Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Non-fragile synchronization of BAM neural networks with randomly occurring controller gain fluctuation

  • In this research, a non-fragile synchronization of bidirectional association memory (BAM) delayed neural networks is taken into consideration. The controller gain fluctuation seems in a very random manner, that obeys sure Bernoulli distributed noise sequences. Delay dependent criteria are derived to confirm the asymptotic stability of the BAM delayed neural networks. The non-fragile controller are often obtained by determination a collection of linear matrix inequalities (LMIs). A simulation example is used to demonstrate the efficiency of the developed control.

    Citation: Ganesh Kumar Thakur, Sudesh Kumar Garg, Tej Singh, M. Syed Ali, Tarun Kumar Arora. Non-fragile synchronization of BAM neural networks with randomly occurring controller gain fluctuation[J]. Mathematical Biosciences and Engineering, 2023, 20(4): 7302-7315. doi: 10.3934/mbe.2023317

    Related Papers:

    [1] Wenjing Wang, Jingjing Dong, Dong Xu, Zhilian Yan, Jianping Zhou . Synchronization control of time-delay neural networks via event-triggered non-fragile cost-guaranteed control. Mathematical Biosciences and Engineering, 2023, 20(1): 52-75. doi: 10.3934/mbe.2023004
    [2] Pan Wang, Xuechen Li, Qianqian Zheng . Synchronization of inertial complex-valued memristor-based neural networks with time-varying delays. Mathematical Biosciences and Engineering, 2024, 21(2): 3319-3334. doi: 10.3934/mbe.2024147
    [3] Biwen Li, Xuan Cheng . Synchronization analysis of coupled fractional-order neural networks with time-varying delays. Mathematical Biosciences and Engineering, 2023, 20(8): 14846-14865. doi: 10.3934/mbe.2023665
    [4] Ruoyu Wei, Jinde Cao . Prespecified-time bipartite synchronization of coupled reaction-diffusion memristive neural networks with competitive interactions. Mathematical Biosciences and Engineering, 2022, 19(12): 12814-12832. doi: 10.3934/mbe.2022598
    [5] Bingrui Zhang, Jin-E Zhang . Fixed-deviation stabilization and synchronization for delayed fractional-order complex-valued neural networks. Mathematical Biosciences and Engineering, 2023, 20(6): 10244-10263. doi: 10.3934/mbe.2023449
    [6] Trayan Stamov, Gani Stamov, Ivanka Stamova, Ekaterina Gospodinova . Lyapunov approach to manifolds stability for impulsive Cohen–Grossberg-type conformable neural network models. Mathematical Biosciences and Engineering, 2023, 20(8): 15431-15455. doi: 10.3934/mbe.2023689
    [7] Hai Lin, Jingcheng Wang . Pinning control of complex networks with time-varying inner and outer coupling. Mathematical Biosciences and Engineering, 2021, 18(4): 3435-3447. doi: 10.3934/mbe.2021172
    [8] Zhen Yang, Zhengqiu Zhang, Xiaoli Wang . New finite-time synchronization conditions of delayed multinonidentical coupled complex dynamical networks. Mathematical Biosciences and Engineering, 2023, 20(2): 3047-3069. doi: 10.3934/mbe.2023144
    [9] Karim El Laithy, Martin Bogdan . Synaptic energy drives the information processing mechanisms in spiking neural networks. Mathematical Biosciences and Engineering, 2014, 11(2): 233-256. doi: 10.3934/mbe.2014.11.233
    [10] Guowei Wang, Yan Fu . Spatiotemporal patterns and collective dynamics of bi-layer coupled Izhikevich neural networks with multi-area channels. Mathematical Biosciences and Engineering, 2023, 20(2): 3944-3969. doi: 10.3934/mbe.2023184
  • In this research, a non-fragile synchronization of bidirectional association memory (BAM) delayed neural networks is taken into consideration. The controller gain fluctuation seems in a very random manner, that obeys sure Bernoulli distributed noise sequences. Delay dependent criteria are derived to confirm the asymptotic stability of the BAM delayed neural networks. The non-fragile controller are often obtained by determination a collection of linear matrix inequalities (LMIs). A simulation example is used to demonstrate the efficiency of the developed control.



    Due to the wide variety of applications in fields including associative memories, signal processing, parallel computation, pattern recognition, neural networks have drawn a lot of interest in recent years. In many real-world systems, artificial neural networks, neural networks, biological systems have inevitable applications. [1,2,3,4,5,6,7]. Due to the obvious transmission frequency of interconnected neurons and the finite switching speeds of the amplifiers, time delays are ineluctably given. Their presence might affect a system's stability by causing oscillation and instability features [8,9,10,11,12,13,14,15,16,17,18]. Delayed dynamical networks and many time-delay system kinds have been studied, and numerous important outcomes have been presented [19,20,21,22,23,24,25].

