Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

A topological based feature extraction method for the stock market

  • We proposed a topology-based method for pre-processed time series data extracted from stock market data. The topology features are extracted from data after denoising and normalization by using a version of weighted Vietoris-Rips complex. We compare the features from bullish, bearish and normal periods of the Chinese stock market and found significant differences between the features extracted from the groups. Based on the previous research mentioned in the context, we proposed a topology-based stock market index which has the ability to distinguish different stages of the stock market and forewarn stock market crashes.

    Citation: Chen Chang, Hongwei Lin. A topological based feature extraction method for the stock market[J]. Data Science in Finance and Economics, 2023, 3(3): 208-229. doi: 10.3934/DSFE.2023013

    Related Papers:

    [1] D. L. Suthar, D. Baleanu, S. D. Purohit, F. Uçar . Certain k-fractional calculus operators and image formulas of k-Struve function. AIMS Mathematics, 2020, 5(3): 1706-1719. doi: 10.3934/math.2020115
    [2] Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Thabet Abdeljawad, Kottakkaran Sooppy Nisar . Integral transforms of an extended generalized multi-index Bessel function. AIMS Mathematics, 2020, 5(6): 7531-7547. doi: 10.3934/math.2020482
    [3] Gauhar Rahman, Shahid Mubeen, Kottakkaran Sooppy Nisar . On generalized k-fractional derivative operator. AIMS Mathematics, 2020, 5(3): 1936-1945. doi: 10.3934/math.2020129
    [4] Saima Naheed, Shahid Mubeen, Gauhar Rahman, M. R. Alharthi, Kottakkaran Sooppy Nisar . Some new inequalities for the generalized Fox-Wright functions. AIMS Mathematics, 2021, 6(6): 5452-5464. doi: 10.3934/math.2021322
    [5] Khaled Mehrez, Abdulaziz Alenazi . Bounds for certain function related to the incomplete Fox-Wright function. AIMS Mathematics, 2024, 9(7): 19070-19088. doi: 10.3934/math.2024929
    [6] Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565
    [7] Muajebah Hidan, Mohamed Akel, Hala Abd-Elmageed, Mohamed Abdalla . Solution of fractional kinetic equations involving extended (k,τ)-Gauss hypergeometric matrix functions. AIMS Mathematics, 2022, 7(8): 14474-14491. doi: 10.3934/math.2022798
    [8] D. L. Suthar, A. M. Khan, A. Alaria, S. D. Purohit, J. Singh . Extended Bessel-Maitland function and its properties pertaining to integral transforms and fractional calculus. AIMS Mathematics, 2020, 5(2): 1400-1410. doi: 10.3934/math.2020096
    [9] Ji Hyang Park, Hari Mohan Srivastava, Nak Eun Cho . Univalence and convexity conditions for certain integral operators associated with the Lommel function of the first kind. AIMS Mathematics, 2021, 6(10): 11380-11402. doi: 10.3934/math.2021660
    [10] Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Suliman Alsaeed, Kottakkaran Sooppy Nisar . New interpretation of topological degree method of Hilfer fractional neutral functional integro-differential equation with nonlocal condition. AIMS Mathematics, 2023, 8(7): 17154-17170. doi: 10.3934/math.2023876
  • We proposed a topology-based method for pre-processed time series data extracted from stock market data. The topology features are extracted from data after denoising and normalization by using a version of weighted Vietoris-Rips complex. We compare the features from bullish, bearish and normal periods of the Chinese stock market and found significant differences between the features extracted from the groups. Based on the previous research mentioned in the context, we proposed a topology-based stock market index which has the ability to distinguish different stages of the stock market and forewarn stock market crashes.



    Fractional calculus is an essential research area, which is equally useful not only in pure mathematics but also in applied mathematics, physics, biology, engineering, economics and control theory etc. In recent years, study on fractional differential equations is very dynamic and widespread around the world. Some of its applications in diverse fields are discussed in [1,2]. Optical solitons of time-fractional higher-order nonlinear Schr¨odinger equation and soliton molecule solutions of nonlinear Schr¨odinger equations are established by Dai et al. [3,4]. A hybrid analytical solution to examine the fractional model of the nonlinear wave-like equation is explored by Kumar et al. [5]. Numerical solutions with linearization techniques of the fractional Harry Dym equation are established in [6].

    Many researchers have discussed fractional calculus operators [7,8]. The composition of Erdélyi-Kober fractional operators is presented in [9]. Mishra et al. discussed the Marichev-Saigo-Maeda fractional calculus operators on the product of Srivastava polynomials and generalized Mittag-Leffler function [10]. Certain Integral operators involving the Gauss hypergeometric functions are elaborated in [11,12]. A brief study of fractional calculus operators on generalized multivariable Mittag-Leffler function is presented by Suthar et al. [13]. A brief systematic history of the generalized fractional calculus operators and their applications is being profoundly analyzed in [14,15]. A concise description of generalized fractional calculus operators together with their applications is available in [16,17,18].

    A variety of research publications are continuously in progress regarding the generalization of classical fractional calculus operators. In this continuation, many researchers established generalized fractional operator and their applications[19,20]. Smraiz et al. modified the (k,s) fractional integral operator involving k-Mittag-Leffler function and also discussed the applications of (k,s)-Hilfer-Prabhakar fractional derivative in mathematical physics [21,22]. Can et al. have discussed the global existence for a mild solution of fractional Volterra integro-differential equations [23] and inverse source problem for the time-fractional diffusion equation with Mittag-Leffler kernel [24]. They also explored regularized solution approximation for the fractional pseudo-parabolic problem with a nonlinear source term in [25].

    For our study, we start with k versions of Saigo fractional integral and derivative operators involving the k-hypergeometric function in the kernel which were introduced by Gupta and Parihar [26] and are defined as follows:

    For wR+, ϵ,ϱ,χC with Re(ϵ)>0, k>0, we have

    (Iϵ,ϱ,χ0+,kf)(w)=wϵϱkkΓk(ϵ)w0(wt)ϵk1×2F1,k((ϵ+ϱ,k),(χ,k);(ϵ,k);(1tw))f(t)dt. (1.1)
    (Iϵ,ϱ,χ,kf)(w)=1kΓk(ϵ)w(tw)ϵk1tϵϱk×2F1,k((ϵ+ϱ,k),(χ,k);(ϵ,k);(1wt))f(t)dt. (1.2)
    (Dϵ,ϱ,χ0+,kf)(w)=(ddw)n(Iϵ+n,ϱn,ϵ+χn0+,kf)w,n=[Re(ϵ)+1]=(ddw)nwϵ+ϱkkΓk(ϵ+n)w0(wt)ϵk+n1×2F1,k((ϵϱ,k),(χϵ+n,k);(ϵ+n,k);(1tw))f(t)dt. (1.3)
    (Dϵ,ϱ,χ,kf)(w)=(ddw)n(Iϵ+n,ϱn,ϵ+χ,kf)w,n=[Re(ϵ)+1]=(ddw)n1kΓk(ϵ+n)w(tw)ϵnk1tϵ+ϱk×2F1,k((ϵϱ,k),(χϵ+n,k);(ϵ+n,k);(1wt))f(t)dt. (1.4)

    Where [Re(ϵ)] is the integer part of Re(ϵ) and 2F1,k((ϵ,k),(ϱ,k);(χ,k);w) is the k-hypergeometric function defined by Mubeen and Habibullah in [19] as:

