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Abstract: We proposed a topology-based method for pre-processed time series data extracted from
stock market data. The topology features are extracted from data after denoising and normalization
by using a version of weighted Vietoris-Rips complex. We compare the features from bullish, bearish
and normal periods of the Chinese stock market and found significant differences between the features
extracted from the groups. Based on the previous research mentioned in the context, we proposed a
topology-based stock market index which has the ability to distinguish different stages of the stock
market and forewarn stock market crashes.
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1. Introduction

Since the inception of the stock market, investors have actively participated in the pursuit of profits.
Consequently, as the stock market has evolved numerous tools have been developed to analyze and
predict market trends. The analysis and prediction of the stock market have become prominent research
areas due to the multitude of factors influencing it.

Topological data analysis (TDA) (Edelsbrunner et al., 2000) is an emerging tool that extracts
topological features from high-dimensional datasets. Recently, there has been a surge in studies
applying TDA to the stock market. For instance, TDA was employed in 2008 to predict the market crash
and subsequent improvements were made (Prabowo et al., 2021). Additionally, Yen et al. developed
topology-based methods utilizing fusion models to analyze the market process and its intricacies (Yen
et al., 2021). The extracted features from TDA were used as inputs in traditional machine learning
techniques to study market crashes and other market phenomena (Basu and Li, 2019).
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In this paper, we propose a novel method for feature extraction combining manifold learning-based
stock selection with TDA. This approach simplifies computation while capturing the distinctions between
different market periods. Furthermore, our method incorporates the adoption of distance-to-measure
(DTM) based Vietoris-Rips filtration (Anai et al., 2020) which enhances robustness against outliers.

2. Related work

In this section, we mainly review works from two aspects, i.e., works on predicting the stock market
or other derivative markets by various techniques, and works on TDA applications.

2.1. Stock market and technical analysis

Technical analysis was born with the early stock market’s rapid growth. Joseph de la Vega analyzed
the market data of Dutch financial markets in the 17th century (Corzo et al., 2014) which is considered
the budding of modern technical analysis. Tools for technical analysis also sprouted. Japanese started
using candlestick chart to represent the rise and fall of the price of rice in the 17th century and Charles
Dow proposed a similar version in the US in 1900. Candlestick chart can easily represent opening, high,
low and closing price for each time period the user wants to display and it has become the most used
chart in different markets for its simplicity and certainty (Nison, 1994).

Investors and researchers proposed many other technical indicators besides candlestick charts. G.
Appel proposed moving average convergence divergence in 1970s (Appel, 1985) which is designed
to predict the market by observing the movement of the index which reflects the strength, direction,
momentum and duration of a trend (Appel, 2005). J. W. Wilder developed the relative strength index
(RSI) in 1978 (Wilder, 1978), explaining that the RSI can speculate whether a stock is under overbought
or oversold territory. Similarly, J. Bolliner proposed Bollinger Bands (BOLL)in 1980s which aims to
show whether the current price is high or low by using Lower Band, 20SMA and Upper Band with a
belt region (Bollinger, 2002).

The above methods share common features and also called the principles of technical analysis. First,
market action discounts everything which means that all information that may affect the market is
already reflected by the price and volume. Second, history tends to repeat itself making the prediction
of the market using old data possible. Third, prices move in trends indicating underlying patterns
(Kirkpatrick II and Dahlquist, 2010; Deng, 2008; Teixeira and De Oliveira, 2010).

In the second half of the 20th century, with the development of the computer and the internet, using
the computer for systematic trading has become a new trend. For most strategies only using market data
as input, computer based trading system can be seen as a branch of technical analysis. Various methods
of data analysis have been used on market predicting and systematic trading.

2.2. Topological data analysis

Topology originated in the 18th century. Although topology was originally designed for studying
shapes and surfaces recent studies have adopted computational topology for studying large and high-
dimensional data sets (Carlsson, 2009). The fundamental idea is to recognize shapes, discover insights
in the data and identify meaningful sub-groups, which can then be studied by using standard statistical
techniques (Lum et al., 2013). With the development of computational topology, interdisciplinary studies
related with data mining, pattern recognition, machine learning and topology emerged. Edelsbrunner et
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al. proposed persistent homology group first (Edelsbrunner et al., 2000) which can be illustrated by
persistence diagram (Cohen-Steiner et al., 2007). Owing to its stability against small perturbation or
missing data, persistence diagram as input of maching learning based calculation in metric space is
widely accepted (Zeng et al., 2021). TDA has been applied on many different fields including 3D shape
matching (Carrière et al., 2015), recurrent system modeling (Skraba et al., 2012) and signal analysis
(Perea and Harer, 2015). In medical data analysis, TDA is also an widely used technique in various
areas including cancer classification(Wu et al., 2017) and cardiac trabeculae restoration.(Wang et al.,
2021). As for combining with deep learning, TDA also has considerable potential(Hu et al., 2019; Hu
et al., 2021; Wang et al., 2020).

Persistent homology (Edelsbrunner and Harer, 2010) is the flagship tool of TDA (Hensel et al., 2021).
In the analysis of real-world data, topological features obtained from databases are unclear. Using a
filtration (connected to the scale parameter) persistent homology is able to capture topological changes
across the whole range of scales and stores this information in persistence diagrams.

Persistence diagram has its limitations. The length of persistence diagram is not stable and can
not be directly regarded as input of machine learning or deep learning. Researchers proposed several
discretized method based on persistence diagram including persistence landscape (Bubenik and Dłotko,
2017), persistence image (Adams et al., 2017) and so on.

Figure 1. A certain state from the process of Vietoris Rips filteration. The 13 points are
0-simplices. Two 0-simplices form a 1-simplex (an edge) if their ε/2-neighborhoods (yellow
circles) intersect. Three vertices form a 2-simplex (a triangle) if they are pairwise connected
by edges. Four vertices form a 3-simplex (a tetrahedron) if they are pairwise connected by
edges (Topaz et al., 2015).

2.3. TDA with stock market

Many researches focus on combining TDA with stock market these years. Guo et al. analyzed
Chinese stock market from 2013 to 2020 and constructed planar maximal filtered graphs in 3 turbulent
periods to discover systematically important companies(Guo et al., 2022). Westlin used TDA to capture
the connection between credit expansion and stock market crashes(Westlin et al., 2022). Yen et al. built

Data Science in Finance and Economics Volume 3, Issue 3, 208–229.



211

Laplacian spectra to discover the possibility of understanding market crashes in four different crashes
which happened in Taiwan, Singapore and US stock markets(Yen and Cheong, 2021; Yen et al., 2023).
Prabowo et al. used TDA to predict early warning signs of market declines that are inevitable(Prabowo
et al., 2021). Katz et al. utilized TDA to examine market instabilities (Katz and Biem, 2021). These
works were influenced to varying extents by the earlier and subsequent research by Gidea and Katz
(Gidea, 2017; Gidea et al., 2020), where they found the potential of TDA in classifying and predicting
market crashes. It is worth noting that the aforementioned works predominantly focus on specific
periods of the market, specifically prior to the occurrence of crashes. In contrast, our work emphasizes
the performance of TDA across the entire market cycle, particularly during the transitions between
different stages.

3. Background

Considering matrix A = [v1,v2, . . . ,vk] with k as the number of vectors in A, a simplicial complex is
a kind of abstract triangulated structure built on A to represent the intrinsic topological space consisting
of vectors in A.

Figure 2. Simplicial complexes and a counter example

A single simplicial complex K consists of n-dimensional simplexes while satisfying:

• Every face of a simplex from K is also in K .
• The non-empty intersection of any two simplices σ1,σ2 ∈ K is a face of both σ1 and σ2.

A simplex is a generalization of triangle to arbitrary dimensions.

• 0-dimensional simplex is a vertex.
• 1-dimensional simplex is an edge.
• 2-dimensional simplex is a triangular face.
• 3-dimensional simplex is a tetrahedron.
• . . .

The dimension of a simplicial complex is the highest dimension of simplexes it contains. In Figure 2,
(1) is a 1-dimensional simplicial complex, (2) and (3) are 2-dimensional simplicial complex; (4) is not a
simplicial complex.

Vietoris-Rips filtration is a common filtering method applied to point cloud data and scalar data
(Edelsbrunner and Harer, 2010). It is induced by the function

f (v0,v1, . . . ,vn) =
1
2

max
i, j

|vi − v j| (1)

Data Science in Finance and Economics Volume 3, Issue 3, 208–229.



212

This process can be seen as constructing a sphere with each point in the point cloud as the center. The
radii of all spheres are the same at a given ”time” and the intersection of different spheres determines
the structure formed on the point cloud. In this study, the filtration built on A are constructed by using
Vietoris-Rips complex. It follows the following steps: (Sheehy, 2012; Gromov, 1987)

• All vectors from A is regarded as a vertex and we denote X = vi, i = 1,2, . . . ,k.
• Set a parameter ε and initialize ε = 0 then change ε across a set of multiple ascending order, i.e.

ε = ε0,ε1, . . . ,εmax while ε0 < ε1 < · · ·< εmax.
• For εi, corresponding k-dimensional simplexes denoted by σ = {v1,v2, . . . ,vk +1} would belong

to the Rips complex if and only if for every edge (vi,v j), |vi − v j| ⩽ εi where 1 ⩽ i ⩽ j ⩽ k+1.

ε can also be thought as radius of balls centered at vi in Euclidean n-dimensional space E = Rn which is
denoted as B(vi,ε). When two balls have a common intersection, an edge is formed. When three balls
intersect one another, a triangular face is formed. The same holds for higher-dimensional simplexes.

As illustrated in Figure 1, the invariant topological features in the filtration of Vietoris-Rips com-
plexes are connected components (0-dimensional topological features), holes (1-dimensional topological
features) and voids (2-dimensional topological features). With algebraic topology as its theoretical foun-
dation, persistent homology uses kth homology to track the emergency and vanishing of k-dimensional
topological features that persist in the filtration process.

With the increasing of ε , k-th homology classes emerge and disappear and by using a persistence
diagram the information of how the homology changes across the filtration can be captured. The form of
persistence diagram (Cohen-Steiner et al., 2010; Stolz, 2014) is R2 := R2∪R×{∞} and the multiplicity
µ

i, j
k ∈ R2 counts the number of k-th homology classes that are born at εi and die at ε j.

4. Data

In this study, we collect stock data from Shanghai stock exchange (SSE) and Shenzhen stock
exchange (SZSE) from December 1990 to December 2020 including A-shares and Sci-Tech innovation
board (STAR Market). For simplicity without loss of generality, we use the daily closing and split-
adjusted share prices. For comparison with the ground truth of the change in the market, we collected
SSE Composite Index and SZSE Component Index. The detailed data is obtained by using tushare data
interface package.

The closing price of each stock can be represented by an n-dimensional vector vi = (v1,v2, . . . ,vn)
and let matrix A = [v1,v2, . . . ,vk] with k as the number of vectors in A. Considering suspension, the
closing price may be absent which is unacceptable in latter data processing. Thus, data cleaning is
necessary to make sure all the vectors are complete.

4.1. Preprocessing

4.1.1. Data cleaning

The closing price of data we gathered may be absent due to the suspension of the stock so data must
be completed. The most common way of completing the missing data caused by suspension is to copy
the previous day’s data. Additionally, several different methods can be used such as treating missing
attribute values as special values, simply deleting the stock from data, using techniques including but
not limited to regression, machine learning and deep learning to predict the missing value (Chu et al.,
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2016), (Rossmanith, 2003). We choose to consider the absent price to be the same as that of the previous
trading day and if a stock is kept suspended during the study period, then we remove the stock from our data.

4.1.2. Data normalization

To examine and analyze the relationship between stocks that exhibit variations in market value and
closing price across different orders of magnitude as well as to facilitate subsequent processing it is
necessary to normalize the vectors during the data preprocessing stage. Here, we simply normalize data
to 0–1 range as

ṽi =
vi − vmin

vmax − vmin
(2)

where vmin and vmax are the minimum and maximum closing prices respectively of the stock we choose.

5. Method

Figure 3. Pipeline of our work.

After preprocessing, we first use manifold technique to select stocks from the market then denoise
the data by using wavelet transform, and combine the selected code and denoised data together as a new
dataset. Finally, after DTM-based Vietoris-Rips filtration we obtain persistent diagram as topological
features of the stock market. Figure 3 shows the scheme of our method.

5.1. Denoising

For financial data, due to the influence of various incidental factors in the market, financial data is
characterized by considerable noise especially financial time series data. Pan suggested that chaotic
dynamics imposed with some fractional order noise as well as conventional Gaussian noise comprises
the noise in the market (Pan et al., 2012). Hence we will find a simple but effective method for denoising
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in advance. However, the financial time series itself is characterized by non-stationary, non-linear
and high signal-to-noise ratio. Traditional denoising processing methods often have many defects.
Wavelet-based method is developed according to the requirements of time-frequency localization. It
has the properties of self-adaptation and mathematical microscope, and is especially suitable for the
processing of non-stationary and non-linear signals.

Figure 4. Different threshold for CSI300 in 2020, where t is the hard threshold in DWT.

The wavelet transform is similar to fourier transform but preserves some differences. Instead of
decomposing the signal into sines and cosines, the wavelet transform uses functions that are localized in
both time and frequency. Wavelets are small waves located in different times and can be stretched and
shifted to capture features in both time and frequency. Thus, it provides information from both domains.
Wavelet transform has two types, the continuous wavelet transform (CWT) and the discrete wavelet
transform (DWT). We use the latter technique in our study. DWT is computed as

DWT ψ

χ (k,s) = phiψχ (
k
2s ,

1
2s )

=
∫

∞

∞

χ(t)ψ∗(
t − k/2s

1/2s )dt.
(3)

DWT has been used for denoising in many fields in the last decade (Chen et al., 2003). Supposing
the original data are in the form y(n) = x(n)+ e(n) where y(n) is the observed data, x(n)is the original
data and e(n) is Gaussian white noise in the form e(n) = N(0,σ2). The main purpose of denoising is to
reduce e(n) as much as possible and not to disturb x(n) simultaneously. Many important features of
original signal are captured by a subset of DWT coefficients that is much smaller than the original signal
itself. By choosing suitable threshold properly, coefficients can be kept after DWT. Shrinkage process
which was proposed in 1995 provides hard thresholding and soft thresholding for performing filtration
(Donoho et al., 1995). All the coefficients smaller than the threshold are set to 0 in hard thresholding.
Both coefficients larger or smaller than the threshold are shrunken to 0 in soft thresholding. We will use
hard thresholding in our later process.
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5.2. Manifold learning based stock selection

In order to compare the persistence diagram derived from different stages of the stock market cycles
without interference of the number of stock and the length of the time span, we introduce manifold
learning. The number of stocks in stock exchange changes rapidly due to listing and delisting of
companies. Components of current indexes also change periodically which prevent us from customizing
the periods we would like to study. In this section, we apply a manifold learning based high-dimensional
point cloud simplification method to the stock market data (Xu et al., 2022) while the stock dataset is
regarded as point cloud in the following.

5.2.1. LBO on manifold

The Laplace-Beltrami operator (LBO) ∆ is the divergence of the gradient. Suppose a differentiable
manifold M with its Riemannian metric g and f ∈C2 is a real-valued function defined on M. The LBO
∆ on M is defined as following:

∆ f = div(grad f ) (4)

where grad means gradient operator and div represents divergence operator.
The eigenvectors and eigenvalues of Equation 4 can be calculated by solving the following equation:

∆ f =−λ f (5)

where λ is the eigenvalues of Equation 5 and the solution is

0 ≤ λ0 ≤ λ1 ≤ λ2 · · · ≤+∞ (6)

with corresponding eigenfunctions:

φ0(x),φ1(x),φ2(x), . . . , . (7)

When the manifold is closed, the smallest eigenvalue λ0 ≡ 0.
The eigenvalues λi specify the discrete frequence domain of an LBO and the eigenfunctions are

the extensions of the basis functions in the Fourier analysis to a manifold (Vallet and Lévy, 2008) and
eigenfunctions corresponding to larger eigenvalues contain higher-frequency information from data
(Dong et al., 2006). Hence, we use these eigenfunctions to choose components of the new simplified
dataset and the details are introduced in the next section.

5.2.2. Discrete LBO on market data

We use normalized but non-denoised market data as the input, which has been introduced in the last
section and the discretization method in (Belkin and Niyogi, 2003) to construct the discrete LBO. The
method contains two steps:

1. Adjacency graph construction
2. Weight computation

Adjacency graph construction. We choose k-nearest neighbors (KNN) to construct an adjacency
graph on market data. For any normalized ṽi, its KNN set Nṽi = {ṽ j, j = 1,2, . . . ,kn} contains kn nearest

Data Science in Finance and Economics Volume 3, Issue 3, 208–229.



216

points of ṽi in Euclidean space. Thus, we can build a connection between isolated data points which can
be presented in a directed graph.

Weight computation. Based on the adjacency graph, the weight wi j between ṽi and ṽ j can be
calculated as follows:

wi j =


−e−

∥vi−v j∥2
2

t , if i, j are adjacent,
Σkn,i −wikn , if i = j,
0, otherwise,

(8)

where t is an parameter for adjustment.
However, the KNN algorithm is not symmetric which means that supposing ṽm ∈Nṽn but not ṽn ∈Nṽm ,

and the weighted matrix W̃ = [wi j] constructed by Equation 8 is not symmetric. So we use

W =
W̃ +W̃ T

2
(9)

as the weight matrix, which is symmetric. Additionally, we construct

A = diag(w11,w22, . . . ,wnn) (10)

which is extracted from diagonal of W . The LBO on manifold can be discretized into the matrix

L = A−1W (11)

and Equation 5 is discretized as
Lφ = A−1Wφ = λφ (12)

which is equal to
Wφ = λAφ (13)

where λ is the eigenvalues of L, and φ is the eigenvectors. It has been shown that λ satisfies (Belkin
and Niyogi, 2003)

0 = λ1 ≤ λ2 ≤ . . .λn, (14)

and the eigenvectors are pairwise orthogonal. As mentioned above, the larger λ is, the greater is
number of feature point in the corresponding φ . We identify the feature points of the eigenvector φ1 and
incorporate them into the simplified set. Subsequently, we repeat this process for φ2, φ3 and so on until
the desired number of stocks is achieved. For each point x, we use its KNN neighbors Nx for detecting
the local maximum and minimum of φ(x). The method is illustrated as follows:

Local extreme point detection: For a data point x in the data set, if ∀y ∈ Nx,φ(y)> φ(x) then x is
labeled as a local maximum point and vise versa for ∀y ∈ Nx,φ(y)< φ(x), x is a local minimum point.

5.3. Distance-to-Measure Vietoris-Rips Filtration

The classical Vietoris-Rips filtration is highly susceptible to noise and outliers which hinders its direct
applicability in practice (Anai et al., 2020). To mitigate the impact of noise and outliers, a Vietoris-Rips
filtration based on Distance-to-Measure (DTM) is introduced in (Anai et al., 2020) leveraging the
concepts from (Chazal et al., 2011). This modified approach aims to alleviate the adverse effects of
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noise and outliers encountered in the original filtration method. Given a measure f , for every v ∈ X and
ε ∈ R+ we define

rv(ε) =

{
−∞ if ε < f (v),

(ε p − f (v)p)
1
p otherwise

(15)

where the fixed real number p ⩾ 1. We denote the ball which has the radius rv(ε) by B f (v,ε) =
B(v,rv(ε)). Some examples of rv(ε) are represented in Figure 5.

Figure 5. Graph of rv(ε) while f (v) = 1 for different values of p.

Equation 15 provides a weighted-based method to optimize the process of filtration. Balls on
vertices with larger value of rv(ε) will latter grow than those with smaller values which may lead to less
contribution to the form of key topological features. The core of DTM is the measure f (v). For more
detail on DTM please refer to (Anai et al., 2020).

The discrete form of DTM is

d2(v) =
1
k0

k0

∑
k=1

∥v− pk(v)∥2 = f 2(v) (16)

where p1(v), . . . , pk0(x) are k0 nearest neighbors of v. The DTM enables vertices that in higher-density
area tend to start growing earlier, and filter more significant features than the original Vietoris-Rips
filtration. Moreover, m is defined as k0

k . An example of persistence diagram is shown in Figure 6.

6. Implementation and results

6.1. Implementation

We choose the daily data of SSE and SZSE from 01/01/2006 to 12/31/2017 and cut the time span
at January 1 and July 1 in every year thus creating 30 slices. Detailed information is shown in Table
1. Slices from 07/01/2006 to 06/30/2009 and from 07/01/2014 to 12/31/2015 are chosen as bullish
and bearish periods, respectively. The Chinese stock market suffered violent volatility during the two
periods as shown in Figure 7.
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Figure 6. Example of persistence diagram generated by DTM based V-R filtration where
number k of stocks is 100, m, p of DTM is set as 0.05,1.

Figure 7. Weekly candlesticks chart of SSE index from 01/01/2006 to 12/31/2020 where the
split line of normal times and bullish and bearish times are drawn by black solid line.
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The datasets are denoised using db8 of Daubechies Wavelets (Daubechies, 1992) with threshold
set to 0.01. We choose kn = 20 for building the matrix of LBO on manifold. After selecting stocks
using the method presented in Section 5.2, a persistence diagram is built by DTM based Vietoris-Rips
filtration. We draw the persistence diagram first on the Birth-Death coordinate and then transform it to
birth-duration for conspicuous results because almost all the feature points lie near y = x in original
persistence diagram.

Table 1. Time spans from 01/01/2006 to 12/31/2020.

Intervals Length(trading day)1 Intervals Length(trading day)
01/01/2006-06/30/2006 116 07/01/2013-12/31/2013 126
07/01/2006-12/31/20062 128 01/01/2014-06/30/2014 120
01/01/2007-06/30/2007 122 07/01/2014-12/31/2014 126
07/01/2007-12/31/2007 130 01/01/2015-06/30/2015 120
01/01/2008-06/30/2008 122 07/01/2015-12/31/2015 126
07/01/2008-12/31/2008 128 01/01/2016-06/30/2016 122
01/01/2009-06/30/2009 126 07/01/2016-12/31/2016 126
07/01/2009-12/31/2009 132 01/01/2017-06/30/2017 120
01/01/2010-06/30/2010 120 07/01/2017-12/31/2017 128
07/01/2010-12/31/2010 124 01/01/2018-06/30/2018 122
01/01/2011-06/30/2011 120 07/01/2018-12/31/2018 126
07/01/2011-12/31/2011 128 01/01/2019-06/30/2019 124
01/01/2012-06/30/2012 120 07/01/2019-12/31/2019 125
07/01/2012-12/31/2012 126 01/01/2020-06/30/2020 118
01/01/2013-06/30/2013 118 07/01/2020-12/31/2020 126
1 Both Shanghai and Shenzhen stock exchange would close in national statutory holidays. Since most of the national statutory holidays

are in the first half of the year, the first half of the years always have less trading days than the rest.
2 Bold time spans are chose as bullish and bearish times in the history of Chinese stock market while others are regarded as normal

times. The candlesticks chart of SSE index is shown in Figure 7 where the split lines are drawn.

6.2. Results

The transferred persistence diagrams of DTM based filtration are shown in Figure 8 where the
persistence diagrams of bullish and bearish periods are illustrated in the transferred coordinates. The
number of stock k is set as 100, 300, respectively. The parameter m of DTM based Vietoris-Rips
filtration can be selected from 0.05,0.07 and p from 1,2 m, p. Combining the three parameters in
groups, we get eight results. In every group of comparison, the result significantly shows that the
persistence diagram from normal period tends to have later birth time than that of bullish and bearish
peroids and the parameters of k,m, p have little impact on the results. Thus, the persistence diagram of
DTM based filtration is insensitive to parameter changes.

We also choose nine periods corresponding to bullish, bearish and normal periods and each label has
three periods under it. The detailed information of the nine periods are shown in Table 2 and Figure 9.

By comparing the chosen periods, we found differences between the bullish and bearish periods.
Figure 10 shows that the trending of three groups is totally different. By comparing the corresponding
persistent diagrams, we can see that the persistence diagrams of bearish periods has earlier birth times
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Figure 8. Transferred persistence diagram of DTM based filtration of the 30 slices where k is
the number of stock selected by discrete LBO, m = k0

k and p is the parameter in rv(ε) .

Data Science in Finance and Economics Volume 3, Issue 3, 208–229.



221

Table 2. Detailed information of bearish, bullish and normal periods.

Label Interval Time span(Trading day) Change of SSE index
Bear 04/13/2010-07/01/2010 54 3129.69 to 2373.79
Bear 01/15/2008-04/04/2008 54 5503.93 to 3446.24
Bear 06/15/2015-08/27/2015 54 5174.42 to 3083.59
Bull 08/01/2007-10/18/2007 54 4488.77 to 5825.28
Bull 03/15/2015-05/30/2015 54 3391.16 to 4611.74
Bull 01/04/2019-03/30/2019 56 2446.02 to 3090.76

Normal 11/28/2009-02/14/2010 54 3114.29 to 3018.13
Normal 01/30/2014-04/24/2014 56 2045.93 to 2057.03
Normal 09/15/2019-12/04/2019 54 3041.92 to 2878.12

Table 3. p of pairwise Wilcoxon signed-rank test of every group of data.
Parameters k = 100 m = 0.05 p = 1 k = 100 m = 0.05 p = 2 k = 100 m = 0.07 p = 1 k = 100 m = 0.07 p = 2 k = 300 m = 0.05 p = 1 k = 300 m = 0.05 p = 2 k = 300 m = 0.07 p = 1 k = 300 m = 0.07 p = 2

Birth

Normal-Abnormal < 2.2×10−16 < 2.2×10−16 < 2.2×10−16 < 2.2×10−16 < 2.2×10−16 < 2.2×10−16 < 2.2×10−16 < 2.2×10−16

Bearish-Bullish 2.804×10−15 8.468×10−6 2.052×10−6 6.549×10−8 < 2.2×10−16 < 2.2×10−16 < 2.2×10−16 < 2.2×10−16

Bearish-Normal 1.775×10−14 5.475×10−15 5.197×10−13 4.832×10−13 < 2.2×10−16 < 2.2×10−16 < 2.2×10−16 < 2.2×10−16

Bullish-Normal 1.775×10−14 < 2.2×10−16 1.085×10−14 4.631×10−11 < 2.2×10−16 < 2.2×10−16 < 2.2×10−16 < 2.2×10−16

Duration

Normal-Abnormal 1.929×10−8 3.080×10−2 1.084−3 1.680×10−2 3.415×10−10 5.147×10−15 4.606×10−15 1.326×10−12

Bearish-Bullish 0.3258 7.072×10−2 0.4263 7.699×10−2 3.654×10−4 5.477×10−4 2.834×10−4 9.751×10−3

Bearish-Normal 1.115×10−4 9.846×10−3 9.103×10−2 2.555×10−2 9.684×10−13 1.102×10−8 7.577×10−11 1.316×10−8

Bullish-Normal 1.618×10−3 5.630×10−2 0.4263 0.7235 9.982×10−9 2.187×10−4 2.834×10−4 7.410×10−7

Figure 9. Candlestick charts of nine custom periods. Three rows correspond to bearish,
bullish and normal periods, respectively.
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Figure 10. Transferred persistence diagram of DTM based filtration of 9 custom periods.
Box-plot is drawn with respect to two axes.
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than bullish periods and no other significant difference is found among two groups. However, the
conclusion may be not so convincing because the percentage of gains and losses is different and the
stock market tends to fall quicker than rise. In (Gidea, 2017), Gidea inferred that bullish period is similar
to bearish period. The trends among different stock are close to each other and the other circumstance is
the opposite conclusion.

Furthermore, from the comparison of the two groups we can infer that the more stocks are chosen,
the more features could be obtained from filtration whereas the length of the time span has little effect
on the number of features. Besides birth time, features from normal period have longer duration than
that of bullish and bearish but the difference is less significant than birth time.

Table 3 summarizes the results of pairwise Wilcoxon test within each group of features of our study
(Wilcoxon, 1992). Wilcoxon signed-rank test is a non-parametric statistical hypothesis test which does
not assume samples for testing are normally distributed which is the property of persistent diagram
feature points. From Table 3, we conclude that in every group of comparison of birth time there lies
significant difference between compared features. However, in terms of duration using 100 or less
stocks for extracting features does not show significant difference in some groups.

However, using 300 stocks we can highlight the differences which means the more stocks are selected
for comparing, the more significant differences are shown. Moreover, the difference from the group of
14-years history of Chinese market is more significant than that from selected periods which may be
attributed to the length of time span or fluctuation levels of market and needs more analysis.

7. Index computation

Based on previous results, we show the potential of applying TDA to extract features from stock
market and summarizing the features into an index. With the index, we can easily compare the
performance of market in different periods and detect the change of trend of market.

Currently, there is not a widely accepted standard for classifying stock market indices. Achelis
roughly divided them into two categories (Achelis, 2001) market sentiment indicators and market
strength indicators. The former predict market movements, i.e. bullish and bearish periods and latter
measure the strength of the movements. Sentiment indicators tend to be stable but delaying and strength
indicators usually are sensitive but responsive.

In this section, we propose a topology-based stock market index referred to as topo index which
characterizes the similarity of movements of different stocks of the market.

We choose to use sliding window based method to compute topo index. The value of the index of
each day is computed from a w days period ending on the day. But on certain days, too many stocks
suspended so there are not enough stocks remaining after data cleaning for stock selection. So we
change the strategy of completing missing data. Whole table would be complete first and a single data
can only represent absent data 5 times, that is, 6 or more continuous absence won’t be filled. After that,
in each window we directly remove the stocks that remain uncompleted. In every window, we use the
pipeline in Figure 3 with slightly different parameters to filter the stocks and compute topology features.
After capturing the features, we compute the L1 norm of features’ births times which is topo index’s
value T of the certain window:

T =
∑bi

n
(17)

where bi is the birth time of ith feature.
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Figure 11. Topo-index of three different periods of Chinese stock market. (a) and (b)
correspond to two major crashes in 2008 and 2015, and (c) is a relatively stable period
around 2019.
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We conduct a series of experiments by choosing different window size, number of stocks and other
parameters in the original methods. Finally, we choose 300 as the number of stocks and 70 as the
window size. Too few stocks leads to severe turbulence and too many leads to decrease of efficiency. 70
trading days is roughly three months or a quarter in real time which is not only a widely used length of
cycle in economical researches but also the unit for measuring market cycle (Kusewitt Jr, 1985). As for
other parameters, we choose m = 0.07 and p = 1 for least turbulence. The results we get are shown in
Figure 11.

Topo index contains much potential information. First of all, the result mostly complies to the former
conclusion. In normal times, the birth time of topology features is later than that of bullish times and
bearish times. In Figure 11(b), we can see a complete cycle of Chinese stock market in 2015. Topo
index keeps high and then falls with the rise of SSE index and falls again with the fall of SSE index and
finally returns to a high level after the cycle.

Also, topo index has the potential for assisting in forewarning market crash. In Figure 11(a)(b), topo
index stays at the platform at 2.0 without exceeding for few weeks which we infer that 2.0 may be the
boundary between the birth time of topology feature of bullish and bearish periods.

Topo index is also very sensitive to the change of trend of the market. In Figure 11(b), after the crash
in 04/2016 the topo index rises to normal level in few days rather than grows slowly like MA does. In
some days when SSE has over 3% rise or fall, topo index also reacts significantly such as 19/04/2007 in
which SSE fall by 4.52%.

At last, as control group topo index usually keeps at a high level with high fluctuation in normal
period as shown in Figure 11. Although there is misleading around 02/2019, topo index recovers rapidly
after the SSE get back to normal, and the boundary of normal period is around 3.5. If we want to use
hard threshold to distinguish normal, bullish and bearish periods based on the above results, we can
draw a rough conclusion: when topo index is above 3.5, the market is in normal period; between 2.0 and
3.5, bullish period; under 2.0, bearish period. The conclusion has a certain degree of uncertainty and
may not always be applicable in some situations as other indices or signals but it works at most times.

8. Conclusions and discussion

In this paper, we proposed a topology-based feature extraction method. Not all the stocks have to be
included in computation The users can customize the number of stocks by using manifold learning based
stock selection without loss of generalization. The result shows significant difference between bullish,
bearish and normal periods which can visualize and be used for further study such as deep learning.

We also developed a topology-based stock market index, i.e., topo index which possesses the
advantage of low latency compared to other similar indices as it selects a quarter as a sliding window to
evaluate the recent market trends.

However, the method has limitations. The method can only extract features of entire market, but
fails to do so to sub-sectors of the market. Moreover, the value of the features being input of machine
learning and deep learning for further analysis is still unproven.
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