    Kosko was the first person to propose that BAM-NNs could be important to the NNs theory [26]. Furthermore, BAM neural frameworks involving delays attracted significant thought and underwent in-depth research. While there is no connection between neurons in the same layer, neurons in another layer are entirely interconnected to those in the first layer. It performs a two-way affiliated hunt to store bipolar vector combines by cycles of forward and backward propagation information streams between the two layers, and it sums up the single-layer auto-cooperative Hebbian connection to a two-layer design coordinated hetero acquainted circuits. As a result, it has numerous applications in the fields of artificial intelligence and pattern identification [27,28,29,30,31,32,33,34,35]. Appropriately, the BAM neural system has been generally concentrated on both in principle and applications. This makes focusing on the stability of the BAM neural framework, which has largely been studied, fascinating and fundamental [36,37,38,39,40,41,42,43,44].

    The synchronization control of chaotic networks plays vital role in applications such as image encryption, secure communication, DC-DC motor and etc. [45,46,47,48]. Satellites play a significant part in the advancement of space technology, civic, military, and scientific endeavors. In particular, feedback control, adaptive control, sampled-data control, and other strategies have been employed to synchronize and regulate the satellite systems [49,50]. Recently, the issue of memristive BAM networks synchronization with stochastic feedback gain variations in [50].

    It is inferred that in real-world scenarios, a nearby float framework as noted in practical model controller does not avoid the proceed out of coefficient uncertainty, leading to the murkiness in controller execution caused by the required word length in any updated structures or additional parameter turning in the final controller use. Along the same ideas, it is crucial to design a non-fragile controller such that it is insensitive to uncertainty. Non-fragile control has developed into a fascinating topic in both theory and practical application. There has been extensive research into the use of non-fragile controllers in recent years [51,52]. However, the problem of non-fragile control of a BAM delayed neural network and controller gain fluctuation has not been thoroughly examined.

    This study examines the non-fragile synchronization for a BAM delayed neural network and a randomly occurring controller gain fluctuation, which is motivated by the studies. New stability requirements for BAM neural networks with arbitrarily occurring controller gain fluctuation are derived in terms of LMI by building an appropriate Lyapunov-Krasovskii functional (LKF) and using conventional integral inequality techniques. Solving the suggested LMI condition yields the gain matrices for the proposed controller design. Finally, a numerical example is used to illustrate the proposed strategy.

    Notations: In this work, Rp represents Euclidean space of p dimension. Rp×q denotes the set of all p×q real matrices. The identity matrix is denoted by I. Here R>0(<0) represents R is a symmetric positive (negative) definite matrices. The elements below the main diagonal of a symmetric matrixl is given by '*'.

    In this study, we will investigate the synchronization of BAM delayed neural network with randomly occurring. The BAM NNs with time-varying delay components can be modeled as follows

    ˙θi()=aiθi()+nj=1w(1)ij˜fj(λj())+nj=1w(2)ij˜fj(λj(σ()))+Ii,˙λj()=bjλj()+ni=1v(1)ji˜gi(θi())+ni=1v(2)ji˜gi(θi(κ()))+Jj,} (2.1)

    where γi() and δj() are the state variables of the neuron at time respectively. The non linear functions ˜fj(), ˜gi() are neuron activation functions. The positive constants ai,bj denote the time scales of the respective layers of the neurons. w(1)ij, w(2)ij, v(1)ji, v(2)ji are connection weights of the network. Ii and Jj denotes the external inputs. σ(),κ() are time varying delays satisfying

    0σ()σ,  ˙σ()=μ1<1, 0κ()κ,  ˙κ()=μ2<2, (2.2)

    and, σ, κ, μ1, and μ2 are constants.

    Consequently, the corresponding compact matrix form can be used to describe the master system (2.1) as,

    M:{˙θ()=Aθ()+W1˜f(λ())+W2˜f(λ(σ())),˙λ()=Bλ()+V1˜g(θ())+V2˜g(θ(κ())), (2.3)

    where, B=diag[b1,b2,...,bn]>0,  A=diag[a1,a2,...,an]>0, Wk=(w(k)ij)(n×n), Vk=(v(k)ij)(n×n),k=1,2.

    Assumption (1). ˜gj(),˜fi() are neuron activation functions, which is bounded, then there exist constants Hi, H+i, Lj, L+j such that

    Lj˜gj(ϕ)˜gj(ϱ)ϕϱL+j,Hi˜fi(ϕ)˜fi(ϱ)ϕϱH+i, (2.4)

    where, j=1,..,n,i=1,...m, and ϱ,ϕR with ϕϱ. We define the subsequent matrices for ease of notation:

    H1=diag{H+1H1,H+2H2,...,H+mHm},H2=diag{H1+H+12,H+2+H22,...,H+m+Hm2},L1=diag{L+1L1,L+2L2,...,L+nLn},L2=diag{L+1+L12,L+2+L22,...,L+n+Ln2}.

    Master system and slave system state variables are represented by θ(),λ() and ˆθ() and ˆλ(), respectively. We take into account the master system's slave system in the follows.

    S:{˙ˆθ()=Aˆθ()+W1˜f(ˆλ())+W2˜f(ˆλ(σ()))+u(),˙ˆλ()=Bˆλ()+V1˜g(ˆθ())+V2˜g(ˆθ(κ()))+v() (2.5)

    We choose the following non-fragile controller:

    u()=(K1+ϕ()ΔK1())ζ(), v()=(K2+ϱ()ΔK2())ϖ(), (2.6)

    Here the controller gain matrices are given by K1,K2. The matrix ΔKi()(i=1,2) satisfy

    ΔKi()=HiΔ()Ei  (i=1,2) (2.7)

    and

    ΔT()Δ()I, (2.8)

    where Hi,Ei are known constant matrices. To desribe randomly accuring control gain fluctuation we introduced the stachastic variables ϕ(),ϱ()R. It is a sequence of white noise generated by Bernoulli distribution with values of zero or one

    Pr{ϱ()=0}=1ϱ,  Pr{ϱ()=1}=ϱ,Pr{ϕ()=0}=1ϕ,  Pr{ϕ()=1}=ϕ, (2.9)

    where 0ϱ,ϕ1 is constant.

    Set the synchronization error signals ϖ()=ˆλ()λ() and ζ()=ˆθ()θ(). Error dynamics between systems (2.3) and (2.5) can therefore be written as follows:

    ˙ζ()=(A+(K1+ϕ()ΔK1()))ζ()+W1f(ϖ())+W2f(ϖ(σ())),˙ϖ()=(B+(K2+ϱ()ΔK2()))ϖ()+V1g(ζ())+V2g(ζ(κ()))}. (2.10)

    where g(ζ())=˜g(ˆθ())˜g(θ()), and f(ϖ())=˜f(ˆλ())˜f(λ()).

    The following crucial conditions are used to obtain our main findings:

    Lemma 2.1. [53] (Schur complement) Let Z, V,O be given matrices such that Z>0, then

    [OVTvZ]<0iffO+VTZ1V<0.

    Lemma 2.2. [54] Given matrices Z=ZT,R,O and Q=QT>0 with appropriate dimensions

    Z+RL()O+OTLT()RT<0,

    for all L() satisfying LT()L()I if and only if there exists a scalar ε>0 such that

    Z+ε1RRT+εOTQO<0.

    Lemma 2.3. [55] For a given matrix ZS+n and a function ς:[c,d]Rn whose derivative ˙ςPC([c,d],Rn), the following inequalities hold: dc˙ςT(r)Z˙ς(r)dr1dc ˆφ¯Zˆφ, where ¯Z=diag{Z,3Z,5Z}, ˆφ=[φT1 φT2 φT3]T, φ1=ς(d)ς(c), φ2=ς(d)+ς(c)2dcdcς(r)dr, φ3=ς(d)ς(c)+6dcdcς(r)dr12(dc)2dcdcς(u)duds.

    The necessary requirements for guaranteeing the stability of system (2.10) are established in this part.

    Theorem 3.1. From Assumption (A), ϕ,ϱ, and ϵi are positive scalars, if there exist symmetric matrices Pi>0, Qi>0, Ri>0, Zi>0, any matrices Ji and Gi, diagonal matrices Si>0 (i=1,2) satisfying

    Ξ=[ΠΩΛ]<0, (3.1)

    where

    Π=[Π113Z1κS2L2024Z1κ260Z1κ3Π17Π220036Z1κ260Z1κ30Π330000Π44000192Z1κ3360Z1κ40720Z1κ50Π77],Ω=[00J1W1J1W20000000000VT1JT200000VT1JT2VT2JT200000VT2JT20000000000000000J1W1J1W2000],Λ=[Λ113Z2σS1H2024Z2σ260Z2σ3Λ17Λ220036Z2σ260Z2σ30Λ330000Λ44000192Z2σ3360Z2σ40720Z2σ50Λ77],
    Π11=R1S2L19Z1κJ1A+G1+ϕJ1ΔK1()+GT1ATJT1+ϕΔKT1()JT1,Π17=J1ϵ1ATJT1+ϵ1GT1+ϵ1ϕΔKT1()JT1+P1,Π22=R19Z1κ,Π33=Q2S2,Π44=(1μ2)Q2,Π77=ϵ1J1+κZ1ϵ1JT1,Λ11=R2S1H1J2B+G2+ϱJ2ΔK2()9Z2σBTJT+GT2+ϱΔKT2()JT2,Λ17=J2ϵ2BTJT2+ϵ2GT2+ϵ2ϱΔKT2()JT2+P2,Λ22=R29Z2σ,Λ33=Q1S1,Λ44=(1μ1)Q1,Λ77=σZ2ϵ2J2ϵ2JT2,

    When this happens, the system (2.10) is asymptotically stable and Ki=J1iGi. are control gain matrices.

    Proof. Take into account the LKF candidate below:

    V(ζ,ϖ,)=4i=1Vi(ζ,ϖ,), (3.2)

    where

    V1(ζ,ϖ,)=ζT()P1ζ()+ϖT()P2ϖ(),V2(ζ,ϖ,)=σ()fT(ϖ(s))Q1f(ϖ(s))ds+κ()gT(ζ(s))Q2g(ζ(s))ds,V3(ζ,ϖ,)=κζT(s)R1ζ(s)ds+σϖT(s)R2ϖ(s)ds,V4(ζ,ϖ,)=0κ+θ˙ζT(s)Z1˙ζ(s)dsdθ+0σ+θ˙ϖT(s)Z2˙ϖ(s)dsdθ.

    The infinitesimal operator L ofV(ζ,ϖ,) is:

    LV(ζ,ϖ,)=limΔ01Δ{E{V(ζ+Δ,y+Δ,)|(ζ,ϖ,)}V(ζ,ϖ,)},E{LV(ζ,ϖ,)}=4i=1E{LVi(ζ,ϖ,)}. (3.3)

    Using the stochastic derivative of V(ζ,ϖ,), we can determine:

    E{LV1(ζ,ϖ,)}=2ζT()P1˙ζ()+2ϖT()P2˙ϖ(), (3.4)
    E{LV2(ζ,ϖ,)}fT(ϖ())Q1f(ϖ())(1μ1)fT(ϖ(σ()))Q1f(ϖ(σ()))+gT(ζ())Q2g(ζ())(1μ2)gT(ζ(κ()))Q2g(ζ(κ())), (3.5)
    E{LV3(ζ,ϖ,)}=ζT()R1ζ()ζT(κ)R1ζ(κ)+ϖT()R2ϖ()ϖT(σ)R2ϖ(σ), (3.6)
    E{LV4(ζ,ϖ,)}=κ˙ζT()Z1˙ζ()κ˙ζT(s)Z1˙ζ(s)ds+σ˙ϖT()Z2˙ϖ()σ˙ϖT(s)Z2˙ϖ(s)ds, (3.7)

    By applying Lemma 2.3 in (2.17), we can obtain

    κ˙ζT(s)Z1˙ζ(s)ds1κηT1()[Z10003Z10005Z1]η1(), (3.8)
    σ˙ϖT(s)Z2˙ϖ(s)ds1σηT2()[Z20003Z20005Z2]η2(), (3.9)

    where

    η1()=[ζT()ζT(κ)ζT()+ζT(κ)2κκζT(s)dsζT()ζT(κ)+6κκζT(s)ds12κ2κtsζT(u)duds]T,η2()=[ϖT()ϖT(σ)ϖT()+ϖT(σ)2σσϖT(s)dsϖT()ϖT(σ)+6σσϖT(s)ds12σ2κtsϖT(u)duds]T.

    From the assumption (A), there exists a diagonal matrices S1>0, S2>0 and Hi, Li(i=1,2), the following inequalities hold:

    0[ϖ()f(ϖ())]T[S1H1S1H2S1][ϖ()f(ϖ())], (3.10)
    0[ζ()g(ζ())]T[S2L1S2L2S2][ζ()g(ζ())]. (3.11)

    The following equations satisfy for any matrices J1,J2 and scalar ϵ1,ϵ2:

    0=2[ζT()+ϵ1˙ζ()]J1[˙ζ()+(A+(K1+ϕ()ΔK1()))ζ()+W1f(ϖ())+W2f(ϖ(σ()))], (3.12)
    0=2[ϖT()+ϵ2˙ϖ()]J2[˙ϖ()+(B+(K2+ϱ()ΔK2()))ϖ()+V1g(ζ())+V2g(ζ(κ()))], (3.13)

    substituting (3.4)(3.6), and (3.7)(3.23) in (3.3), we get

    E{LV(ζ,ϖ,)}ξT() Ξ ξ(), (3.14)

    where ξ()=[ζT() ζT(κ) gT(ζ()) gT(ζ(κ())) κζT(s)ds κsζT(s)duds ˙ζT() ϖT()ϖT(σ) fT(ϖ()) fT(ϖ(κ())) σϖT(s)ds σsϖT(s)duds ˙ϖT()]T.

    It gives that Ξ <0. This demonstrates that the system (2.10) is asymptotically stable using the Lyapunov stability theory. The proof is now complete.

    Theorem 3.2. Under Assumption (A), ϕ,ϱ and ϵi are positive scalars, then there exist symmetric matrices Pi>0, Qi>0, Ri>0, Zi>0, diagonal matrices Si>0, for any matrices Ji, Gi, and scalars ρi>0 (i=1,2) such that

    ˜Ξ=[ˆΞΥ1ρ1Υ2Ψ1Ψ2ρ1I000ρ1I00ρ2I0ρ2I]<0, (3.15)

    where

    ˆΞ=[ˆΠΩˆΛ],ˆΠ=[ˆΠ113Z1κS2L2024Z1κ260Z1κ3ˆΠ17Π220036Z1κ260Z1κ30Π330000Π44000192Z1κ3360Z1κ40720Z1κ50Π77],ˆΛ=[ˆΛ113Z2σS1H2024Z2σ260Z2σ3ˆΛ17Λ220036Z2σ260Z2σ30Λ330000Λ44000192Z2σ3360Z2σ40720Z2σ50Λ77],
    ˆΠ11=R1S2L19Z1κJ1A+G1+GT1ATJT1,ˆΠ17=J1ϵ1ATJT1+ϵ1GT1+P1,ˆΛ11=R2S1H1J2B+G29Z2σBTJT+GT2,ˆΛ17=J2ϵ2BTJT2+ϵ2GT2+P2,Υ1=[ϕHT1JT1 0,...,05elements ϕϵ1HT1JT1 0,...,07elements]T,Υ2=[E1 0,...,013elements]T,Ψ1=[0,...,07elements ϱHT2JT2 0,...,05elements ϱϵ2HT2JT2]T,Ψ2=[0,...,07elements ρ2E2 0,...,06elements]T

    The controller gain matrices are also provided by in equation (2.6) are given by Ki=J1iGi.

    Proof. By using Schur complement,

    [ˆΞ]+Υ1ΔK1()ΥT2+Υ2ΔKT1()ΥT1+Ψ1ΔK2()ΨT2+Ψ2ΔKT2()ΨT1<0.

    From Lemma 2, we get

    ˜Ξ=[ˆΞΥ1ρ1Υ2Ψ1Ψ2ρ1I000ρ1I00ρ2I0ρ2I]<0

    It is clear that the disparities in (3.15) still exist. The evidence is now complete.

    Two examples are provided in this part to show the applicability of our findings.

    Example 4.1. The following BAM neural network with time varying delays:

    ˙ζ()=(A+(K1+ϕ()ΔK1()))ζ()+W1f(ϖ())+W2f(ϖ(σ())),˙ϖ()=(B+(K2+ϱ()ΔK2()))ϖ()+V1g(ζ())+V2g(ζ(κ())),} (4.1)

    with the following parameters:

    A=[1001], W1=[20.1153.2],W2=[1.60.80.182.5], H1=[0.45000.45],E1=[0.35000.35], B=[3002], V1=[11.1121.2],V2=[0.61.80.680.5],H2=[0.25000.25], E2=[0.15000.15], H1=L1=0, H2=L2=I.

    Additionally, we take κ=3.2, σ=3.2, μ1=0.9, μ2=0.9, ϕ=0.9, ϱ=0.9, ϵ1=0.5, and ϵ2=0.5. By solving the LMIs in Theorem 3.2, we get

    P1=[48.38230.57070.570749.5117], P2=[46.62800.25890.258950.0702],Q1=[19.28354.76024.760228.1068], Q2=[19.03795.74755.747525.7761],R1=[35.03181.41081.410831.6352],R2=[35.27981.52881.528833.4075],Z1=[0.01670.00090.00090.0116], Z2=[0.03320.01960.01960.0971],G1=[96.51481.09481.094899.3356],G2=[91.47451.38211.382196.5435],J1=[0.15710.03320.03320.1827], J2=[0.39030.18070.18070.9874]ρ1=42.3781, ρ2=44.9762.

    As well as the following non-fragile controller gains matrices:

    K1=[639.9952126.6829122.2775566.6860], K2=[256.750653.331248.3949107.5330].

    In this scenario is proved the given system is asymptotically stable. In Figure 1, state response are depicted.

    Figure 1.  The dynamical behavior of the system in Example 4.1.

    The issue of BAM delayed neural networks with non-fragile control and controller gain fluctuation has been examined in this article. To ensure the stability of the aforementioned systems, delay-dependent conditions are established. In terms of linear matrix inequalities (LMIs), necessary conditions are obtained by building an L-K functional and utilizing the traditional integral inequality technique. This technique ensures asymptotically stability of addressed to the concerned neural networks. Lastly, a numerical example is provided to demonstrate the viability of the findings in this study. Stochastic differential equations and complex networks both respond well to this approach in future research.



    [1] S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice Hall, New York, 1994.
    [2] Y. Jiang, X. Li, Broadband cancellation method in an adaptive co-site interference cancellation system, Int. J. Electron., 109 (2022), 854–874. https://doi.org/10.1080/00207217.2021.1941295 doi: 10.1080/00207217.2021.1941295
    [3] R. Ye, P. Liu, K. Shi, B. Yan, State damping control: A novel simple method of rotor UAV with high performance, IEEE Access, 8 (2020), 214346–214357. https://doi.org/10.1109/ACCESS.2020.3040779 doi: 10.1109/ACCESS.2020.3040779
    [4] K. Liu, F. Ke, X. Huang, R. Yu, F. Lin, Y. Wu, et al., DeepBAN: A temporal convolution-based communication framework for dynamic WBANs, IEEE Trans. Commun., 69 (2021), 6675–6690. https://doi.org/10.1109/TCOMM.2021.3094581 doi: 10.1109/TCOMM.2021.3094581
    [5] C. Huang, F. Jiang, Q. Huang, X. Wang, Z. Han, W. Huang, Dual-graph attention convolution network for 3-D point cloud classification, IEEE Trans. Neural Networks Learn. Syst., 2022 (2022), 1–13. https://doi.org/10.1109/TNNLS.2022.3162301 doi: 10.1109/TNNLS.2022.3162301
    [6] K. Liu, Z. Yang, W. Wei, B. Gao, D. Xin, C. Sun, et al., Novel detection approach for thermal defects: Study on its feasibility and application to vehicle cables, High Voltage, 2022 (2022), 1–10. https://doi.org/10.1049/hve2.12258 doi: 10.1049/hve2.12258
    [7] S. Xu, J. Lam, W. C. Ho, Y. Zou, Delay-dependent exponential stability for a class of neural networks with time delays, J. Comput. Appl. Math., 183 (2005), 16–28. https://doi.org/10.1016/j.cam.2004.12.025 doi: 10.1016/j.cam.2004.12.025
    [8] O. M. Kwon, S. M. Lee, J. H. Park, E. J. Cha, New approaches on stability criteria for neural networks with interval time-varying delays, Appl. Math. Comput., 218 (2012), 9953–9964. https://doi.org/10.1016/j.amc.2012.03.082 doi: 10.1016/j.amc.2012.03.082
    [9] S. Arik, An improved robust stability result for uncertain neural networks with multiple time delays, Neural Netw., 54 (2014), 1–10. https://doi.org/10.1016/j.neunet.2014.02.008 doi: 10.1016/j.neunet.2014.02.008
    [10] J. Y. Zhang, H. Tang, K. Wang, K. Xu, ASRO-DIO: Active subspace random optimization based depth inertial odometry, IEEE Trans. Rob., 2022 (2022), 1–13. https://doi.org/10.1109/TRO.2022.3208503 doi: 10.1109/TRO.2022.3208503
    [11] Q. She, R. Hu, J. Xu, M. Liu, K. Xu, H. Huang, Learning high-DOF reaching-and-grasping via dynamic representation of Gripper-Object, interaction, ACM Trans. Graph., 41 (2022).
    [12] H. Zhao, C. Zhu, X. Xu, H. Huang, K. Xu, Learning practically feasible policies for online 3D bin packing, Sci. China Inf. Sci., 65 (2021), 15–32. https://doi.org/10.1007/s11432-021-3348-6 doi: 10.1007/s11432-021-3348-6
    [13] T. W. Jiang, S. Gong, Highly selective frequency selective surface with ultrawideband rejection, IEEE Trans. Antennas Propag., 70 (2022), 3459–3468.
    [14] G. Luo, Q. Yuan, J. Li, S. Wang, F. Yang, Artificial intelligence powered mobile networks: From cognition to decision, IEEE Network, 36 (2022), 136–144.
    [15] N. Gunasekaran, N. M. Thoiyab, Q. Zhu, J. Cao, P. Muruganantham, New global asymptotic robust stability of dynamical delayed neural networks via intervalized interconnection matrices IEEE Trans. Cybern., 52 (2022), 11794–11804.
    [16] N. M. Thoiyab, P. Muruganantham, Q. Zhu, N. Gunasekaran, Novel results on global stability analysis for multiple time-delayed BAM neural networks under parameter uncertainties, Chaos, Solitons Fractals, 152 (2021), 111441.
    [17] N. Gunasekaran, G. Zhai, Q. Yu, Sampled-data synchronization of delayed multi-agent networks and its application to coupled circuit, Neurocomputing, 413 (2020), 499–511.
    [18] H. B. Zeng, Y. He, M. Wu, C. F. Zhang, Complete delay–decomposing approach to asymptotic stability for neural networks with time-varying delays, IEEE Trans. Neural Netw., 22 (2011), 806–812.
    [19] Y. Liu, S. M. Lee, O. M. Kwon, J. H. Park, New approach to stability criteria for generalized neural networks with interval time–varying delays, Neurocomputing, 149 (2015), 1544–1551. https://doi.org/10.1016/j.neucom.2014.08.038 doi: 10.1016/j.neucom.2014.08.038
    [20] S. Arik, An analysis of stability of neutral-type neural systems with constant time delays, J. Franklin Inst., 351 (2014), 4949–4959. https://doi.org/10.1016/j.jfranklin.2014.08.013 doi: 10.1016/j.jfranklin.2014.08.013
    [21] X. Li, S. Song, Stabilization of delay systems: Delay-dependent impulsive control, IEEE Trans. Autom. Control, 62 (2017), 406–411. https://doi.org/10.1109/TAC.2016.2530041 doi: 10.1109/TAC.2016.2530041
    [22] X. Li, X. Zhang, S. Song, Effect of delayed impulses on input-to-state stability of nonlinear systems, Automatica, 76 (2017), 378–382. https://doi.org/10.1016/j.automatica.2016.08.009 doi: 10.1016/j.automatica.2016.08.009
    [23] X. Li, M. Bohner, C. Wang, Impulsive differential equations: Periodic solutions and applications, Automatica, 52 (2015), 173–178. https://doi.org/10.1016/j.automatica.2014.11.009 doi: 10.1016/j.automatica.2014.11.009
    [24] M. S. Ali, R. Saravanakumar, Q. Zhu, Less conservative delay-dependent H control of uncertain neural networks with discrete interval and distributed time-varying delays, Neurocomputing, 166 (2015), 84–95. https://doi.org/10.1016/j.neucom.2015.04.023 doi: 10.1016/j.neucom.2015.04.023
    [25] M. J. Park, O. M. Kwon, J. H. Park, S. M. Lee, A new augmented Lyapunov-Krasovskii functional approach for stability of linear systems with time-varying delays, Appl. Math. Comput., 217 (2011), 7197–7209. https://doi.org/10.1016/j.amc.2011.02.006 doi: 10.1016/j.amc.2011.02.006
    [26] B. Kosko, Adaptive bidirectional associative memories, Appl. Opt., 26 (1987), 4947–4960. https://doi.org/10.1364/AO.26.004947 doi: 10.1364/AO.26.004947
    [27] K. Gopalsamy, X. Z. He, Delay independent stability in bidirectional associative memory networks, IEEE Trans. Neural Netw., 5 (1994), 998–1002. https://doi.org/10.1109/72.329700 doi: 10.1109/72.329700
    [28] J. Cao, G. Stamov, I. Stamova, S. Simeonov, Almost periodicity in impulsive fractional-order reaction-diffusion neural networks with time-varying delays, IEEE Trans. Cybern., 51 (2021), 151–161. https://doi.org/10.1109/TCYB.2020.2967625 doi: 10.1109/TCYB.2020.2967625
    [29] Y. Wang, X. Hu, K. Shi, X. Song, H. Shen, Network-based passive estimation for switched complex dynamical networks under persistent dwell-time with limited signals, J. Franklin Inst., 3657 (2020), 10921–10936. https://doi.org/10.1016/j.jfranklin.2020.08.037 doi: 10.1016/j.jfranklin.2020.08.037
    [30] M. S. Ali, L. Palanisamy, N. Gunasekaran, A. Alsaedi, B. Ahmad, Finite-time exponential synchronization of reaction-diffusion delayed complex-dynamical networks, Discrete Contin. Dyn. Syst., 14 (2021), 1465.
    [31] N. Padmaja, P. Balasubramaniam, Mixed H/passivity based stability analysis of fractional-order gene regulatory networks with variable delays, Math. Comput. Simul., 192 (2021), 167–181.
    [32] J. Cao, M. Dong, Exponential stability of delayed bi-directional associative memory networks, Appl. Math. Comput., 135 (2003), 105–112. https://doi.org/10.1016/S0096-3003(01)00315-0 doi: 10.1016/S0096-3003(01)00315-0
    [33] S. Arik, Global asymptotic stability of bidirectional associative memory neural networks with time delays, IEEE Trans. Neural Netw., 16 (2005), 580–586. https://doi.org/10.1109/TNN.2005.844910 doi: 10.1109/TNN.2005.844910
    [34] S. Senan, S. Arik, Global robust stability of bidirectional associative memory neural networks with multiple time delays, IEEE Trans. Syst. Man Cybern B., 37 (2007) 1375–1381. https://doi.org/10.1109/TSMCB.2007.902244 doi: 10.1109/TSMCB.2007.902244
    [35] J. Cao, Y. Wan, Matrix measure strategies for stability and synchronization of inertial BAM neural network with time delays, Neural Netw., 53 (2014), 165–172. https://doi.org/10.1016/j.neunet.2014.02.003 doi: 10.1016/j.neunet.2014.02.003
    [36] J. Cao, Q. Song, Stability in Cohen–Grossberg-type bidirectional associative memory neural networks with time-varying delays, Nonlinearity, 19 (2006), 1601–1617. https://doi.org/10.1088/0951-7715/19/7/008 doi: 10.1088/0951-7715/19/7/008
    [37] M. S. Ali, P. Balasubramaniam, Global exponential stability of uncertain fuzzy BAM neural networks with time-varying delays, Chaos, Solitons Fractals, 42 (2009), 2191–2199. https://doi.org/10.1016/j.chaos.2009.03.138 doi: 10.1016/j.chaos.2009.03.138
    [38] H. Bao, J. Cao, Robust state estimation for uncertain stochastic bidirectional associative memory networks with time-varying delays, Phys. Scripta, 83 (2011), 065004. https://doi.org/10.1088/0031-8949/83/06/065004 doi: 10.1088/0031-8949/83/06/065004
    [39] K. Mathiyalagan, R. Sakthivel, S. Marshal Anthoni, New robust passivity criteria for stochastic fuzzy BAM neural networks with time-varying delays, Commun. Nonlinear Sci. Numer. Simulat., 17 (2012), 1392–1407. https://doi.org/10.1016/j.cnsns.2011.07.032 doi: 10.1016/j.cnsns.2011.07.032
    [40] H. Bao, J. Cao, Exponential stability for stochastic BAM networks with discrete and distributed delays, Appl. Math. Comput., 218 (2012), 6188–6199. https://doi.org/10.1016/j.amc.2011.11.035 doi: 10.1016/j.amc.2011.11.035
    [41] M. S. Ali, R. Saravanakumar, J. Cao, New passivity criteria for memristor-based neutral-type stochastic BAM neural networks with mixed time-varying delays, Neurocomputing, 171 (2016), 1533–1547. https://doi.org/10.1016/j.neucom.2015.07.101 doi: 10.1016/j.neucom.2015.07.101
    [42] Z. Cai, L. Huang, Functional differential inclusions and dynamic behaviours for memristor-based BAM neural networks with time varying delays, Commun. Nonlinear Sci. Numer. Simulat., 19 (2014), 1279–1300. https://doi.org/10.1016/j.cnsns.2013.09.004 doi: 10.1016/j.cnsns.2013.09.004
    [43] H. Li, H. Jiang, C. Hu, Existence and global exponential stability of periodic solution of memristor-based BAM neural networks with time-varying delays, Neural Netw., 75 (2016), 97–109. https://doi.org/10.1016/j.neunet.2015.12.006 doi: 10.1016/j.neunet.2015.12.006
    [44] J. Qi, C. Li, T. Huang, Stability of interval BAM neural network with time varying delay via impulsive control, Neurocomputing, 161 (2015), 162–167. https://doi.org/10.1016/j.neucom.2015.02.052 doi: 10.1016/j.neucom.2015.02.052
    [45] M. Fang, J. H. Park, Non-fragile synchronization of neural networks with time-varying delay and randomly occurring controller gain fluctuation, Appl. Math. Comput., 219 (2013), 8009–8017. https://doi.org/10.1016/j.amc.2013.02.030 doi: 10.1016/j.amc.2013.02.030
    [46] Z. G. Wu, J. H. Park, H. Su, J. Chu, Non-fragile synchronization control for complex networks with missing data, Int. J. Control, 86 (2013), 555–566. https://doi.org/10.1080/00207179.2012.747704 doi: 10.1080/00207179.2012.747704
    [47] R. Rakkiyappan, A. Chandrasekar, G. Petchimmal, Non-fragile robust synchronization for Markovian Jumping choatic neural networks of natural type with randomly occuring uncertainities and mode-dependent time varying delays, ISA Trans., 53 (2014), 1760–1770. https://doi.org/10.1016/j.isatra.2014.09.022 doi: 10.1016/j.isatra.2014.09.022
    [48] D. Li, Z. Wang, G. Ma, C. Ma, Non-fragile synchronization of dynamical networks with randomly occurring non linearities and controller gain fluctuations, Neurocomputing, 168 (2015), 719–725. https://doi.org/10.1016/j.neucom.2015.05.052 doi: 10.1016/j.neucom.2015.05.052
    [49] T. H. Lee, J. H. Park, S. M. Lee, O. M. Kwon, Robust synchronisation of chaotic systems with randomly occurring uncertainties via stochastic sampled-data control, Int. J. Control, 86 (2013), 107–119. https://doi.org/10.1080/00207179.2012.720034 doi: 10.1080/00207179.2012.720034
    [50] R. Anbuvithya, K. Mathiyalagan, R. Sakthivel, P. Prakash, Non-fragile synchronization of Memristive BAM networks with random feedback gain fluctuations, Commun. Nonlinear Sci. Numer. Simulat., 29 (2015), 427–440. https://doi.org/10.1016/j.cnsns.2015.05.020 doi: 10.1016/j.cnsns.2015.05.020
    [51] J. Ren, Q. Zhang, Non-fragile PD state H control for a class of uncertain descriptor systems, Appl. Math. Comput., 218 (2012), 8806–8815.
    [52] F. Yang, H. Dong, Z. Wang, W. Ren, F. E. Alsaadi, A new approach to non-fragile state estimation for continuous neural network with time delays, Neurocomputing, 197 (2016), 205–211. https://doi.org/10.1016/j.neucom.2016.02.062 doi: 10.1016/j.neucom.2016.02.062
    [53] B. Boyd, L. Ghoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, Philadephia, PA: SIAM, 1994. https: //doi.org/10.1137/1.9781611970777
    [54] K. Gu, An integral inequality in the stability problem of time-delay systems, in Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, (2000), 2805–2810. https: //doi.org/10.1109/CDC.2000.914233
    [55] M. V. Thuan, H. Trinh, L. V. Hien, New inequality-based approach to passivity analysis of neural networks with interval time-varying delay, Neurocomputing, 194 (2016), 301–307. https://doi.org/10.1016/j.neucom.2016.02.051 doi: 10.1016/j.neucom.2016.02.051
  • This article has been cited by:

    1. Chengqiang Wang, Xiangqing Zhao, Can Wang, Zhiwei Lv, Synchronization of Takagi–Sugeno Fuzzy Time-Delayed Stochastic Bidirectional Associative Memory Neural Networks Driven by Brownian Motion in Pre-Assigned Settling Time, 2023, 11, 2227-7390, 3697, 10.3390/math11173697
    2. A. Karnan, G. Nagamani, Event-triggered extended dissipative synchronization for delayed neural networks with random uncertainties, 2023, 175, 09600779, 113982, 10.1016/j.chaos.2023.113982
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1644) PDF downloads(81) Cited by(2)

Figures and Tables

Figures(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog