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Abstract: In this research, a non-fragile synchronization of bidirectional association memory (BAM)
delayed neural networks is taken into consideration. The controller gain fluctuation seems in a very
random manner, that obeys sure Bernoulli distributed noise sequences. Delay dependent criteria are
derived to confirm the asymptotic stability of the BAM delayed neural networks. The non-fragile
controller are often obtained by determination a collection of linear matrix inequalities (LMIs). A
simulation example is used to demonstrate the efficiency of the developed control.
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1. Introduction

Due to the wide variety of applications in fields including associative memories, signal processing,
parallel computation, pattern recognition, neural networks have drawn a lot of interest in recent years.
In many real-world systems, artificial neural networks, neural networks, biological systems have in-
evitable applications. [1–7]. Due to the obvious transmission frequency of interconnected neurons and
the finite switching speeds of the amplifiers, time delays are ineluctably given. Their presence might
affect a system’s stability by causing oscillation and instability features [8–18]. Delayed dynamical
networks and many time-delay system kinds have been studied, and numerous important outcomes
have been presented [19–25].

Kosko was the first person to propose that BAM-NNs could be important to the NNs theory [26].
Furthermore, BAM neural frameworks involving delays attracted significant thought and underwent
in-depth research. While there is no connection between neurons in the same layer, neurons in another
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layer are entirely interconnected to those in the first layer. It performs a two-way affiliated hunt to store
bipolar vector combines by cycles of forward and backward propagation information streams between
the two layers, and it sums up the single-layer auto-cooperative Hebbian connection to a two-layer
design coordinated hetero acquainted circuits. As a result, it has numerous applications in the fields
of artificial intelligence and pattern identification [27–35]. Appropriately, the BAM neural system has
been generally concentrated on both in principle and applications. This makes focusing on the stability
of the BAM neural framework, which has largely been studied, fascinating and fundamental [36–44].

The synchronization control of chaotic networks plays vital role in applications such as image en-
cryption, secure communication, DC-DC motor and etc. [45–48]. Satellites play a significant part in
the advancement of space technology, civic, military, and scientific endeavors. In particular, feedback
control, adaptive control, sampled-data control, and other strategies have been employed to synchro-
nize and regulate the satellite systems [49, 50]. Recently, the issue of memristive BAM networks
synchronization with stochastic feedback gain variations in [50].

It is inferred that in real-world scenarios, a nearby float framework as noted in practical model con-
troller does not avoid the proceed out of coefficient uncertainty, leading to the murkiness in controller
execution caused by the required word length in any updated structures or additional parameter turning
in the final controller use. Along the same ideas, it is crucial to design a non-fragile controller such that
it is insensitive to uncertainty. Non-fragile control has developed into a fascinating topic in both theory
and practical application. There has been extensive research into the use of non-fragile controllers in
recent years [51, 52]. However, the problem of non-fragile control of a BAM delayed neural network
and controller gain fluctuation has not been thoroughly examined.

This study examines the non-fragile synchronization for a BAM delayed neural network and a
randomly occurring controller gain fluctuation, which is motivated by the studies. New stability re-
quirements for BAM neural networks with arbitrarily occurring controller gain fluctuation are derived
in terms of LMI by building an appropriate Lyapunov-Krasovskii functional (LKF) and using conven-
tional integral inequality techniques. Solving the suggested LMI condition yields the gain matrices for
the proposed controller design. Finally, a numerical example is used to illustrate the proposed strategy.

Notations: In this work, Rp represents Euclidean space of p dimension. Rp×q denotes the set of all
p × q real matrices. The identity matrix is denoted by I. Here R > 0(< 0) represents R is a symmetric
positive (negative) definite matrices. The elements below the main diagonal of a symmetric matrixl is
given by ‘*’.

2. Problem statement and preliminaries

In this study, we will investigate the synchronization of BAM delayed neural network with
randomly occurring. The BAM NNs with time-varying delay components can be modeled as follows

θ̇i(ℵ) = −aiθi(ℵ) +
∑n

j=1 w(1)
i j f̃ j(λ j(ℵ)) +

∑n
j=1 w(2)

i j f̃ j(λ j(ℵ − σ(ℵ))) + Ii,

λ̇ j(ℵ) = −b jλ j(ℵ) +
∑n

i=1 v(1)
ji g̃i(θi(ℵ)) +

∑n
i=1 v(2)

ji g̃i(θi(ℵ − κ(ℵ))) + J j,

 (2.1)

where γi(ℵ) and δ j(ℵ) are the state variables of the neuron at time ℵ respectively. The non linear
functions f̃ j(·), g̃i(·) are neuron activation functions. The positive constants ai, b j denote the time scales
of the respective layers of the neurons. w(1)

i j , w(2)
i j , v(1)

ji , v(2)
ji are connection weights of the network.

Mathematical Biosciences and Engineering Volume 20, Issue 4, 7302–7315.



7304

Ii and J j denotes the external inputs. σ(ℵ), κ(ℵ) are time varying delays satisfying

0 ≤ σ(ℵ) ≤ σ, σ̇(ℵ) = µ1 < 1, 0 ≤ κ(ℵ) ≤ κ, κ̇(ℵ) = µ2 < 2, (2.2)

and, σ, κ, µ1, and µ2 are constants.
Consequently, the corresponding compact matrix form can be used to describe the master system

(2.1) as,

M :

 θ̇(ℵ) = −Aθ(ℵ) + W1 f̃ (λ(ℵ)) + W2 f̃ (λ(ℵ − σ(ℵ))),

λ̇(ℵ) = −Bλ(ℵ) + V1g̃(θ(ℵ)) + V2g̃(θ(ℵ − κ(ℵ))),
(2.3)

where, B = diag[b1, b2, ..., bn] > 0, A = diag[a1, a2, ..., an] > 0, Wk = (w(k)
i j )(n×n), Vk = (v(k)

i j )(n×n), k =

1, 2.
Assumption (1). g̃ j(·), f̃i(·) are neuron activation functions, which is bounded, then there exist con-
stants H−i , H+

i , L−j , L+
j such that

L−j ≤
g̃ j(φ) − g̃ j(%)

φ − %
≤ L+

j ,H
−
i ≤

f̃i(φ) − f̃i(%)
φ − %

≤ H+
i , (2.4)

where, j = 1, .., n, i = 1, ...m, and %, φ ∈ R with φ , %. We define the subsequent matrices for ease of
notation:

H1 = diag
{
H+

1 H−1 ,H
+
2 H−2 , ...,H

+
mH−m

}
, H2 = diag

{H−1 + H+
1

2
,

H+
2 + H−2

2
, ...,

H+
m + H−m

2

}
,

L1 = diag
{
L+

1 L−1 ,L
+
2 L−2 , ...,L

+
n L−n

}
, L2 = diag

{L+
1 + L−1

2
,

L+
2 + L−2

2
, ...,

L+
n + L−n

2

}
.

Master system and slave system state variables are represented by θ(ℵ), λ(ℵ) and θ̂(ℵ) and λ̂(ℵ), re-
spectively. We take into account the master system’s slave system in the follows.

S :


˙̂θ(ℵ) = −Aθ̂(ℵ) + W1 f̃ (λ̂(ℵ)) + W2 f̃ (λ̂(ℵ − σ(ℵ))) + u(ℵ),
˙̂λ(ℵ) = −Bλ̂(ℵ) + V1g̃(θ̂(ℵ)) + V2g̃(θ̂(ℵ − κ(ℵ))) + v(ℵ)

(2.5)

We choose the following non-fragile controller:

u(ℵ) = (K1 + φ(ℵ)∆K1(ℵ))ζ(ℵ), v(ℵ) = (K2 + %(ℵ)∆K2(ℵ))$(ℵ), (2.6)

Here the controller gain matrices are given by K1,K2 . The matrix ∆Ki(ℵ)
(i = 1, 2) satisfy

∆Ki(ℵ) = Hi∆(ℵ)Ei (i = 1, 2) (2.7)

and

∆T (ℵ)∆(ℵ) ≤ I, (2.8)
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where Hi,Ei are known constant matrices. To desribe randomly accuring control gain fluctuation
we introduced the stachastic variables φ(ℵ), %(ℵ) ∈ R. It is a sequence of white noise generated by
Bernoulli distribution with values of zero or one

Pr{%(ℵ) = 0} = 1 − %, Pr{%(ℵ) = 1} = %, Pr{φ(ℵ) = 0} = 1 − φ, Pr{φ(ℵ) = 1} = φ, (2.9)

where 0 ≤ %, φ ≤ 1 is constant.
Set the synchronization error signals $(ℵ) = λ̂(ℵ) − λ(ℵ) and ζ(ℵ) = θ̂(ℵ) − θ(ℵ). Error dynamics

between systems (2.3) and (2.5) can therefore be written as follows:

ζ̇(ℵ) = (−A + (K1 + φ(ℵ)∆K1(ℵ)))ζ(ℵ) + W1 f ($(ℵ)) + W2 f ($(ℵ − σ(ℵ))),

$̇(ℵ) = (−B + (K2 + %(ℵ)∆K2(ℵ)))$(ℵ) + V1g(ζ(ℵ)) + V2g(ζ(ℵ − κ(ℵ)))

 . (2.10)

where g(ζ(ℵ)) = g̃(θ̂(ℵ)) − g̃(θ(ℵ)), and f ($(ℵ)) = f̃ (λ̂(ℵ)) − f̃ (λ(ℵ)).
The following crucial conditions are used to obtain our main findings:

Lemma 2.1. [53] (Schur complement) Let Z, V,O be given matrices such that Z > 0, then[
O VT

−Z

]
< 0 i f fO + VTZ−1V < 0.

Lemma 2.2. [54] Given matrices Z = ZT ,R,O and Q = QT > 0 with appropriate dimensions

Z + RL(ℵ)O + OT LT (ℵ)RT < 0,

for all L(ℵ) satisfying LT (ℵ)L(ℵ) ≤ I if and only if there exists a scalar ε > 0 such that

Z + ε−1RRT + εOTQO < 0.

Lemma 2.3. [55] For a given matrix Z ∈ S +
n and a function ς : [c, d] → Rn whose deriva-

tive ς̇ ∈ PC([c, d],Rn),the following inequalities hold:
∫ d

c
ς̇T (r)Zς̇(r)dr ≥ 1

d−c ϕ̂Zϕ̂, where Z =

diag{Z, 3Z, 5Z}, ϕ̂ = [ϕT
1 ϕT

2 ϕT
3 ]T , ϕ1 = ς(d) − ς(c), ϕ2 = ς(d) + ς(c) − 2

d−c

∫ d

c
ς(r)dr, ϕ3 =

ς(d) − ς(c) + 6
d−c

∫ d

c
ς(r)dr − 12

(d−c)2

∫ d

c

∫ d

c
ς(u)duds.

3. Stability results

The necessary requirements for guaranteeing the stability of system (2.10) are established in this
part.

Theorem 3.1. From Assumption (A), φ, %, and εi are positive scalars, if there exist symmetric matrices
Pi > 0, Qi > 0, Ri > 0, Zi > 0, any matrices Ji and Gi, diagonal matrices Si > 0 (i = 1, 2) satisfying

Ξ =

 Π Ω

∗ Λ

 < 0, (3.1)
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where

Π =



Π11
3Z1
κ

S2L2 0 −24Z1
κ2

60Z1
κ3 Π17

∗ Π22 0 0 36Z1
κ2

−60Z1
κ3 0

∗ ∗ Π33 0 0 0 0

∗ ∗ ∗ Π44 0 0 0

∗ ∗ ∗ ∗
−192Z1
κ3

360Z1
κ4 0

∗ ∗ ∗ ∗ ∗
−720Z1
κ5 0

∗ ∗ ∗ ∗ ∗ ∗ Π77



,

Ω =



0 0 J1W1 J1W2 0 0 0

0 0 0 0 0 0 0

VT
1 J

T
2 0 0 0 0 0 VT

1 J
T
2

VT
2 J

T
2 0 0 0 0 0 VT

2 J
T
2

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 J1W1 J1W2 0 0 0



,

Λ =



Λ11
3Z2
σ

S1H2 0 −24Z2
σ2

60Z2
σ3 Λ17

∗ Λ22 0 0 36Z2
σ2

−60Z2
σ3 0

∗ ∗ Λ33 0 0 0 0

∗ ∗ ∗ Λ44 0 0 0

∗ ∗ ∗ ∗
−192Z2
σ3

360Z2
σ4 0

∗ ∗ ∗ ∗ ∗
−720Z2
σ5 0

∗ ∗ ∗ ∗ ∗ ∗ Λ77



,

Π11 = R1 − S2L1 −
9Z1

κ
− J1A + G1 + φJ1∆K1(ℵ) + GT

1 −A
TJT

1 + φ∆KT
1 (ℵ)JT

1 ,

Π17 = −J1 − ε1A
TJT

1 + ε1G
T
1 + ε1φ∆KT

1 (ℵ)JT
1 + P1,Π22 = −R1 −

9Z1

κ
,

Π33 = Q2 − S2,Π44 = −(1 − µ2)Q2,Π77 = −ε1J1 + κZ1 − ε1J
T
1 ,

Λ11 = R2 − S1H1 − J2B + G2 + %J2∆K2(ℵ) −
9Z2

σ
−BTJT + GT

2 + %∆KT
2 (ℵ)JT

2 ,
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Λ17 = −J2 − ε2B
TJT

2 + ε2G
T
2 + ε2%∆K

T
2 (ℵ)JT

2 + P2,Λ22 = −R2 −
9Z2

σ
,

Λ33 = Q1 − S1,Λ44 = −(1 − µ1)Q1,Λ77 = σZ2 − ε2J2 − ε2J
T
2 ,

When this happens, the system (2.10) is asymptotically stable and Ki = J−1
i Gi. are control gain matri-

ces.

Proof. Take into account the LKF candidate below:

V(ζℵ, $ℵ,ℵ) =

4∑
i=1

Vi(ζℵ, $ℵ,ℵ), (3.2)

where

V1(ζℵ, $ℵ,ℵ) = ζT (ℵ)P1ζ(ℵ) +$T (ℵ)P2$(ℵ),

V2(ζℵ, $ℵ,ℵ) =

∫ ℵ

ℵ−σ(ℵ)
f T ($(s))Q1 f ($(s))ds +

∫ ℵ

ℵ−κ(ℵ)
gT (ζ(s))Q2g(ζ(s))ds,

V3(ζℵ, $ℵ,ℵ) =

∫ ℵ

ℵ−κ

ζT (s)R1ζ(s)ds +

∫ ℵ

ℵ−σ

$T (s)R2$(s)ds,

V4(ζℵ, $ℵ,ℵ) =

∫ 0

−κ

∫ ℵ

ℵ+θ

ζ̇T (s)Z1ζ̇(s)dsdθ +

∫ 0

−σ

∫ ℵ

ℵ+θ

$̇T (s)Z2$̇(s)dsdθ.

The infinitesimal operator L o f V(ζℵ, $ℵ,ℵ) is:

LV(ζℵ, $ℵ,ℵ) = lim
∆→0

1
∆
{E{V(ζℵ+∆, yℵ+∆,ℵ)|(ζℵ, $ℵ,ℵ)} − V(ζℵ, $ℵ,ℵ)},

E{LV(ζℵ, $ℵ,ℵ)} =

4∑
i=1

E{LVi(ζℵ, $ℵ,ℵ)}. (3.3)

Using the stochastic derivative of V(ζℵ, $ℵ,ℵ), we can determine:

E{LV1(ζℵ, $ℵ,ℵ)} =2ζT (ℵ)P1ζ̇(ℵ) + 2$T (ℵ)P2$̇(ℵ), (3.4)
E{LV2(ζℵ, $ℵ,ℵ)} ≤ f T ($(ℵ))Q1 f ($(ℵ)) − (1 − µ1) f T ($(ℵ − σ(ℵ)))Q1 f ($(ℵ − σ(ℵ)))

+ gT (ζ(ℵ))Q2g(ζ(ℵ)) − (1 − µ2)gT (ζ(ℵ − κ(ℵ)))Q2g(ζ(ℵ − κ(ℵ))), (3.5)
E{LV3(ζℵ, $ℵ,ℵ)} =ζT (ℵ)R1ζ(ℵ) − ζT (ℵ − κ)R1ζ(ℵ − κ) +$T (ℵ)R2$(ℵ) −$T (ℵ − σ)R2$(ℵ − σ),

(3.6)

E{LV4(ζℵ, $ℵ,ℵ)} =κζ̇T (ℵ)Z1ζ̇(ℵ) −
∫ ℵ

ℵ−κ

ζ̇T (s)Z1ζ̇(s)ds + σ$̇T (ℵ)Z2$̇(ℵ) −
∫ ℵ

ℵ−σ

$̇T (s)Z2$̇(s)ds,

(3.7)

By applying Lemma 2.3 in (2.17), we can obtain

−

∫ ℵ

ℵ−κ

ζ̇T (s)Z1ζ̇(s)ds ≤ −
1
κ
ηT

1 (ℵ)


Z1 0 0

0 3Z1 0

0 0 5Z1

 η1(ℵ), (3.8)
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−

∫ ℵ

ℵ−σ

$̇T (s)Z2$̇(s)ds ≤ −
1
σ
ηT

2 (ℵ)


Z2 0 0

0 3Z2 0

0 0 5Z2

 η2(ℵ), (3.9)

where

η1(ℵ) =

[
ζT (ℵ) − ζT (ℵ − κ) ζT (ℵ) + ζT (ℵ − κ) −

2
κ

∫ ℵ

ℵ−κ

ζT (s)ds

ζT (ℵ) − ζT (ℵ − κ) +
6
κ

∫ ℵ

ℵ−κ

ζT (s)ds −
12
κ2

∫ ℵ

ℵ−κ

∫ t

s
ζT (u)duds

]T

,

η2(ℵ) =

[
$T (ℵ) −$T (ℵ − σ) $T (ℵ) +$T (ℵ − σ) −

2
σ

∫ ℵ

ℵ−σ

$T (s)ds

$T (ℵ) −$T (ℵ − σ) +
6
σ

∫ ℵ

ℵ−σ

$T (s)ds −
12
σ2

∫ ℵ

ℵ−κ

∫ t

s
$T (u)duds

]T

.

From the assumption (A), there exists a diagonal matrices S1 > 0, S2 > 0 and Hi, Li(i = 1, 2), the
following inequalities hold:

0 ≤

 $(ℵ)

f ($(ℵ))

T  −S1H1 S1H2

∗ −S1

  $(ℵ)

f ($(ℵ))

 , (3.10)

0 ≤

 ζ(ℵ)

g(ζ(ℵ))

T  −S2L1 S2L2

∗ −S2

  ζ(ℵ)

g(ζ(ℵ))

 . (3.11)

The following equations satisfy for any matrices J1, J2 and scalar ε1, ε2:

0 = 2[ζT (ℵ) + ε1ζ̇(ℵ)]J1[−ζ̇(ℵ) + (−A + (K1 + φ(ℵ)∆K1(ℵ)))ζ(ℵ) + W1 f ($(ℵ))
+ W2 f ($(ℵ − σ(ℵ)))], (3.12)

0 = 2[$T (ℵ) + ε2$̇(ℵ)]J2[−$̇(ℵ) + (−B + (K2 + %(ℵ)∆K2(ℵ)))$(ℵ) + V1g(ζ(ℵ))
+ V2g(ζ(ℵ − κ(ℵ)))], (3.13)

substituting (3.4)–(3.6), and (3.7)–(3.23) in (3.3), we get

E{LV(ζℵ, $ℵ,ℵ)} ≤ ξT (ℵ) Ξ ξ(ℵ), (3.14)

where
ξ(ℵ) =

[
ζT (ℵ) ζT (ℵ − κ) gT (ζ(ℵ)) gT (ζ(ℵ − κ(ℵ)))

∫ ℵ
ℵ−κ

ζT (s)ds
∫ ℵ
ℵ−κ

∫ ℵ
s
ζT (s)duds ζ̇T (ℵ) $T (ℵ)

$T (ℵ − σ) f T ($(ℵ)) f T ($(ℵ − κ(ℵ)))
∫ ℵ
ℵ−σ

$T (s)ds
∫ ℵ
ℵ−σ

∫ ℵ
s
$T (s)duds $̇T (ℵ)

]T

.

It gives that Ξ < 0. This demonstrates that the system (2.10) is asymptotically stable using the
Lyapunov stability theory. The proof is now complete.

Theorem 3.2. Under Assumption (A), φ, % and εi are positive scalars, then there exist symmetric
matrices Pi > 0, Qi > 0, Ri > 0, Zi > 0, diagonal matrices Si > 0, for any matrices Ji, Gi, and scalars
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ρi > 0 (i = 1, 2) such that

Ξ̃ =



Ξ̂ Υ1 ρ1Υ2 Ψ1 Ψ2

∗ −ρ1I 0 0 0

∗ ∗ −ρ1I 0 0

∗ ∗ ∗ −ρ2I 0

∗ ∗ ∗ ∗ −ρ2I


< 0, (3.15)

where

Ξ̂ =

 Π̂ Ω

∗ Λ̂

 ,

Π̂ =



Π̂11
3Z1
κ

S2L2 0 −24Z1
κ2

60Z1
κ3 Π̂17

∗ Π22 0 0 36Z1
κ2

−60Z1
κ3 0

∗ ∗ Π33 0 0 0 0

∗ ∗ ∗ Π44 0 0 0

∗ ∗ ∗ ∗
−192Z1
κ3

360Z1
κ4 0

∗ ∗ ∗ ∗ ∗
−720Z1
κ5 0

∗ ∗ ∗ ∗ ∗ ∗ Π77



,

Λ̂ =



Λ̂11
3Z2
σ

S1H2 0 −24Z2
σ2

60Z2
σ3 Λ̂17

∗ Λ22 0 0 36Z2
σ2

−60Z2
σ3 0

∗ ∗ Λ33 0 0 0 0

∗ ∗ ∗ Λ44 0 0 0

∗ ∗ ∗ ∗
−192Z2
σ3

360Z2
σ4 0

∗ ∗ ∗ ∗ ∗
−720Z2
σ5 0

∗ ∗ ∗ ∗ ∗ ∗ Λ77



,

Π̂11 = R1 − S2L1 −
9Z1

κ
− J1A + G1 + GT

1 −A
TJT

1 , Π̂17 = −J1 − ε1A
TJT

1 + ε1G
T
1 + P1,

Λ̂11 = R2 − S1H1 − J2B + G2 −
9Z2

σ
−BTJT + GT

2 , Λ̂17 = −J2 − ε2B
TJT

2 + ε2G
T
2 + P2,
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7310

Υ1 = [φHT
1 J

T
1 0, ..., 0︸ ︷︷ ︸

5elements

φε1H
T
1 J

T
1 0, ..., 0︸ ︷︷ ︸

7elements

]T ,Υ2 = [E1 0, ..., 0︸ ︷︷ ︸
13elements

]T ,

Ψ1 = [0, ..., 0︸ ︷︷ ︸
7elements

%HT
2 J

T
2 0, ..., 0︸ ︷︷ ︸

5elements

%ε2H
T
2 J

T
2 ]T ,Ψ2 = [0, ..., 0︸ ︷︷ ︸

7elements

ρ2E2 0, ..., 0︸ ︷︷ ︸
6elements

]T

The controller gain matrices are also provided by in equation (2.6) are given by Ki = J−1
i Gi.

Proof. By using Schur complement,

[Ξ̂] + Υ1∆K1(ℵ)ΥT
2 + Υ2∆K

T
1 (ℵ)ΥT

1 + Ψ1∆K2(ℵ)ΨT
2 + Ψ2∆K

T
2 (ℵ)ΨT

1 < 0.

From Lemma 2, we get

Ξ̃ =



Ξ̂ Υ1 ρ1Υ2 Ψ1 Ψ2

∗ −ρ1I 0 0 0

∗ ∗ −ρ1I 0 0

∗ ∗ ∗ −ρ2I 0

∗ ∗ ∗ ∗ −ρ2I


< 0

It is clear that the disparities in (3.15) still exist. The evidence is now complete.

4. Numerical example

Two examples are provided in this part to show the applicability of our findings.

Example 4.1. The following BAM neural network with time varying delays:

ζ̇(ℵ) = (−A + (K1 + φ(ℵ)∆K1(ℵ)))ζ(ℵ) + W1 f ($(ℵ)) + W2 f ($(ℵ − σ(ℵ))),
$̇(ℵ) = (−B + (K2 + %(ℵ)∆K2(ℵ)))$(ℵ) + V1g(ζ(ℵ)) + V2g(ζ(ℵ − κ(ℵ))),

}
(4.1)

with the following parameters:

A =

 1 0

0 1

 , W1 =

 2 −0.11

−5 3.2

 , W2 =

 −1.6 −0.8

−0.18 −2.5

 , H1 =

 0.45 0

0 0.45

 ,
E1 =

 0.35 0

0 0.35

 , B =

 3 0

0 2

 , V1 =

 1 −1.11

−2 1.2

 , V2 =

 −0.6 −1.8

−0.68 −0.5

 ,
H2 =

 0.25 0

0 0.25

 , E2 =

 0.15 0

0 0.15

 , H1 = L1 = 0, H2 = L2 = I.

Additionally, we take κ = 3.2, σ = 3.2, µ1 = 0.9, µ2 = 0.9, φ = 0.9, % = 0.9, ε1 = 0.5, and ε2 = 0.5.
By solving the LMIs in Theorem 3.2, we get

P1 =

 48.3823 −0.5707

−0.5707 49.5117

 , P2 =

 46.6280 0.2589

0.2589 50.0702

 ,Q1 =

 19.2835 4.7602

4.7602 28.1068

 ,
Mathematical Biosciences and Engineering Volume 20, Issue 4, 7302–7315.



7311

Q2 =

 19.0379 5.7475

5.7475 25.7761

 ,R1 =

 35.0318 −1.4108

−1.4108 31.6352

 , R2 =

 35.2798 −1.5288

−1.5288 33.4075

 ,
Z1 =

 0.0167 0.0009

0.0009 0.0116

 , Z2 =

 0.0332 −0.0196

−0.0196 0.0971

 ,G1 =

 −96.5148 1.0948

1.0948 −99.3356

 ,
G2 =

 −91.4745 −1.3821

−1.3821 −96.5435

 , J1 =

 0.1571 0.0332

0.0332 0.1827

 , J2 =

 0.3903 −0.1807

−0.1807 0.9874


ρ1 = 42.3781, ρ2 = 44.9762.

As well as the following non-fragile controller gains matrices:

K1 =

 −639.9952 126.6829

122.2775 −566.6860

 , K2 =

 −256.7506 −53.3312

−48.3949 −107.5330

 .
In this scenario is proved the given system is asymptotically stable. In Figure 1, state response are

depicted.

0 5 10 15 20 25 30
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x1
x2
y1
y2

Figure 1. The dynamical behavior of the system in Example 4.1.

5. Conclusions

The issue of BAM delayed neural networks with non-fragile control and controller gain fluctua-
tion has been examined in this article. To ensure the stability of the aforementioned systems, delay-
dependent conditions are established. In terms of linear matrix inequalities (LMIs), necessary condi-

Mathematical Biosciences and Engineering Volume 20, Issue 4, 7302–7315.
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tions are obtained by building an L-K functional and utilizing the traditional integral inequality tech-
nique. This technique ensures asymptotically stability of addressed to the concerned neural networks.
Lastly, a numerical example is provided to demonstrate the viability of the findings in this study.
Stochastic differential equations and complex networks both respond well to this approach in future
research.
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