    For wC, |w|<1, Re(χ)>Re(ϱ)>0,

    2F1,k((ϵ,k),(ϱ,k);(χ,k);w)=n=0(ϵ)n,k(ϱ)n,kwn(χ)n,kn!. (1.5)

    The benefit of the generalized k-fractional calculus operators is that they generalize classical Saigo's fractional operators and classical Riemann-Liouville operators. For k1, (1.1)–(1.4) condense to the Saigo's fractional integral and differential operators [11]. If we take ϱ=ϵ in (1.1)–(1.4), we have the k- Riemann-Liouville operators as follows:

    (Iϵ,ϱ,χ0+,kf)(w)=(Iϵ0+,kf)(w), (1.6)
    (Iϵ,ϱ,χ,kf)(w)=(Iϵ,kf)(w), (1.7)
    (Dϵ,ϱ,χ0+,kf)(w)=(Dϵ0+,kf)(w), (1.8)
    (Dϵ,ϱ,χ,kf)(w)=(Dϵ,kf)(w) (1.9)

    and for k1, Eqs (1.6)–(1.9) reduce to classical Riemann-Liouville fractional operators.

    Now, we will state the lemmas presented in [26] which will be helpful to prove our main results.

    Lemma 1.1. Let ϵ,ρ,χ,λC, kR+(0,), Re(λ)>max[0,Re(ϱχ)]. Then

    (Iϵ,ϱ,χ0+,ktλk1)(w)=n=0knΓk(λ)Γk(λϱ+χ)Γk(λϱ)Γk(λ+ϵ+χ)wλϱk1. (1.10)

    Lemma 1.2. Let ϵ,ρ,χ,λC, kR+(0,), Re(λ)>max[Re(ϱ),Re(χ)]. Then

    (Iϵ,ϱ,χ,ktλk)(w)=n=0knΓk(λ+ϱ)Γk(λ+χ)Γk(λ)Γk(λ+ϵ+ϱ+χ)wλϱk. (1.11)

    Lemma 1.3. Let ϵ,ρ,χ,λC, kR+(0,), n=Re[ϵ]+1 such that Re(λ)>max[0,Re(ϵϱχ)]. Then

    (Dϵ,ϱ,χ0+,ktλk1)(w)=n=0Γk(λ)Γk(λ+ϱ+χ+ϵ)Γk(λ+χ)Γk(λ+ϱ+nnk)wλ+ϱ+nkn1. (1.12)

    Lemma 1.4. Let ϵ,ρ,χ,λC, n=Re[ϵ]+1, kR+(0,) such that Re(λ)>max[Re(ϵχ),Re(ϱnk+n)]. Then

    (Dϵ,ϱ,χ,ktλk)(w)=n=0Γk(λϱn+nk)Γk(λ+ϵ+χ)Γk(λ)Γk(λϱ+χ)wλϱ+nkn. (1.13)

    Gehlot and Prajapati in [27] defined the k-Wright function as follows:

    For kR+, w,ai,bjC, Ai,BjR(Ai,Bj)0 where i=1,2,..u;j=1,2,..v and (ai+Ain),(bj+Bjn)CkZ,

    uψkv[(a1,A1),..(au,Au);(b1,B1),..(bv,Bv);z]=n=0Γk(a1,nA1)..Γk(au,nAu)znΓk(b1,nB1)..Γk(bv,nBv)n!, (1.14)

    with convergence condition

    1+uj=1Bjkvi=1Aik>0, (1.15)

    for reasonably bounded values of |z|.

    The Lommel-Wright k-function is defined as follows:

    J,m,,k(z)=(z2)+2kn=0(1)n(z2)2n(Γk(+k+nk))mΓk(++k+n), (1.16)

    where zC|(,0],>0,mN,kR,,C and Γk(Z) is the k-gamma function introduced by Diaz and Pariguan [28] given by

    Γk(z)=limnn!kn(nk)ωk1(ω)n,k,

    with k-Pochhammer symbol (ω)n,k given by

    (ω)n,k=ω(ω+k)(ω+2k)....(ω+(n1)k),xC,kR,nN+.

    The classical Eulers Gamma function and Gamma k-function are related with following relation

    Γk(ω)=kωk1Γ(ωk).

    The Lommel-Wright k-function can also be expressed in the form of k-Wright function as:

    J,m,,k(z)=(z2)+2k1ψkm+1[(k,k);(+k,k)mtimes,(++k,);z24k]. (1.17)

    For m=1 in (1.16), we define the generalized Bessel-Maitland k-function as:

    J,,k(z)=(z2)+2kn=0(1)n(z2)2nΓk(+k+nk)Γk(++k+n). (1.18)

    It is observed that for k=1, generalized Lommel-Wright k-function reduces to generalized Lommel-Wright function as given in [29] and for m=k=1, we get the Bessel-Maitland function presented in [29]. It also capitulates connection with the classical Bessel function J(z) mentioned in [30] for m==k=1 and =0.

    As various kinds of generalized fractional calculus operators involving different special functions are in consistent development. The papers on certain generalized fractional operators and integral transform [31,32,33] serve as inspiration for our presented work. This work backs up the prior results and contributes to the field by making broad generalizations.

    The layout of the paper is as follows: In section 2, we established the formulas for generalized Saigo fractional integrals involving generalized Lommel-Wright function and some of its cases are also discussed as corollaries. Section 3 is devoted to developing the generalized Saigo fractional differentiation formulas involving generalized Lommel-Wright function along with its special consequences. In Section 4, extended Beta transform is applied to the generalized Lommel-Wright function. The last section contains concluding remarks.

    In this section, we develop the formulas for Saigo k-fractional integrals (1.1) and (1.2) associated with Lommel-Wright k-function. These results are expressed in terms of k-Wright function.

    Theorem 2.1. Let ϵ,ϱ,χ,λ,σC, >0, mN, kR+, such that Re(ϵ)>0, Reλ>max[0,Re(ϱχ)] and Re(λ+χϱ)>0. If condition given by (1.15) is satisfied and Iϵ,ϱ,χ0+,k is the left sided integral operator of the generalized k-fractional integration considering k-hypergeometric function. Then the subsequent formula

    (Iϵ,ϱ,χ0+,ktλk1J,m,,k(tσk))(w)=wσ(+2k)+λϱk1(12)(+2k)×3ψkm+3[(σ(+2k)+λ,2σ),(σ(+2k)+λϱ+χ,2σ),(k,k);(+k,k)mtimes,(++k,),(σ(+2k)+λϱ,2σ),(σ(+2k)+λ+ϵ+ϱ+χ,2σ);w2σk4] (2.1)

    holds.

    Proof. Using Eq (1.16) in the left hand side of Eq (2.1), we get

    =[Iϵ,ϱ,χ0+,ktλk1n=0(1)n(Γk(+k+nk))mΓk(++k+n)(tσk2)+2k+2n](w) (2.2)
    =n=0(1)n12+2k+2n(Γk(+k+nk))mΓk(++k+n)[Iϵ,ϱ,χ0+,k(tσ(+2k)+λ+2σnk1)](w). (2.3)

    Applying Lemma 1.1, we obtain

    =wσ(+2k)+λϱk1(12)+2kn=01(Γk(+k+nk))mΓk(++k+n)×Γk(σ(+2k)+λ+2σn)Γk(σ(+2k)+λϱ+χ+2σn)Γk(σ(+2k)+λϱ+2σn)Γk(σ(+2k)+λ+ϱ+ϵ+χ+2σn)(kw2σk4)n. (2.4)

    Multiplying and dividing by Γ(n+1) and using Γ(n+1)=knΓk(nk+k), we get

    =wσ(+2k)+λϱk1(12)+2kn=0knΓk(k+nk)(Γk(+k+nk))mΓk(++k+n)n!×Γk(σ(+2k)+λ+2σn)Γk(σ(+2k)+λϱ+χ+2σn)Γk(σ(+2k)+λϱ+2σn)Γk(σ(+2k)+λ+ϱ+ϵ+χ+2σn)(kw2σk4)n. (2.5)

    Using Eq (1.14) in (2.5), we have the desired formula.

    Theorem 2.2. Let ϵ,ϱ,χ,λ,σC, >0, mN, kR+, such that Re(ϵ)>0, Re(λ+ϵ)>max[Re(ϱ)Re(χ)] and Re(ϱ)Re(χ). If condition (1.15) is satisfied and Iϵ,ϱ,χ,k is the right sided integral operator of the generalized k-fractional integration considering k-hypergeometric function. Then the subsequent formula

    (Iϵ,ϱ,χ,ktϵλkJ,m,,k(tσk))(w)=wσ(+2k)+ϵ+λϱk(12)(+2k)×3ψkm+3[(σ(+2k)+ϵ+λ+ϱ,2σ),(σ(+2k)+ϵ+λ+χ,2σ),(k,k);(+k,k)mtimes,(++k,),(σ(+2k)+ϵ+λ,2σ),(σ(+2k)+2ϵ+λ+ϱ+χ,2σ);w2σk4] (2.6)

    holds.

    Proof. The proof of Theorem 2.2 runs parallel to Theorem 2.1.

    The findings in (2.1) and (2.6) are very general in nature and can result in a large number of individual cases. Allocating some acceptable values to the parameters involved, we have the following corollaries.

    Using m=1, the results (2.1) and (2.6) take the form.

    Corollary 2.3. Let ϵ,ϱ,χ,λ,σC, >0, kR+, such that Re(ϵ)>0, Reλ>max[0,Re(ϱχ)] and Re(λ+χϱ)>0. Then the subsequent formula

    (Iϵ,ϱ,χ0+,ktλk1J,,k(tσk))(w)=wσ(+2k)+λϱk1(12)(+2k)×3ψk4[(σ(+2k)+λ,2σ),(σ(+2k)+λϱ+χ,2σ),(k,k);(+k,k),(++k,),(σ(+2k)+λϱ,2σ),(σ(+2k)+λ+ϵ+ϱ+χ,2σ);w2σk4] (2.7)

    is true.

    Corollary 2.4. Let ϵ,ϱ,χ,λ,σC, >0, mN, kR+, such that Re(ϵ)>0, Re(λ+ϵ)>max[Re(ϱ)Re(χ)] and Re(ϱ)Re(χ). Then the subsequent formula

    (Iϵ,ϱ,χ,ktϵλkJ,,k(tσk))(w)=wσ(+2k)+ϵ+λϱk(12)(+2k)×3ψk4[(σ(+2k)+ϵ+λ+ϱ,2σ),(σ(+2k)+ϵ+λ+χ,2σ),(k,k);(+k,k),(++k,),(σ(+2k)+ϵ+λ,2σ),(σ(+2k)+2ϵ+λ+ϱ+χ,2σ);w2σk4] (2.8)

    is true.

    Letting k=1, we have the generalized Lommel-Wright function and the corresponding formulas are presented in subsequent corollaries.

    Corollary 2.5. Let ϵ,ϱ,χ,λ,σC, >0, mN, such that Re(ϵ)>0, Reλ>max[0,Re(ϱχ)] and Re(λ+χϱ)>0. Then the subsequent formula

    (Iϵ,ϱ,χ0+tλ1J,m,(tσ))(w)=wσ(+2)+λϱ1(12)(+2)×3ψm+3[(σ(+2)+λ,2σ),(σ(+2)+λϱ+χ,2σ),(1,1);(+1,1)mtimes,(++1,),(σ(+2)+λϱ,2σ),(σ(+2)+λ+ϵ+ϱ+χ,2σ);w2σ4] (2.9)

    holds.

    Corollary 2.6. Let ϵ,ϱ,χ,λ,σC, >0, mN, such that Re(ϵ)>0, Re(λ+ϵ)>max[Re(ϱ)Re(χ)] and Re(ϱ)Re(χ). Then the subsequent formula

    (Iϵ,ϱ,χtϵλJ,m,(tσ))(w)=wσ(+2)+ϵ+λ+ϱ(12)(+2)×3ψm+3[(σ(+2)+ϵ+λ+ϱ,2σ),(σ(+2)+ϵ+λ+χ,2σ),(1,1);(+1,1)mtimes,(++1,),(σ(+2)+ϵ+λ,2σ),(σ(+2)+2ϵλ+ϱ+χ,2σ);w2σ4] (2.10)

    holds.

    For m=k==1 and =0, the corresponding corollaries are as given below.

    Corollary 2.7. Let ϵ,ϱ,χ,λ,σC, >0, mN, such that Re(ϵ)>0, Reλ>max[0,Re(ϱχ)] and Re(λ+χϱ)>0. Then the subsequent formula holds

    (Iϵ,ϱ,χ0+tλ1J1,1(tσ))(w)=wσ(+)+λϱ1(12)×2ψ3[(σ+λ,2σ),(σ+λϱ+χ,2σ);(+1,1),(σ+λϱ,2σ),(σ+λ+ϵ+ϱ+χ,2σ);w2σ4]. (2.11)

    Corollary 2.8. Let ϵ,ϱ,χ,λ,σC, mN, such that Re(ϵ)>0, Re(λ+ϵ)>max[Re(ϱ)Re(χ)] and Re(ϱ)Re(χ). Then the subsequent formula holds

    (Iϵ,ϱ,χtϵλJ1,1(tσ))(w)=wσ+ϵ+λ+ϱ(12)×2ψ3[(σ+ϵ+λ+ϱ,2σ),(σ+ϵ+λ+χ,2σ);(+1,1),(σ+ϵ+λ,2σ),(σ+2ϵλ+ϱ+χ,2σ);w2σ4]. (2.12)

    In this part, we will present formulas for differentiation using Saigo k-fractional differential operators given by (1.3) and (1.4) involving generalized Lomme-Wright k-function. These formulae are presented in terms of k-Wright function.

    Theorem 3.1. Let ϵ,ϱ,χ,λ,σC, >0, mN, kR+, such that Re(ϵ)>0, Re(λ)>max[0,Re(ϵϱχ)] and Re(λ+χ+ϱ)>0. If condition (1.15) holds and Dϵ,ϱ,χ0+,k is the left sided operator of the generalized k-fractional differentiation considering k-hypergeometric function. Then the following formula

    (Dϵ,ϱ,χ0+,ktλk1J,m,,k(tσk))(w)=wσ(+2k)+λϱk1(12)(+2k)×3ψkm+3[(σ(+2k)+λ,2σ),(σ(+2k)+λ+ϵ+ϱ+χ,2σ),(k,k);(+k,k)mtimes,(++k,),(σ(+2k)+λ+χ,2σ),(σ(+2k)+λ,2σk+1);w(2σ+1k)14k] (3.1)

    holds true.

    Proof. By means of Eq (1.16) we can write the left hand side of Eq (3.1) as follows:

    =[Dϵ,ϱ,χ0+,ktλk1n=0(1)n(Γk(+k+nk))mΓk(++k+n)(tσk2)+2k+2n](w), (3.2)
    =n=0(1)n12+2k+2n(Γk(+k+nk))mΓk(++k+n)[Dϵ,ϱ,χ0+,k(tσ(+2k)+λ+2σnk1)](w). (3.3)

    Using Lemma 1.3 in Eq (3.3), we obtain

    =wσ(+2k)+λ+ϱk1(12)+2kn=01(Γk(+k+nk))mΓk(++k+n)×Γk(σ(+2k)+λ+2σn)Γk(σ(+2k)+λ+ϵ+ϱ+χ+2σn)Γk(σ(+2k)+λ+χ+2σn)Γk(σ(+2k)+λ+2σnkn+n).(w2σ+1k14)n. (3.4)

    Multiplying and dividing by Γ(n+1) and using Γ(n+1)=knΓk(nk+k), we get

    =wσ(+2k)+λ+ϱk1(12)+2kn=0knΓk(nk+k)(Γk(+k+nk))mΓk(++k+n)n!×Γk(σ(+2k)+λ+2σn)Γk(σ(+2k)+λ+ϵ+ϱ+χ+2σn)Γk(σ(+2k)+λ+χ+2σn)Γk(σ(+2k)+λ+2σnkn+n)(w2σ+1k14)n. (3.5)

    By means of Definition (1.14) in (3.5), we obtain the formula (3.1).

    Theorem 3.2. Let ϵ,ϱ,χ,λ,σC, >0, mN, kR+, such that Re(ϵ)>0, Re(ϱ)>max[Re(ϵ+ϱ)+nRe(χ)] and Re(ϵ+ϱχ)+n0, where n=[Re(ϵ)+1] If condition (1.15) is satisfied and (Dϵ,ϱ,χ,k is the right sided operator of the generalized k-fractional differentiation considering k-hypergeometric function. Then the subsequent formula

    (Dϵ,ϱ,χ,ktϵλkJ,m,,k(tσk))(w)=wσ(+2k)+ϵλ+ϱk(12)(+2k)×3ψkm+3[(σ(+2k)+λϵϱ,2σ+k1),(σ(+2k)+λ+χ,2σ),(k,k);(+k,k)mtimes,(++k,),(σ(+2k)+λϵ,2σ),(σ(+2k)+λϵϱ+χ,2σ);w2σ+1k14k] (3.6)

    holds.

    Proof. The proof of Theorem 3.2 is similiar to Theorem 3.1.

    Now, we discuss some special cases.

    For m=1 the results (3.1) and (3.6) are established in the form of following corollaries.

    Corollary 3.3. Let ϵ,ϱ,χ,λ,σC, >0, kR+, such that Re(ϵ)>0, Re(λ)>max[0,Re(ϵϱχ)] and Re(λ+χ+ϱ)>0. If condition in (1.15) holds then the subsequent formula

    (Dϵ,ϱ,χ0+,ktλk1J,,k(tσk))(w)=wσ(+2k)+λϱk1(12)(+2k)×3ψk4[(σ(+2k)+λ,2σ),(σ(+2k)+λ+ϵ+ϱ+χ,2σ),(k,k);(+k,k),(++k,),(σ(+2k)+λ+χ,2σ),(σ(+2k)+λ,2σk+1);w(2σ+1k)14k] (3.7)

    is true.

    Corollary 3.4. Let ϵ,ϱ,χ,λ,σC, >0, kR+, such that Re(ϵ)>0, Re(ϱ)>max[Re(ϵ+ϱ)+nRe(χ)] and Re(ϵ+ϱχ)+n0, where n=[Re(ϵ)+1]. If condition in (1.15) is satisfied then the subsequent formula holds

    (Dϵ,ϱ,χ,ktϵλkJ,m,,k(tσk))(w)=wσ(+2k)+ϵλ+ϱk(12)(+2k)×3ψk4[(σ(+2k)+λϵϱ,2σ+k1),(σ(+2k)+λ+χ,2σ),(k,k);(+k,k),(++k,),(σ(+2k)+λϵ,2σ),(σ(+2k)+λϵϱ+χ,2σ);w2σ+1k14k]. (3.8)

    For k=1, in Eqs. (3.1) and (3.6), the obtained corollaries are given below.

    Corollary 3.5. Let ϵ,ϱ,χ,λ,σC, >0, mN, such that Re(ϵ)>0, Re(λ)>max[0,Re(ϵϱχ)] and Re(λ+χ+ϱ)>0. If condition in (1.15) holds then the subsequent formula is true

    (Dϵ,ϱ,χ0+tλ1J,m,(tσ))(w)=wσ(+2)+λϱ1(12)(+2)×3ψm+3[(σ(+2)+λ,2σ),(σ(+2)+λ+ϵ+ϱ+χ,2σ),(1,1);(+1,1)mtimes,(++1,),(σ(+2)+λ+χ,2σ),(σ(+2)+λ,2σ);w2σ4]. (3.9)

    Corollary 3.6. Let ϵ,ϱ,χ,λ,σC, >0, mN, such that Re(ϵ)>0, Re(ϱ)>max[Re(ϵ+ϱ)+nRe(χ)] and Re(ϵ+ϱχ)+n0, where n=[Re(ϵ)+1]. If condition in (1.15) is satisfied then the subsequent formula holds

    (Dϵ,ϱ,χtϵλJ,m,(tσ))(w)=wσ(+2)+ϵλ+ϱ(12)(+2)×3ψm+3[(σ(+2)+λϵϱ,2σ),(σ(+2)+λ+χ,2σ),(1,1);(+1,1)mtimes,(++1,),(σ(+2)+λϵ,2σ),(σ(+2)+λϵϱ+χ,2σ);w2σ4]. (3.10)

    For m=k==1 and =0, the subsequent corollaries are as follows:

    Corollary 3.7. Let ϵ,ϱ,χ,λ,σC, >0, mN, such that Re(ϵ)>0, Re(λ)>max[0,Re(ϵϱχ)] and Re(λ+χ+ϱ)>0. If condition in (1.15) holds then the subsequent formula is true

    (Dϵ,ϱ,χ0+tλ1J1,1(tσ))(w)=wσ)+λϱ1(12)()×2ψ3[(σ)+λ,2σ),(σ+λ+ϵ+ϱ+χ,2σ);(+1,1),(σ+λ+χ,2σ),(σ+λ,2σ);w2σ4]. (3.11)

    Corollary 3.8. Let ϵ,ϱ,χ,λ,σC such that Re(ϵ)>0, Re(ϱ)>max[Re(ϵ+ϱ)+nRe(χ)] and Re(ϵ+ϱχ)+n0, where n=[Re(ϵ)+1] If condition in (1.15) is satisfied then the subsequent formula holds

    (Dϵ,ϱ,χtϵλJ1,1(tσ))(w)=wσ+ϵλ+ϱ(12)×2ψ3[(σ+λϵϱ,2σ),(σ+λ+χ,2σ),(1,1);(+1,1),(σ+λϵ,2σ),(σ+λϵϱ+χ,2σ);w2σ4]. (3.12)

    In this part, we will discuss some theorems on integral transforms of generalized Lommel-Wright k-function connecting with the results established in previous sections.

    The k-beta function presented in [34] as:

    For r,s>0

    Bk(r,s)=1k10trk1(1t)sk1dt. (4.1)

    It can also be written as

    Bk(l(t);r,s)=1k10trk1(1t)sk1l(t)dt. (4.2)

    The relation between k-beta function and the classical one is

    Bk(r,s)=1kB(rk,sk)=Γk(r)Γk(s)Γk(r+s). (4.3)

    Theorem 4.1. Let ϵ,ϱ,χ,λ,σC, >0, mN, kR+, such that Re(ϵ)>0, Reλ>max[0,Re(ϱχ)]. Then the following formula is true

    Bk((Iϵ,ϱ,χ0+,ktλk1J,m,,k(zt)σk))(w);r,s)=wσ(+2k)+λϱk1(12)(+2k)Γk(s)×4ψkm+4[(σ(+2k)+λ,2σ),(σ(+2k)+λϱ+χ,2σ),(r+σ(+2k),2σ),(k,k);(+k,k)mtimes,(++k,),(σ(+2k)+λϱ,2σ),(σ(+2k)+λ+ϵ+ϱ+χ,2σ),(r+s+σ(+2k,2σ);w2σk4]. (4.4)

    Proof. Using Eqs (1.16) and (4.2) in the left hand side of Eq (4.4), we can write

    =1k10zrk1(1z)sk1[Iϵ,ϱ,χ0+,ktλk1n=0(1)n(Γk(+k+nk))mΓk(++k+n)×((zt)σk2)+2k+2n](w)dz, (4.5)

    which implies

    =n=0(1)n12+2k+2n(Γk(+k+nk))mΓk(++k+n)[Iϵ,ϱ,χ0+,k(tσ(+2k)+λ+2σnk1)](w)×10zr+σ(+2k)+2σnk1(1z)sk1dz. (4.6)

    Applying Lemma 1.1 and using Eq (4.3), we obtain

    =wσ(+2k)+λϱk1(12)+2kn=01(Γk(+k+nk))mΓk(++k+n)×Γk(σ(+2k)+λ+2σn)Γk(σ(+2k)+λϱ+χ+2σn)Γk(σ(+2k)+λϱ+2σn)Γk(σ(+2k)+λ+ϱ+ϵ+χ+2σn)×Γk(r+σ(+2k)+2σn)Γk(s)Γk(r+s+σ(+2k)+2σn)(kw2σk4)n. (4.7)

    Multiplying and dividing by Γ(n+1) and using Γ(n+1)=knΓk(nk+k), we get

    =wσ(+2k)+λϱk1(12)+2kn=0knΓk(k+nk)(Γk(+k+nk))mΓk(++k+n)n!×Γk(σ(+2k)+λ+2σn)Γk(σ(+2k)+λϱ+χ+2σn)Γk(σ(+2k)+λϱ+2σn)Γk(σ(+2k)+λ+ϱ+ϵ+χ+2σn)×Γk(r+σ(+2k)+2σn)Γk(s)Γk(r+s+σ(+2k)+2σn)(w2σk4)n. (4.8)

    By combining Eqs (1.14) and (4.8), we get our required result (4.4).

    Theorem 4.2. Let ϵ,ϱ,χ,λ,σC, >0, mN, kR+, such that Re(ϵ)>0, Re(λ+ϵ)>max[Re(ϱ)Re(χ)]. Then the following formula is true

    Bk((Iϵ,ϱ,χ,ktϵλkJ,m,,k(zt)σk)(w);r,s)=wσ(+2k)+ϵ+λϱk(12)(+2k)Γk(s)×4ψkm+4[(σ(+2k)+ϵ+λ+ϱ,2σ),(σ(+2k)+ϵ+λ+χ,2σ),(r+σ(+2k,2σ),(k,k);(+k,k)mtimes,(++k,),(σ(+2k)+ϵ+λ,2σ),(σ(+2k)+2ϵ+λ+ϱ+χ,2σ),(r+s+σ(+2k,2σ);w2σk4]. (4.9)

    Proof. The proof is similar to Theorem 4.1.

    Theorem 4.3. Let ϵ,ϱ,χ,λ,σC, >0, mN, kR+, such that Re(ϵ)>0, Re(λ)>max[0,Re(ϵϱχ)]. Then the subsequent formula is true

    Bk((Dϵ,ϱ,χ0+,ktλk1J,m,,k(zt)σk)(w);r,s)=wσ(+2k)+λϱk1(12)(+2k)Γk(s)×4ψkm+4[(σ(+2k)+λ,2σ),(σ(+2k)+λ+ϵ+ϱ+χ,2σ),(r+σ(+2k,2σ),(k,k);(+k,k)mtimes,(++k,),(σ(+2k)+λ+χ,2σ),(σ(+2k)+λ,2σk+1),(r+s+σ(+2k,2σ);w(2σ+1k)14k]. (4.10)

    Proof. By means of Eqs (1.16) and (4.2) in the left hand side of Eq (4.10), we have

    =1k10zrk1(1z)sk1[Dϵ,ϱ,χ0+,ktλk1n=0(1)n(Γk(+k+nk))mΓk(++k+n)×(tσk2)+2k+2n](w)dz. (4.11)

    On simplification, we obtain

    =n=0(1)n12+2k+2n(Γk(+k+nk))mΓk(++k+n)[Dϵ,ϱ,χ0+,k(tσ(+2k)+λ+2σnk1)](w)×10zr+σ(+2k)+2σnk1(1z)sk1dz. (4.12)

    Using Lemma 1.3 and relation (4.3), we get

    =wσ(+2k)+λ+ϱk1(12)+2kn=01(Γk(+k+nk))mΓk(++k+n)×Γk(σ(+2k)+λ+2σn)Γk(σ(+2k)+λ+ϵ+ϱ+χ+2σn)Γk(σ(+2k)+λ+χ+2σn)Γk(σ(+2k)+λ+2σnkn+n)×Γk(r+σ(+2k)+2σn)Γk(s)Γk(r+s+σ(+2k)+2σn)(w2σ+1k14)n. (4.13)

    Multiplying and dividing by Γ(n+1) and using Γ(n+1)=knΓk(nk+k), we get

    =wσ(+2k)+λ+ϱk1(12)+2kn=0knΓk(nk+k)(Γk(+k+nk))mΓk(++k+n)n!×Γk(σ(+2k)+λ+2σn)Γk(σ(+2k)+λ+ϵ+ϱ+χ+2σn)Γk(σ(+2k)+λ+χ+2σn)Γk(σ(+2k)+λ+2σnkn+n)×Γk(r+σ(+2k)+2σn)Γk(s)Γk(r+s+σ(+2k)+2σn)(w2σ+1k14)n. (4.14)

    By means of definition (1.14), the proof is done.

    Theorem 4.4. Let ϵ,ϱ,χ,λ,σC, >0, mN, kR+, such that Re(ϵ)>0, Re(λ)>max[Re(ϵχ)nk+n]. Then the subsequent formula is true

    Bk((Dϵ,ϱ,χ,ktϵλkJ,m,,k(zt)σk)(w);r,s)=wσ(+2k)+ϵλ+ϱk(12)(+2k)Γk(s)×4ψkm+4[(σ(+2k)+λϵϱ,2σ+k1),(σ(+2k)+λ+χ,2σ),(r+σ(+2k,2σ),(k,k);(+k,k)mtimes,(++k,),(σ(+2k)+λϵ,2σ),(σ(+2k)+λϵϱ+χ,2σ),(r+s+σ(+2k,2σ);w2σ+1k14k]. (4.15)

    Proof. The proof of Theorem 4.4 runs parallel to Theorem 4.3.

    Now, we will discuss some special cases.

    By substituting m=1 in Eqs (4.4), (4.9), (4.10) and (4.15), we establish the following corollaries.

    Corollary 4.5. Let ϵ,ϱ,χ,λ,σC, >0, kR+, such that Re(ϵ)>0, Reλ>max[0,Re(ϱχ)]. Then the following formula is true

    Bk((Iϵ,ϱ,χ0+,ktλk1J,,k(zt)σk))(w);r,s)=wσ(+2k)+λϱk1(12)(+2k)Γk(s)×4ψk5[(σ(+2k)+λ,2σ),(σ(+2k)+λϱ+χ,2σ),(r+σ(+2k,2σ),(k,k);(+k,k),(++k,),(σ(+2k)+λϱ,2σ),(σ(+2k)+λ+ϵ+ϱ+χ,2σ),(r+s+σ(+2k,2σ);w2σk4]. (4.16)

    Corollary 4.6. Let ϵ,ϱ,χ,λ,σC, >0, kR+, such that Re(ϵ)>0, Re(λ+ϵ)>max[Re(ϱ)Re(χ)]. Then prove the following formula

    Bk((Iϵ,ϱ,χ,ktϵλkJ,,k(zt)σk)(w);r,s)=wσ(+2k)+ϵ+λϱk(12)(+2k)Γk(s)×4ψk5[(σ(+2k)+ϵ+λ+ϱ,2σ),(σ(+2k)+ϵ+λ+χ,2σ),(r+σ(+2k,2σ),(k,k);(+k,k),(++k,),(σ(+2k)+ϵ+λ,2σ),(σ(+2k)+2ϵ+λ+ϱ+χ,2σ),(r+s+σ(+2k,2σ);w2σk4]. (4.17)

    Corollary 4.7. Let ϵ,ϱ,χ,λ,σC, >0, mN, kR+, such that Re(ϵ)>0, Re(λ)>max[0,Re(ϵϱχ)]. Then the subsequent formula is true

    Bk((Dϵ,ϱ,χ0+,ktλk1J,,k(zt)σk)(w);r,s)=wσ(+2k)+λϱk1(12)(+2k)Γk(s)×4ψk5[(σ(+2k)+λ,2σ),(σ(+2k)+λ+ϵ+ϱ+χ,2σ),(r+σ(+2k,2σ),(k,k);(+k,k),(++k,),(σ(+2k)+λ+χ,2σ),(σ(+2k)+λ,2σk+1),(r+s+σ(+2k,2σ);w(2σ+1k)14k]. (4.18)

    Corollary 4.8. Let ϵ,ϱ,χ,λ,σC, >0, kR+, such that Re(ϵ)>0, Re(λ)>max[Re(ϵχ)nk+n]. Then the subsequent formula is true

    Bk((Dϵ,ϱ,χ,ktϵλkJ,,k(zt)σk)(w);r,s)=wσ(+2k)+ϵλ+ϱk(12)(+2k)Γk(s)×4ψk5[(σ(+2k)+λϵϱ,2σ+k1),(σ(+2k)+λ+χ,2σ),(r+σ(+2k,2σ),(k,k);(+k,k),(++k,),(σ(+2k)+λϵ,2σ),(σ(+2k)+λϵϱ+χ,2σ),(r+s+σ(+2k,2σ);w2σ+1k14k]. (4.19)

    For k=1, we establish the following formulas from Eqs (4.4), (4.9), (4.10) and (4.15).

    Corollary 4.9. Let ϵ,ϱ,χ,λ,σC, >0, mN, such that Re(ϵ)>0, Reλ>max[0,Re(ϱχ)]. Then the following formula is true

    B((Iϵ,ϱ,χ0+tλ1J,m,(zt)σ))(w);r,s)=wσ(+2)+λϱ1(12)+2Γ(s)×4ψm+4[(σ(+2)+λ,2σ),(σ(+2)+λϱ+χ,2σ),(r+σ(+2),2σ),(1,1);(+1,1)mtimes,(++1,),(σ(+2)+λϱ,2σ),(σ(+2)+λ+ϵ+ϱ+χ,2σ),(r+s+σ(+2),2σ);w2σ4]. (4.20)

    Corollary 4.10. Let ϵ,ϱ,χ,λ,σC, >0, mN, such that Re(ϵ)>0, Re(λ+ϵ)>max[Re(ϱ)Re(χ)]. Then the following formula is true

    B((Iϵ,ϱ,χtϵλJ,m,(zt)σ)(w);r,s)=wσ(+2)+ϵ+λϱ(12)(+2)Γ(s)×4ψm+4[(σ(+2)+ϵ+λ+ϱ,2σ),(σ(+2)+ϵ+λ+χ,2σ),(r+σ(+2),2σ),(1,1);(+1,1)mtimes,(++1,),(σ(+2)+ϵ+λ,2σ),(σ(+2k)+2ϵ+λ+ϱ+χ,2σ),(r+s+σ(+2),2σ);w2σ4]. (4.21)

    Corollary 4.11. Let ϵ,ϱ,χ,λ,σC, >0, mN, such that Re(ϵ)>0, Re(λ)>max[0,Re(ϵϱχ)]. Then the subsequent formula is true

    B((Dϵ,ϱ,χ0+tλ1J,m,(zt)σ)(w);r,s)=wσ(+2)+λϱ1(12)(+2)Γ(s)×4ψm+4[(σ(+2)+λ,2σ),(σ(+2)+λ+ϵ+ϱ+χ,2σ),(r+σ(+2),2σ),(1,1);(+1,1)mtimes,(++1,),(σ(+2)+λ+χ,2σ),(σ(+2)+λ,2σ),(r+s+σ(+2),2σ);w2σ4]. (4.22)

    Corollary 4.12. Let ϵ,ϱ,χ,λ,σC, >0, mN, such that Re(ϵ)>0, Re(λ)>max[Re(ϵχ)]. Then the subsequent formula is true

    B((Dϵ,ϱ,χtϵλJ,m,(zt)σ)(w);r,s)=wσ(+2)+ϵλ+ϱ(12)(+2)Γ(s)×4ψm+4[(σ(+2)+λϵϱ,2σ),(σ(+2)+λ+χ,2σ),(r+σ(+2),2σ),(1,1);(+1,1)mtimes,(++1,),(σ(+2)+λϵ,2σ),(σ(+2)+λϵϱ+χ,2σ),(r+s+σ(+2),2σ);w2σ4]. (4.23)

    For m=k==1 and =0, the subsequent corollaries are as follows.

    Corollary 4.13. Let ϵ,ϱ,χ,λ,σC, such that Re(ϵ)>0, Reλ>max[0,Re(ϱχ)]. Then the following formula is true

    B((Iϵ,ϱ,χ0+tλ1J1,1(zt)σ))(w);r,s)=wσ+λϱ1(12)Γ(s)×3ψ4[(σ+λ,2σ),(σ+λϱ+χ,2σ),(r+σ,2σ);(+1,1),(σ+λϱ,2σ),(σ+λ+ϵ+ϱ+χ,2σ),(r+s+σ,2σ);w2σ4]. (4.24)

    Corollary 4.14. Let ϵ,ϱ,χ,λ,σC, such that Re(ϵ)>0, Re(λ+ϵ)>max[Re(ϱ)Re(χ)]. Then the following formula is true

    B((Iϵ,ϱ,χtϵλJ1,1(zt)σ)(w);r,s)=wσ+ϵ+λϱ(12)Γ(s)×3ψ4[(σ+ϵ+λ+ϱ,2σ),(σ+ϵ+λ+χ,2σ),(r+σ,2σ);(+1,1),(σ+ϵ+λ,2σ),(σ+2ϵ+λ+ϱ+χ,2σ),(r+s+σ,2σ);w2σ4]. (4.25)

    Corollary 4.15. Let ϵ,ϱ,χ,λ,σC, such that Re(ϵ)>0, Re(λ)>max[0,Re(ϵϱχ)]. Then the subsequent formula is true

    B((Dϵ,ϱ,χ0+tλ1J1,1(zt)σ)(w);r,s)=wσ+λϱ1(12)Γ(s)×3ψ4[(σ+λ,2σ),(σ+λ+ϵ+ϱ+χ,2σ),(r+σ,2σ);(+1,1),(σ+λ+χ,2σ),(σ+λ,2σ),(r+s+σ,2σ);w2σ4]. (4.26)

    Corollary 4.16. Let ϵ,ϱ,χ,λ,σC, such that Re(ϵ)>0, Re(λ)>max[Re(ϵχ)]. Then the subsequent formula is true

    B((Dϵ,ϱ,χtϵλJ1,1(zt)σ)(w);r,s)=wσ+ϵλ+ϱ(12)Γ(s)×3ψ4[(σ+λϵϱ,2σ),(σ+λ+χ,2σ),(r+σ+,2σ);(+1,1),(σ+λϵ,2σ),(σ+λϵϱ+χ,2σ),(r+s+σ,2σ);w2σ4]. (4.27)

    In this article, we established the relations of fractional integration and differentiation associated with the generalized Lommel-Wright function. We conclude that many other interesting image formulas can be derived as the specific cases of our main results. Like the generalized Lommel-Wright function certain other special functions can also be discussed in the same perspective. Briefly, the recent study confirms the earlier results and plays a significant role by making generalizations. Furthermore, for the choice ϱ=ϵ in our main results and corollaries, we obtain the results for k-Riemann-Liouville fractional operators. We also deduce the results for Saigo's fractional operators by substituting k=1 and for Riemann-Liouville fractional operators, we need to opt k=1 and ϱ=ϵ in our main results.

    The authors declares that there is no conflict of interests regarding the publication of this paper.



    [1] Achelis S (2001) Technical analysis from a to z: covers every trading tool from the absolute breath index to the zig zag.
    [2] Adams H, Emerson T, Kirby M, et al. (2017) Persistence images: A stable vector representation of persistent homology. J Mach Learn Res 18.
    [3] Anai H, Chazal F, Glisse M, et al. (2020) Dtm-based filtrations. In Topological Data Analysis, 2020: 33–66. Springer.
    [4] Appel G (1985) The moving average convergence-divergence trading method: advanced version. Scientific Investment Systems.
    [5] Appel G (2005) Technical analysis: power tools for active investors. FT Press.
    [6] Basu D, Li T (2019) A machine-learning-based early warning system boosted by topological data analysis. Available at SSRN.
    [7] Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural comput 15: 1373–1396. https://doi.org/10.1162/089976603321780317 doi: 10.1162/089976603321780317
    [8] Bollinger J (2002) Bollinger on Bollinger bands. McGraw-Hill New York.
    [9] Bubenik P, Dłotko P (2017) A persistence landscapes toolbox for topological statistics. J Symb Comput 78: 91–114. https://doi.org/10.1016/j.jsc.2016.03.009 doi: 10.1016/j.jsc.2016.03.009
    [10] Carlsson G (2009) Topology and data. B Am Math Soc 46: 255–308. https://doi.org/10.1090/S0273-0979-09-01249-X doi: 10.1090/S0273-0979-09-01249-X
    [11] Carrière M, Oudot SY, Ovsjanikov M (2015) Stable topological signatures for points on 3d shapes. In Computer graphics forum, 34: 1–12. Wiley Online Library. https://doi.org/10.1111/cgf.12692
    [12] Chazal F, Cohen-Steiner D, Mérigot Q (2011) Geometric inference for probability measures. Found Comput Math 11 : 733–751. https://doi.org/10.1007/s10208-011-9098-0 doi: 10.1007/s10208-011-9098-0
    [13] Chen AS, Leung MT, Daouk H (2003) Application of neural networks to an emerging financial market: forecasting and trading the taiwan stock index. Comput Oper Res 30: 901–923. https://doi.org/10.1016/S0305-0548(02)00037-0 doi: 10.1016/S0305-0548(02)00037-0
    [14] Chu X, Ilyas IF, Krishnan S, et al. (2016) Data cleaning: Overview and emerging challenges. In Proceedings of the 2016 international conference on management of data, 2201–2206. https://doi.org/10.1145/2882903.2912574
    [15] Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete computat geom, 37: 103–120. https://doi.org/10.1007/s00454-006-1276-5 doi: 10.1007/s00454-006-1276-5
    [16] Cohen-Steiner D, Edelsbrunner H, Harer J, et al. (2010) Lipschitz functions have l p-stable persistence. Found comput math 10: 127–139. https://doi.org/10.1007/s10208-010-9060-6 doi: 10.1007/s10208-010-9060-6
    [17] Corzo T, Prat M, Vaquero E (2014) Behavioral Finance in Joseph de la Vega's Confusion de Confusiones. J Behav Financ 15: 341–350. https://doi.org/10.1080/15427560.2014.968722 doi: 10.1080/15427560.2014.968722
    [18] Daubechies I (1992) Ten lectures on wavelets. SIAM. https://doi.org/10.1137/1.9781611970104
    [19] Deng M (2008) On the theoretical foundation of technical analysis: Market action discounts everything. Available at SSRN. https://doi.org/10.2139/ssrn.1259164 doi: 10.2139/ssrn.1259164
    [20] Dong S, Bremer PT, Garland M, et al. (2006) Spectral surface quadrangulation. In ACM SIGGRAPH 2006 Papers, 1057–1066. https://doi.org/10.1145/1179352.1141993
    [21] Donoho DL, Johnstone IM, Kerkyacharian G, et al. (1995) Wavelet shrinkage: asymptopia? J R Stat Soc B 57: 301–337. https://doi.org/10.1111/j.2517-6161.1995.tb02032.x doi: 10.1111/j.2517-6161.1995.tb02032.x
    [22] Edelsbrunner H, Harer J (2010) Computational topology: an introduction. American Mathematical Society. https://doi.org/10.1090/mbk/069
    [23] Edelsbrunner H, Letscher D, Zomorodian A (2000) Topological persistence and simplification. In Proceedings 41st annual symposium on foundations of computer science, 454–463. IEEE.
    [24] Gidea M (2017) Topological data analysis of critical transitions in financial networks. In International conference and school on network science, 47–59. Springer. https://doi.org/10.2139/ssrn.2903278
    [25] Gidea M, Goldsmith D, Katz Y, et al. (2020) Topological recognition of critical transitions in time series of cryptocurrencies. Physica A 548: 123843. https://doi.org/10.1016/j.physa.2019.123843 doi: 10.1016/j.physa.2019.123843
    [26] Gromov M (1987) Hyperbolic groups. In Essays in group theory, 75–263. Springer.
    [27] Guo H, Yu H, An Q, et al. (2022), Risk analysis of china's stock markets based on topological data structures. Procedia Comput Sci 202: 203–216. https://doi.org/10.1016/j.procs.2022.04.028 doi: 10.1016/j.procs.2022.04.028
    [28] Hensel F, Moor M, Rieck B (2021) A survey of topological machine learning methods. Front Artif Intell 4: 52. https://doi.org/10.3389/frai.2021.681108 doi: 10.3389/frai.2021.681108
    [29] Hu X, Li F, Samaras D, et al. (2019) Topology-preserving deep image segmentation. Advances in neural information processing systems, 32.
    [30] Hu X, Wang Y, Fuxin L, et al. (2021) Topology-aware segmentation using discrete morse theory. arXiv preprint arXiv.
    [31] Katz YA, Biem A (2021) Time-resolved topological data analysis of market instabilities. Physica A 571: 125816. https://doi.org/10.2139/ssrn.3581869 doi: 10.2139/ssrn.3581869
    [32] Kirkpatrick II CD, Dahlquist JA (2010) Technical analysis: the complete resource for financial market technicians. FT press.
    [33] Kusewitt Jr JB (1985) An exploratory study of strategic acquisition factors relating to performance. Strategic Manage J 6: 151–169. https://doi.org/10.1002/smj.4250060205 doi: 10.1002/smj.4250060205
    [34] Lum PY, Singh G, Lehman A, et al. (2013) Extracting insights from the shape of complex data using topology. Sci rep 3: 1236. https://doi.org/10.1038/srep01236 doi: 10.1038/srep01236
    [35] Nison S (1994) Beyond Candlesticks: New Japanese Charting Techniques Revealed. John Wiley & Sons. ISBN 9780471007203.
    [36] Pan I, Korre A, Das S, et al. (2012) Chaos suppression in a fractional order financial system using intelligent regrouping pso based fractional fuzzy control policy in the presence of fractional gaussian noise. Nonlinear Dynam 70: 2445–2461. https://doi.org/10.1007/s11071-012-0632-7 doi: 10.1007/s11071-012-0632-7
    [37] Perea JA, Harer J (2015) Sliding windows and persistence: An application of topological methods to signal analysis. Found Comput Math 15: 799–838. https://doi.org/10.1007/s10208-014-9206-z doi: 10.1007/s10208-014-9206-z
    [38] Prabowo NA, Widyanto RA, Hanafi M, et al. (2021) With topological data analysis, predicting stock market crashes. Int J Informatics Inf Syst 4: 63–70. https://doi.org/10.47738/ijiis.v4i1.78 doi: 10.47738/ijiis.v4i1.78
    [39] Rossmanith R (2003) Completion of market data. Math Financ.
    [40] Sheehy DR (2012) Linear-size approximations to the vietoris–rips filtration. In Proceedings of the twenty-eighth annual symposium on Computational geometry, 2012: 239–248. https://doi.org/10.1145/2261250.2261286
    [41] Skraba P, De Silva V, Vejdemo-Johansson M (2012) Topological analysis of recurrent systems. In NIPS 2012 Workshop on Algebraic Topology and Machine Learning, December 8th, Lake Tahoe, Nevada, 1–5.
    [42] Stolz B (2014) Computational topology in neuroscience. Master's thesis (University of Oxford, 2014).
    [43] Teixeira LA, De Oliveira ALI (2010) A method for automatic stock trading combining technical analysis and nearest neighbor classification. Expert Syst Appl 37: 6885–6890. https://doi.org/10.1016/j.eswa.2010.03.033 doi: 10.1016/j.eswa.2010.03.033
    [44] Topaz CM, Ziegelmeier L, Halverson T (2015) Topological data analysis of biological aggregation models. PloS One 10: e0126383. https://doi.org/10.1371/journal.pone.0126383 doi: 10.1371/journal.pone.0126383
    [45] Vallet B, Lévy B (2008) Spectral geometry processing with manifold harmonics. In Computer Graphics Forum, 27: 251–260. Wiley Online Library. https://doi.org/10.1111/j.1467-8659.2008.01122.x
    [46] Wang F, Liu H, Samaras D, et al. (2020) Topogan: A topology-aware generative adversarial network. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part Ⅲ 16, 118–136. Springer. https://doi.org/10.1007/978-3-030-58580-8_8
    [47] Wang F, Kapse S, Liu S, et al. (2021) Topotxr: A topological biomarker for predicting treatment response in breast cancer. In Information Processing in Medical Imaging: 27th International Conference, IPMI 2021, Virtual Event, 386–397. Springer. https://doi.org/10.1007/978-3-030-78191-0_30
    [48] Westlin E (2022) Using topological data analysis on credit data to predict stock market crashes.
    [49] Wilcoxon F (1992) Individual comparisons by ranking methods. In Breakthroughs in statistics, 196–202. Springer. https://doi.org/10.1007/978-1-4612-4380-9_16
    [50] Wilder JW (1978) New concepts in technical trading systems. Trend Research.
    [51] Wu P, Chen C, Wang Y, et al. (2017) Optimal topological cycles and their application in cardiac trabeculae restoration. In Information Processing in Medical Imaging: 25th International Conference, IPMI 2017, Boone, NC, USA, 25: 80–92. Springer.
    [52] Xu C, Lin H, Fang X (2022) Manifold feature index: A novel index based on high-dimensional data simplification. Expert Syst Appl 200: 116957. https://doi.org/10.1016/j.eswa.2022.116957 doi: 10.1016/j.eswa.2022.116957
    [53] Yen PTW, Cheong SA (2021) Using topological data analysis (tda) and persistent homology to analyze the stock markets in singapore and taiwan. Front Phys 20.
    [54] Yen PTW, Xia K, Cheong SA (2021) Understanding changes in the topology and geometry of financial market correlations during a market crash. Entropy 23: 1211. https://doi.org/10.3390/e23091211 doi: 10.3390/e23091211
    [55] Yen PTW, Xia K, Cheong SA (2023) Laplacian spectra of persistent structures in taiwan, singapore, and us stock markets. Entropy 25: 846. https://doi.org/10.3390/e25060846 doi: 10.3390/e25060846
    [56] Zeng S, Graf F, Hofer C, et al. (2021) Topological attention for time series forecasting. Adv Neur Inf Processing Syst 34: 24871–24882.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2532) PDF downloads(154) Cited by(1)

Figures and Tables

Figures(11)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog