion optimization-based feature selection (DO-FS) technique. Moreover, the fuzzy autoencoder (FAE) approach can be exploited for the recognition and classification of CCF. FAE is a category of artificial neural network (ANN) designed for unsupervised learning that leverages fuzzy logic (FL) principles to enhance the representation and reconstruction of input data. An improved billiard optimization algorithm (IBOA) could be implemented for the optimum selection of the parameters based on the FAE algorithm to improve the classification performance. The simulation outcomes of the ECFAE-CCFD algorithm are examined on the benchmark open-access database. The values display the excellent performance of the ECFAE-CCFD method with respect to various measures.

    Citation: Ebtesam Al-Mansor, Mohammed Al-Jabbar, Arwa Darwish Alzughaibi, Salem Alkhalaf. Dandelion optimization based feature selection with machine learning for digital transaction fraud detection[J]. AIMS Mathematics, 2024, 9(2): 4241-4258. doi: 10.3934/math.2024209

    Related Papers:

    [1] Harman Kaur, Meenakshi Rana . Congruences for sixth order mock theta functions λ(q) and ρ(q). Electronic Research Archive, 2021, 29(6): 4257-4268. doi: 10.3934/era.2021084
    [2] Meenakshi Rana, Shruti Sharma . Combinatorics of some fifth and sixth order mock theta functions. Electronic Research Archive, 2021, 29(1): 1803-1818. doi: 10.3934/era.2020092
    [3] Changjian Wang, Jiayue Zhu . Global dynamics to a quasilinear chemotaxis system under some critical parameter conditions. Electronic Research Archive, 2024, 32(3): 2180-2202. doi: 10.3934/era.2024099
    [4] Chang-Jian Wang, Yu-Tao Yang . Boundedness criteria for the quasilinear attraction-repulsion chemotaxis system with nonlinear signal production and logistic source. Electronic Research Archive, 2023, 31(1): 299-318. doi: 10.3934/era.2023015
    [5] Maoji Ri, Shuibo Huang, Canyun Huang . Non-existence of solutions to some degenerate coercivity elliptic equations involving measures data. Electronic Research Archive, 2020, 28(1): 165-182. doi: 10.3934/era.2020011
    [6] Nan Li . Summability in anisotropic mixed-norm Hardy spaces. Electronic Research Archive, 2022, 30(9): 3362-3376. doi: 10.3934/era.2022171
    [7] Lili Li, Boya Zhou, Huiqin Wei, Fengyan Wu . Analysis of a fourth-order compact θ-method for delay parabolic equations. Electronic Research Archive, 2024, 32(4): 2805-2823. doi: 10.3934/era.2024127
    [8] Jianxing Du, Xifeng Su . On the existence of solutions for the Frenkel-Kontorova models on quasi-crystals. Electronic Research Archive, 2021, 29(6): 4177-4198. doi: 10.3934/era.2021078
    [9] Zihan Zheng, Juan Wang, Liming Cai . Global boundedness in a Keller-Segel system with nonlinear indirect signal consumption mechanism. Electronic Research Archive, 2024, 32(8): 4796-4808. doi: 10.3934/era.2024219
    [10] Ying Hou, Liangyun Chen . Constructions of three kinds of Bihom-superalgebras. Electronic Research Archive, 2021, 29(6): 3741-3760. doi: 10.3934/era.2021059
  • Digital transactions relying on credit cards are gradually improving in recent days due to their convenience. Due to the tremendous growth of e-services (e.g., mobile payments, e-commerce, and e-finance) and the promotion of credit cards, fraudulent transaction counts are rapidly increasing. Machine learning (ML) is crucial in investigating customer data for detecting and preventing fraud. Conversely, the advent of irrelevant and redundant features in most real-time credit card details reduces the execution of ML techniques. The feature selection (FS) approach's purpose is to detect the most prominent attributes required for developing an effective ML approach, making sure that the classification and computational complexity are improved and decreased, respectively. Therefore, this study presents an evolutionary computing with fuzzy autoencoder based data analytics for credit card fraud detection (ECFAE-CCFD) technique. The purpose of the ECFAE-CCFD technique is to recognize the presence of credit card fraud (CCF) in real time. To achieve this, the ECFAE-CCFD technique performs data normalization in the earlier stage. For selecting features, the ECFAE-CCFD technique applies the dandelion optimization-based feature selection (DO-FS) technique. Moreover, the fuzzy autoencoder (FAE) approach can be exploited for the recognition and classification of CCF. FAE is a category of artificial neural network (ANN) designed for unsupervised learning that leverages fuzzy logic (FL) principles to enhance the representation and reconstruction of input data. An improved billiard optimization algorithm (IBOA) could be implemented for the optimum selection of the parameters based on the FAE algorithm to improve the classification performance. The simulation outcomes of the ECFAE-CCFD algorithm are examined on the benchmark open-access database. The values display the excellent performance of the ECFAE-CCFD method with respect to various measures.



    Ramanujan's last letter to Hardy is one of the most mysterious and important mathematical letters in the history of mathematics. He introduced a class of functions that he called mock theta functions in his letter. For nearly a century, properties of these functions have been widely studied by different mathematicians. The important direction involves the arithmetic properties (see [1,2]), combinatorics (see [3,4]), identities between these functions, and generalized Lambert series (see [5,6]). For the interested reader, regarding the history and new developments in the study of mock theta functions, we refer to [7].

    In 2007, McIntosh studied two second order mock theta functions in reference [8]; more details are given in reference [9]. These mock theta functions are:

    A(q)=n=0q(n+1)2(q;q2)n(q;q2)2(n+1)=n=0qn+1(q2;q2)n(q;q2)n+1, (1.1)
    B(q)=n=0qn(q;q2)n(q;q2)n+1=n=0qn(n+1)(q2;q2)n(q;q2)2n+1, (1.2)

    where

    (a;q)n=n1i=0(1aqi),(a;q)=i=0(1aqi),
    (a1,a2,,am;q)=(a1;q)(a2;q)(am;q),

    for |q|<1.

    The functions A(q) and B(q) have been combinatorially interpreted in terms of overpartitions in [3] using the odd Ferrers diagram. In this paper, we study some arithmetic properties of one of the second order mock theta functions B(q). We start by noting, Bringmann, Ono and Rhoades [10] obtained the following identity:

    B(q)+B(q)2=f54f42, (1.3)

    where

    fkm:=(qm;qm)k,

    for positive integers m and k. We consider the function

    B(q):=n=0b(n)qn. (1.4)

    Followed by Eq (1.3), the even part of B(q) is given by:

    n=0b(2n)qn=f52f41. (1.5)

    In 2012, applying the theory of (mock) modular forms and Zwegers' results, Chan and Mao [5] established two identities for b(n), shown as:

    n=0b(4n+1)qn=2f82f71, (1.6)
    n=0b(4n+2)qn=4f22f44f51. (1.7)

    In a sequel, Qu, Wang and Yao [6] found that all the coefficients for odd powers of q in B(q) are even. Recently, Mao [11] gave analogues of Eqs (1.6) and (1.7) modulo 6

    n=0b(6n+2)qn=4f102f23f101f6, (1.8)
    n=0b(6n+4)qn=9f42f43f6f81, (1.9)

    and proved several congruences for the coefficients of B(q). Motivated from this, we prove similar results for b(n) by applying identities on the coefficients in arithmetic progressions. We present some congruence relations for the coefficients of B(q) modulo certain numbers of the form 2α3β,2α5β,2α7β where α,β0. Our main theorems are given below:

    Theorem 1.1. For n0, we have

    n=0b(12n+9)qn=18[f92f123f171f36+2f52f43f6f91+28f62f33f66f141], (1.10)
    n=0b(12n+10)qn=36[2f162f106f201f3f412qf282f33f212f241f84f2616q2f22f33f84f212f161f26]. (1.11)

    In particular, b(12n+9)0(mod18),b(12n+10)0(mod36).

    Theorem 1.2. For n0, we have

    n=0b(18n+10)qn=72[f162f213f271f96+38qf132f123f241+64q2f102f33f96f211], (1.12)
    n=0b(18n+16)qn=72[5f152f183f261f66+64qf122f93f36f231+32q2f92f126f201]. (1.13)

    In particular, b(18n+10)0(mod72),b(18n+16)0(mod72).

    Apart from these congruences, we find some relations between b(n) and restricted partition functions. Here we recall, Partition of a positive integer ν, is a representation of ν as a sum of non-increasing sequence of positive integers μ1,μ2,,μn. The number of partitions of ν is denoted by p(ν) which is called the partition function. If certain conditions are imposed on parts of the partition, is called the restricted partition and corresponding partition function is named as restricted partition function. Euler proved the following recurrence for p(n) [12] [p. 12, Cor. 1.8]:

    (n)p(n1)p(n2)+p(n5)+p(n7)p(n12)p(n15)++(1)kp(nk(3k1)/2)+(1)kp(nk(3k+1)/2)+={1, if n=0,0, otherwise. 

    The numbers k(3k±1)/2 are pentagonal numbers. Following the same idea, different recurrence relations have been found by some researchers for restricted partition functions. For instance, Ewell [13] presented the recurrence for p(n) involving the triangular numbers. For more study of recurrences, see [14,15,16]. Under the influence of these efforts, we express the coefficients of mock theta function B(q) which are in arithmetic progression in terms of recurrence of some restricted partition functions.

    This paper is organized as follows: Section 2, here we recall some preliminary lemmas and present the proof of Theorems 1.1 and 1.2. Section 3 includes some more congruences based on the above results. Section 4 depicts the links between b(n) and some of the restricted partition functions.

    Before proving the results, we recall Ramanujan's theta function:

    j(a,b)=n=an(n+1)2bn(n1)2, for|ab|<1.

    Some special cases of j(a,b) are:

    ϕ(q):=j(q,q)=n=qn2=f52f21f24,ψ(q):=j(q,q3)=n=0qn(n+1)/2=f22f1.

    Also,

    ϕ(q)=f21f2.

    The above function satisfy the following properties (see Entries 19, 20 in [17]).

    j(a,b)=(a,b,ab;ab),(Jacobi's triple product identity),
    j(q,q2)=(q;q),(Euler's pentagonal number theorem).

    We note the following identities which will be used below.

    Lemma 2.1. [[18], Eq (3.1)] We have

    f32f31=f6f3+3qf46f59f83f18+6q2f36f29f218f73+12q3f26f518f63f9. (2.1)

    Lemma 2.2. We have

    f22f1=f6f29f3f18+qf218f9, (2.2)
    f2f21=f46f69f83f318+2qf36f39f73+4q2f26f318f63. (2.3)

    Proof. The first identity follows from [[19] Eq (14.3.3)]. The proof of second identity can be seen from [20].

    Lemma 2.3. We have

    1f41=f144f142f48+4qf24f48f102, (2.4)
    f41=f104f22f484qf22f48f24. (2.5)

    Proof. Identity (2.4) is Eq (1.10.1) from [19]. To obtain (2.5), replacing q by q and then using

    (q;q)=f32f1f4.

    Now, we present the proof of Theorems 1.1 and 1.2.

    Proof of Theorems 1.1 and 1.2. From Eq (1.6), we have

    n=0b(4n+1)qn=2(f32f31)3f22f1.

    Substituting the values from Eqs (2.1) and (2.2) in above, we get

    n=0b(4n+1)qn=2f36f29f33f18+2qf26f218f23f9+12qf66f79f103f218+18q2f96f129f173f318+36q2f56f49f18f93+90q3f86f99f163+72q3f46f9f418f83+48q4f36f718f73f29+288q4f76f69f318f153+504q5f66f39f618f143+576q6f56f918f133. (2.6)

    Bringing out the terms involving q3n+2, dividing by q2 and replacing q3 by q, we get (1.10). Considering Eq (1.5), we have

    n=0b(2n)qn=f32f31f22f1.

    Substituting the values from Eqs (2.1) and (2.2), we obtain

    n=0b(2n)qn=(f6f3+3qf46f59f83f18+6q2f36f29f218f73+12q3f26f518f63f9)(f6f29f3f18+qf218f9).

    Extracting the terms involving q3n,q3n+1,q3n+2 from the above equation, we have

    n=0b(6n)qn=f22f23f21f6+18qf32f3f46f71, (2.7)
    n=0b(6n+2)qn=f2f26f1f3+3f52f73f91f26+12qf22f76f61f23, (2.8)
    n=0b(6n+4)qn=9f42f43f6f81. (2.9)

    Using Eqs (2.4) and (2.5) in Eq (2.9), we get

    n=0b(6n+4)qn=9f42f6(f144f142f48+4qf24f48f102)2(f1012f26f4244q3f26f424f212).

    Extracting the terms involving q2n,q2n+1 from above, we arrive at

    n=0b(12n+4)qn=9(f282f106f241f3f84f412+16qf42f84f106f161f3f41232q2f162f33f412f201f26), (2.10)
    n=0b(12n+10)qn=9(8f162f106f201f3f4124qf282f33f412f241f84f2616q2f42f33f84f412f161f26). (2.11)

    From Eq (2.11), we ultimately arrive at Eq (1.11). To prove Theorem 1.2, consider Eq (2.9) as:

    n=0b(6n+4)qn=9f43f6(f2f21)4.

    Using Eq (2.3) in above, we get

    n=0b(6n+4)qn=9f176f249f283f1218+72qf166f219f273f918+360q2f156f189f263f618+288q3f146f159f253f318+864q3f126f159f193f618+2736q4f136f129f243+4608q5f126f99f318f233+5760q6f116f69f618f223+4608q7f106f39f918f213+2304q8f96f1218f203. (2.12)

    Bringing out the terms involving q3n+1 and q3n+2 from Eq (2.12), we get Eqs (1.12) and (1.13), respectively.

    This segment of the paper contains some more interesting congruence relations for b(n).

    Theorem 3.1. For n0, we have

    b(12n+1){2(1)k(mod6),ifn=3k(3k+1)/2,0(mod6),otherwise. (3.1)

    Theorem 3.2. For n0, we have

    b(2n){(1)k(2k+1)(mod4),ifn=k(k+1),0(mod4),otherwise. (3.2)

    Theorem 3.3. For n0, we have

    b(36n+10)0(mod72), (3.3)
    b(36n+13)0(mod6), (3.4)
    b(36n+25)0(mod12), (3.5)
    b(36n+34)0(mod144), (3.6)
    b(108n+t)0(mod18),for t{49,85}. (3.7)

    Theorem 3.4. For n0, we have

    b(20n+t)0(mod5),for t{8,16} (3.8)
    b(20n+t)0(mod20),for t{6,18} (3.9)
    b(20n+17)0(mod10), (3.10)
    b(28n+t)0(mod14),for t{5,21,25}. (3.11)

    Proof of Theorem 3.1. From Eq (2.6), picking out the terms involving q3n and replacing q3 by q, we have

    n=0b(12n+1)qn=2f32f23f31f6+90qf82f93f161+72qf42f3f46f81+576q2f52f96f31. (3.12)

    Reducing modulo 6, we obtain

    n=0b(12n+1)qn2f3(mod6). (3.13)

    With the help of Euler's pentagonal number theorem,

    n=0b(12n+1)qn2k=(1)kq3k(3k+1)2(mod6),

    which completes the proof of Theorem 3.1.

    Proof of Theorem 3.2. Reducing Eq (1.5) modulo 4, we get

    n=0b(2n)qnf32(mod4). (3.14)

    From Jacobi's triple product identity, we obtain

    n=0b(2n)qnk=0(1)k(2k+1)qk(k+1)(mod4),

    which completes the proof of Theorem 3.2.

    Proof of Theorem 3.3. Consider Eq (1.11), reducing modulo 72

    n=0b(12n+10)qn36qf282f33f412f241f84f26(mod72),
    n=0b(12n+10)qn36qf282f33f412f122f84f12=36qf162f33f312f84(mod72)

    or

    n=0b(12n+10)qn36qf33f312(mod72). (3.15)

    Extracting the terms involving q3n, replacing q3 by q in Eq (3.15), we arrive at Eq (3.3). Similarly, consider Eq (1.13) and reducing modulo 144, we have

    n=0b(18n+16)qn725f152f183f261f66(mod144),72f152f96f132f66=72f22f36(mod144).

    Extracting the terms involving q2n+1, dividing both sides by q and replacing q2 by q, we get Eq (3.6).

    From Eq (3.20), we get

    n=0b(12n+1)qn2f3(mod6).

    Bringing out the terms containing q3n+1, dividing both sides by q and replacing q3 by q, we have b(36n+13)0(mod6). Reducing Eq (3.12) modulo 12, we have

    n=0b(12n+1)qn2f32f23f31f6+90qf82f93f161(mod12),
    n=0b(12n+1)qn2f23f6(f6f3+3qf46f59f83f18+6q2f36f29f218f73+12q3f26f518f63f9)+6qf82f93f82.

    Extracting the terms containing q3n+2, dividing by q2 and replacing q3 by q, we obtain Eq (3.5). Reducing Eq (3.12) modulo 18,

    n=0b(12n+1)qn2f32f23f31f6(mod18),=2f23f6(f6f3+3qf46f59f83f18+6q2f36f29f218f73+12q3f26f518f63f9).

    Extracting the terms involving q3n+1, dividing both sides by q and replacing q3 by q, we have

    n=0b(36n+13)qn6f32f53f61f66f6f53f23f6(mod18)

    or

    n=0b(36n+13)qn6f33(mod18).

    Extracting the terms containing q3n+1,q3n+2 from above to get Eq (3.7).

    Proof of Theorem 3.4. From Eqs (1.5) and (2.4), we have

    n=0b(2n)qn=f52(f144f142f48+4qf24f48f102).

    Bringing out the terms containing even powers of q, we obtain

    n=0b(4n)qn=f142f91f44,

    which can be written as:

    n=0b(4n)qn=f152f101f54.f1f4f2f310f25f20.f1f4f2(mod5).

    Here

    f1f4f2=(q;q)(q4;q4)(q2;q2),=(q;q2)(q2;q2)(q4;q4)(q2;q2),
    f1f4f2=(q,q3,q4;q4)=n=(1)nq2n2n, (3.16)

    where the last equality follows from Jacobi's triple product identity. Using the above identity, we have

    n=0b(4n)qnf310f25f20n=(1)nq2n2n(mod5). (3.17)

    Since 2n2n2,4(mod5), it follows that the coefficients of q5n+2,q5n+4 in n=0b(4n)qn are congruent to 0(mod5), which proves that b(20n+t)0(mod5), for t{8,16}.

    Consider Eq (1.7)

    n=0b(4n+2)qn=4f54f51f22f44f20f5f22f4(mod20).

    Now

    f22f4=(q2;q2)2(q4;q4),=(q2;q2)(q2;q4)(q4;q4)(q4;q4),
    f22f4=(q2,q2,q4;q4)=n=(1)nq2n2.

    Using the above identity, we get

    n=0b(4n+2)qn4f20f5n=(1)nq2n2(mod20). (3.18)

    Since 2n21,4(mod5), it follows that the coefficients of q5n+1,q5n+4 in n=0b(4n+2)qn are congruent to 0(mod20), which proves Eq (3.9). For the proof of next part, consider Eq (1.6) as:

    n=0b(4n+1)qn=2f52f101f31f322f10f25f31f32(mod10),
    n=0b(4n+1)qn2f10f25k=0(1)k(2k+1)qk(k+1)2m=0(1)m(2m+1)qm(m+1)(mod10). (3.19)

    Therefore, to contribute the coefficient of q5n+4, (k,m)(2,2)(mod5) and thus the contribution towards the coefficient of q5n+4 is a multiple of 5.

    Consider Eq (1.6) as:

    n=0b(4n+1)qn=2f72f71f22f14f7f2(mod14).

    With the help of Euler's pentagonal number theorem,

    n=0b(4n+1)qn2f14f7n=(1)nqn(3n+1)(mod14). (3.20)

    As n(3n+1)1,5,6(mod7), it readily proves Eq (3.11).

    In this section, we find some recurrence relations connecting b(n) and restricted partition functions. First we define some notations. Let ¯pl(n) denotes the number of overpartitions of n with l copies. Then

    n=0¯pl(n)qn=(f2f21)l.

    Let pld(n) denotes the number of partitions of n into distinct parts with l copies. Then

    n=0pld(n)qn=(f2f1)l.

    Theorem 4.1. We have

    b(2n)=¯p2(n)3¯p2(n)+5¯p2(n)++(1)k(2k+1)¯p2(nk(k+1))+, (4.1)
    (2n)=p4d(n)p4d(n2)p4d(n4)+p4d(n10)+p4d(n14)++(1)kp4d(nk(3k1))+(1)kp4d(nk(3k+1))+. (4.2)

    Theorem 4.2.

    (4n+1)=2p8d(n)2p8d(n1)2p8d(n2)+2p8d(n5)+2p8d(n7)++(1)k2p8d(nk(3k1)2)+(1)k2p8d(nk(3k+1)2)+, (4.3)
    b(4n+1)=2nc=0b(2c)p3d(nc). (4.4)

    Theorem 4.3.

    (6n+2)=4p10d(n)8p10d(n3)+8p10d(n12)+8p10d(n27)++8(1)kp10d(n3k2)+. (4.5)

    Proof of Theorem 4.1. Consider (1.5) as:

    n=0b(2n)qn=(f2f21)2f32.

    Then

    n=0b(2n)qn=(n=0¯p2(n)qn)(k=0(1)k(2k+1)qk(k+1)),=n=0k=0(1)k(2k+1)¯p2(n)qn+k(k+1),=n=0(k=0(1)k(2k+1)¯p2(nk(k+1)))qn.

    From the last equality, we readily arrive at (4.1). To prove (4.2), consider (1.5) as:

    n=0b(2n)qn=(f2f1)4f2,=(n=0p4d(n)qn)(k=(1)kqk(3k+1)),=(n=0p4d(n)qn)(1+k=1(1)kqk(3k1)+k=1(1)kqk(3k+1)),
    n=0b(2n)qn=n=0p4d(n)qn+n=0(k=1(1)kp4d(n)qk(3k1)+n)+n=0(k=1(1)kp4d(n)qk(3k+1)+n),
    n=0b(2n)qn=n=0p4d(n)qn+n=0(k=1(1)kp4d(nk(3k1))qn)+n=0(k=1(1)kp4d(nk(3k+1))qn),

    which proves Eq (4.2).

    Proof of Theorem 4.2. Consider Eq (1.6) as:

    n=0b(4n+1)qn=2(f2f1)8f1,=2(n=0p8d(n)qn)(k=(1)kqk(3k+1)2),=2(n=0p8d(n)qn)(1+k=1(1)kqk(3k1)/2+k=1(1)kqk(3k+1)/2),
    n=0b(4n+1)qn=n=0p8d(n)qn+n=0k=1(1)kp8d(n)qk(3k1)/2+n+n=0k=1(1)kp8d(n)qk(3k+1)/2+n,
    n=0b(4n+1)qn=n=0p8d(n)qn+n=0(k=1(1)kp8d(nk(3k1)2))qn+n=0(k=1(1)kp8d(nk(3k+1)2))qn,

    which proves Eq (4.3). To prove Eq (4.4), consider Eq (1.6) as:

    n=0b(4n+1)qn=2(f52f41)f32f31,=2(n=0b(2n)qn)(k=0p3d(k)qk),=2n=0(nc=0b(2c)p3d(nc))qn.

    Comparing the coefficients of qn, we arrive at Eq (4.4).

    Proof of Theorem 4.3. Consider Eq (1.8) as:

    n=0b(6n+2)qn=4(f2f1)10f23f6,=4(n=0p10d(n)qn)(k=(1)kq3k2),=4(n=0p10d(n)qn)(1+2k=1(1)kq3k2),=4n=0p10d(n)qn+8n=0(k=1(1)kp10d(n)q3k2+n),=4n=0p10d(n)qn+8n=0(k=1(1)kp10d(n3k2))qn.

    Comparing the coefficients of qn to obtain Eq (4.5).

    In this paper, we have provided the arithmetic properties of second order mock theta function B(q), introduced by McIntosh. Some congruences are proved for the coefficients of B(q) modulo specific numbers. The questions which arise from this work are:

    (i) Are there exist congruences modulo higher primes for B(q)?

    (ii) Is there exist any other technique (like modular forms) that helps to look for some more arithmetic properties of B(q)?

    (iii) How can we explore the other second order mock theta function A(q)?

    The first author is supported by University Grants Commission (UGC), under grant Ref No. 971/(CSIR-UGC NET JUNE 2018) and the the second author is supported by Science and Engineering Research Research Board (SERB-MATRICS) grant MTR/2019/000123. The authors of this paper are thankful to Dr. Rupam Barman, IIT Guwahati, for his valuable insight during establishing Theorems 3.1 and 3.2. We would like to thank the referee for carefully reading our paper and offering corrections and helpful suggestions.

    The authors declare there is no conflicts of interest.



    [1] P. Roy, P. Rao, J. Gajre, K. Katake, A. Jagtap, Y. Gajmal, Comprehensive analysis for fraud detection of credit cards through machine learning. In: 2021 International conference on emerging smart computing and informatics (ESCI), 2021. https://doi.org/10.1109/ESCI50559.2021.9397029
    [2] J. Liu, X. Gu, C. Shang, Quantitative detection of financial fraud based on deep learning with combination of E-commerce big data, Complexity, 2020 (2020), 6685888. https://doi.org/10.1155/2020/6685888 doi: 10.1155/2020/6685888
    [3] E. Kim, J. Lee, H. Shin, H. Yang, S. Cho, S. K. Nam, et al., Champion-challenger analysis for credit card fraud detection: Hybrid ensemble and deep learning, Expert Syst. Appl., 128 (2019), 214–224. https://doi.org/10.1016/j.eswa.2019.03.042 doi: 10.1016/j.eswa.2019.03.042
    [4] A. RB, S. K. KR, Credit card fraud detection using artificial neural network, Global Transit. Proc., 2 (2021), 35–41. https://doi.org/10.1016/j.gltp.2021.01.006 doi: 10.1016/j.gltp.2021.01.006
    [5] F. K. Alarfaj, I. Malik, H. U. Khan, N. Almusallam, M. Ramzan, M. Ahmed, Credit card fraud detection using state-of-the-art machine learning and deep learning algorithms, IEEE Access, 10 (2022), 39700–39715. https://doi.org/10.1109/ACCESS.2022.3166891 doi: 10.1109/ACCESS.2022.3166891
    [6] O. Voican, Credit card fraud detection using deep learning techniques, Informatica Economica, 25 (2021), 70–85. https://doi.org/10.24818/issn14531305/25.1.2021.06 doi: 10.24818/issn14531305/25.1.2021.06
    [7] X. Zhang, Y. Han, W. Xu, Q. Wang, HOBA: A novel feature engineering methodology for credit card fraud detection with a deep learning architecture, Inform. Sci., 557 (2021), 302–316. https://doi.org/10.1016/j.ins.2019.05.023 doi: 10.1016/j.ins.2019.05.023
    [8] J. I. Z. Chen, K. L. Lai, Deep convolution neural network model for credit-card fraud detection and alert, J. Artif. Intell. Capsule Netw., 3 (2021), 101–112. https://doi.org/10.36548/jaicn.2021.2.003 doi: 10.36548/jaicn.2021.2.003
    [9] G. Pratuzaitė, N. Maknickienė, Investigation of credit cards fraud detection by using deep learning and classification algorithms. In: 11th International scientific conference "business and management 2020", 2020,389–396. https://doi.org/10.3846/bm.2020.558
    [10] J. Forough, S. Momtazi, Ensemble of deep sequential models for credit card fraud detection, Appl. Soft Comput., 99 (2021), 106883. https://doi.org/10.1016/j.asoc.2020.106883 doi: 10.1016/j.asoc.2020.106883
    [11] A. R. Khalid, N. Owoh, O. Uthmani, M. Ashawa, J. Osamor, J. Adejoh, Enhancing credit card fraud detection: An ensemble machine learning approach, Big Data Cogn Comput, 8 (2024), 6. https://doi.org/10.3390/bdcc8010006 doi: 10.3390/bdcc8010006
    [12] P. Raghavan, N. El Gayar, Fraud detection using machine learning and deep learning. In: 2019 international conference on computational intelligence and knowledge economy (ICCIKE), 2019,334–339. https://doi.org/10.1109/ICCIKE47802.2019.9004231
    [13] T. K. Dang, T. C. Tran, L. M. Tuan, M. V. Tiep, Machine learning based on resampling approaches and deep reinforcement learning for credit card fraud detection systems, Appl. Sci., 11 (2021), 10004. https://doi.org/10.3390/app112110004 doi: 10.3390/app112110004
    [14] A. Alharbi, M. Alshammari, O. D. Okon, A. Alabrah, H. T. Rauf, H. Alyami, et al., A novel text2IMG mechanism of credit card fraud detection: A deep learning approach, Electronics, 11 (2022), 756. https://doi.org/10.3390/electronics11050756 doi: 10.3390/electronics11050756
    [15] S. Sanober, I. Alam, S. Pande, F. Arslan, K. P. Rane, B. K. Singh, et al., An enhanced secure deep learning algorithm for fraud detection in wireless communication, Wirel. Commun. Mob. Com., 2021 (2021), 6079582. https://doi.org/10.1155/2021/6079582 doi: 10.1155/2021/6079582
    [16] N. Nguyen, T. Duong, T. Chau, V. H. Nguyen, T. Trinh, D. Tran, et al., A proposed model for card fraud detection based on CatBoost and deep neural network, IEEE Access, 10 (2022), 96852–96861. https://doi.org/10.1109/ACCESS.2022.3205416 doi: 10.1109/ACCESS.2022.3205416
    [17] D. Almhaithawi, A. Jafar, M. Aljnidi, Example-dependent cost-sensitive credit cards fraud detection using SMOTE and Bayes minimum risk, SN Appl. Sci., 2 (2020), 1574. https://doi.org/10.1007/s42452-020-03375-w doi: 10.1007/s42452-020-03375-w
    [18] A. A. Taha, S. J. Malebary, An intelligent approach to credit card fraud detection using an optimized light gradient boosting machine, IEEE Access, 8 (2020), 25579–25587. https://doi.org/10.1109/ACCESS.2020.2971354 doi: 10.1109/ACCESS.2020.2971354
    [19] V. R. Ganji, A. Chaparala, R. Sajja, Shuffled shepherd political optimization‐based deep learning method for credit card fraud detection, Concurr. Comp. Pract. E., 35 (2023), e7666. https://doi.org/10.1002/cpe.7666 doi: 10.1002/cpe.7666
    [20] A. Dhyani, A. Bansal, A. Jain, S. Seniaray, Credit card fraud detection using machine learning and incremental learning, In: Proceedings of international conference on recent trends in computing, Singapore: Springer, 2023,337–349. https://doi.org/10.1007/978-981-19-8825-7_29
    [21] V. S. S. Karthik, A. Mishra, U. S. Reddy, Credit card fraud detection by modelling behaviour pattern using hybrid ensemble model, Arab. J. Sci. Eng., 47 (2022), 1987–1997. https://doi.org/10.1007/s13369-021-06147-9 doi: 10.1007/s13369-021-06147-9
    [22] G. Hu, Y. Zheng, L. Abualigah, A. G. Hussien, DETDO: An adaptive hybrid dandelion optimizer for engineering optimization, Adv. Eng. Inform., 57 (2023), 102004. https://doi.org/10.1016/j.aei.2023.102004 doi: 10.1016/j.aei.2023.102004
    [23] W. Yang, H. Wang, Y. Zhang, Z. Liu, T. Li, Self-supervised discriminative representation learning by fuzzy autoencoder, ACM T. Intel. Syst. Technol., 14 (2022), 1–18. https://doi.org/10.1145/3555777 doi: 10.1145/3555777
    [24] H. Ghafourian, S. S. Ershadi, D. K. Voronkova, S. Omidvari, L. Badrizadeh, M. L. Nehdi, Minimizing single-family homes' carbon dioxide emissions and life cycle costs: An improved billiard-based optimization algorithm approach, Buildings, 13 (2023), 1815. https://doi.org/10.3390/buildings13071815 doi: 10.3390/buildings13071815
    [25] I. D. Mienye, Y. Sun, A machine learning method with hybrid feature selection for improved credit card fraud detection, Appl. Sci., 13 (2023), 7254. https://doi.org/10.3390/app13127254 doi: 10.3390/app13127254
  • This article has been cited by:

    1. Olivia X.M. Yao, New congruences modulo 9 for the coefficients of Gordon-McIntosh's mock theta function ξ ( q ) , 2024, 47, 1607-3606, 239, 10.2989/16073606.2023.2205604
    2. Yueya Hu, Eric H. Liu, Olivia X. M. Yao, Congruences modulo 4 and 8 for Ramanujan’s sixth-order mock theta function ρ(q), 2025, 66, 1382-4090, 10.1007/s11139-024-01018-x
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1634) PDF downloads(116) Cited by(0)

Figures and Tables

Figures(10)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog