This paper concerns the dynamics of two stochastic hybrid delay Lotka-Volterra systems with harvesting and Lévy noise in a polluted environment (i.e., predator-prey system and competitive system). For every system, sufficient and necessary conditions for persistence in mean and extinction of each species are established. Then, sufficient conditions for global attractivity of the systems are obtained. Finally, sufficient and necessary conditions for the existence of optimal harvesting strategy are provided. The accurate expressions for the optimal harvesting effort (OHE) and the maximum of expectation of sustainable yield (MESY) are given. Our results show that the dynamic behaviors and optimal harvesting strategy are closely correlated with both time delays and three types of environmental noises (namely white Gaussian noises, telephone noises and Lévy noises).
Citation: Sheng Wang, Lijuan Dong, Zeyan Yue. Optimal harvesting strategy for stochastic hybrid delay Lotka-Volterra systems with Lévy noise in a polluted environment[J]. Mathematical Biosciences and Engineering, 2023, 20(4): 6084-6109. doi: 10.3934/mbe.2023263
[1] | Harman Kaur, Meenakshi Rana . Congruences for sixth order mock theta functions λ(q) and ρ(q). Electronic Research Archive, 2021, 29(6): 4257-4268. doi: 10.3934/era.2021084 |
[2] | Meenakshi Rana, Shruti Sharma . Combinatorics of some fifth and sixth order mock theta functions. Electronic Research Archive, 2021, 29(1): 1803-1818. doi: 10.3934/era.2020092 |
[3] | Changjian Wang, Jiayue Zhu . Global dynamics to a quasilinear chemotaxis system under some critical parameter conditions. Electronic Research Archive, 2024, 32(3): 2180-2202. doi: 10.3934/era.2024099 |
[4] | Chang-Jian Wang, Yu-Tao Yang . Boundedness criteria for the quasilinear attraction-repulsion chemotaxis system with nonlinear signal production and logistic source. Electronic Research Archive, 2023, 31(1): 299-318. doi: 10.3934/era.2023015 |
[5] | Maoji Ri, Shuibo Huang, Canyun Huang . Non-existence of solutions to some degenerate coercivity elliptic equations involving measures data. Electronic Research Archive, 2020, 28(1): 165-182. doi: 10.3934/era.2020011 |
[6] | Nan Li . Summability in anisotropic mixed-norm Hardy spaces. Electronic Research Archive, 2022, 30(9): 3362-3376. doi: 10.3934/era.2022171 |
[7] | Lili Li, Boya Zhou, Huiqin Wei, Fengyan Wu . Analysis of a fourth-order compact θ-method for delay parabolic equations. Electronic Research Archive, 2024, 32(4): 2805-2823. doi: 10.3934/era.2024127 |
[8] | Jianxing Du, Xifeng Su . On the existence of solutions for the Frenkel-Kontorova models on quasi-crystals. Electronic Research Archive, 2021, 29(6): 4177-4198. doi: 10.3934/era.2021078 |
[9] | Zihan Zheng, Juan Wang, Liming Cai . Global boundedness in a Keller-Segel system with nonlinear indirect signal consumption mechanism. Electronic Research Archive, 2024, 32(8): 4796-4808. doi: 10.3934/era.2024219 |
[10] | Ying Hou, Liangyun Chen . Constructions of three kinds of Bihom-superalgebras. Electronic Research Archive, 2021, 29(6): 3741-3760. doi: 10.3934/era.2021059 |
This paper concerns the dynamics of two stochastic hybrid delay Lotka-Volterra systems with harvesting and Lévy noise in a polluted environment (i.e., predator-prey system and competitive system). For every system, sufficient and necessary conditions for persistence in mean and extinction of each species are established. Then, sufficient conditions for global attractivity of the systems are obtained. Finally, sufficient and necessary conditions for the existence of optimal harvesting strategy are provided. The accurate expressions for the optimal harvesting effort (OHE) and the maximum of expectation of sustainable yield (MESY) are given. Our results show that the dynamic behaviors and optimal harvesting strategy are closely correlated with both time delays and three types of environmental noises (namely white Gaussian noises, telephone noises and Lévy noises).
Ramanujan's last letter to Hardy is one of the most mysterious and important mathematical letters in the history of mathematics. He introduced a class of functions that he called mock theta functions in his letter. For nearly a century, properties of these functions have been widely studied by different mathematicians. The important direction involves the arithmetic properties (see [1,2]), combinatorics (see [3,4]), identities between these functions, and generalized Lambert series (see [5,6]). For the interested reader, regarding the history and new developments in the study of mock theta functions, we refer to [7].
In 2007, McIntosh studied two second order mock theta functions in reference [8]; more details are given in reference [9]. These mock theta functions are:
A(q)=∞∑n=0q(n+1)2(−q;q2)n(q;q2)2(n+1)=∞∑n=0qn+1(−q2;q2)n(q;q2)n+1, | (1.1) |
B(q)=∞∑n=0qn(−q;q2)n(q;q2)n+1=∞∑n=0qn(n+1)(−q2;q2)n(q;q2)2n+1, | (1.2) |
where
(a;q)n=n−1∏i=0(1−aqi),(a;q)∞=∞∏i=0(1−aqi), |
(a1,a2,⋯,am;q)∞=(a1;q)∞(a2;q)∞⋯(am;q)∞, |
for |q|<1.
The functions A(q) and B(q) have been combinatorially interpreted in terms of overpartitions in [3] using the odd Ferrers diagram. In this paper, we study some arithmetic properties of one of the second order mock theta functions B(q). We start by noting, Bringmann, Ono and Rhoades [10] obtained the following identity:
B(q)+B(−q)2=f54f42, | (1.3) |
where
fkm:=(qm;qm)k∞, |
for positive integers m and k. We consider the function
B(q):=∞∑n=0b(n)qn. | (1.4) |
Followed by Eq (1.3), the even part of B(q) is given by:
∞∑n=0b(2n)qn=f52f41. | (1.5) |
In 2012, applying the theory of (mock) modular forms and Zwegers' results, Chan and Mao [5] established two identities for b(n), shown as:
∞∑n=0b(4n+1)qn=2f82f71, | (1.6) |
∞∑n=0b(4n+2)qn=4f22f44f51. | (1.7) |
In a sequel, Qu, Wang and Yao [6] found that all the coefficients for odd powers of q in B(q) are even. Recently, Mao [11] gave analogues of Eqs (1.6) and (1.7) modulo 6
∞∑n=0b(6n+2)qn=4f102f23f101f6, | (1.8) |
∞∑n=0b(6n+4)qn=9f42f43f6f81, | (1.9) |
and proved several congruences for the coefficients of B(q). Motivated from this, we prove similar results for b(n) by applying identities on the coefficients in arithmetic progressions. We present some congruence relations for the coefficients of B(q) modulo certain numbers of the form 2α⋅3β,2α⋅5β,2α⋅7β where α,β≥0. Our main theorems are given below:
Theorem 1.1. For n≥0, we have
∞∑n=0b(12n+9)qn=18[f92f123f171f36+2f52f43f6f91+28f62f33f66f141], | (1.10) |
∞∑n=0b(12n+10)qn=36[2f162f106f201f3f412−qf282f33f212f241f84f26−16q2f22f33f84f212f161f26]. | (1.11) |
In particular, b(12n+9)≡0(mod18),b(12n+10)≡0(mod36).
Theorem 1.2. For n≥0, we have
∞∑n=0b(18n+10)qn=72[f162f213f271f96+38qf132f123f241+64q2f102f33f96f211], | (1.12) |
∞∑n=0b(18n+16)qn=72[5f152f183f261f66+64qf122f93f36f231+32q2f92f126f201]. | (1.13) |
In particular, b(18n+10)≡0(mod72),b(18n+16)≡0(mod72).
Apart from these congruences, we find some relations between b(n) and restricted partition functions. Here we recall, Partition of a positive integer ν, is a representation of ν as a sum of non-increasing sequence of positive integers μ1,μ2,⋯,μn. The number of partitions of ν is denoted by p(ν) which is called the partition function. If certain conditions are imposed on parts of the partition, is called the restricted partition and corresponding partition function is named as restricted partition function. Euler proved the following recurrence for p(n) [12] [p. 12, Cor. 1.8]:
(n)−p(n−1)−p(n−2)+p(n−5)+p(n−7)−p(n−12)−p(n−15)+⋯+(−1)kp(n−k(3k−1)/2)+(−1)kp(n−k(3k+1)/2)+⋯={1, if n=0,0, otherwise. |
The numbers k(3k±1)/2 are pentagonal numbers. Following the same idea, different recurrence relations have been found by some researchers for restricted partition functions. For instance, Ewell [13] presented the recurrence for p(n) involving the triangular numbers. For more study of recurrences, see [14,15,16]. Under the influence of these efforts, we express the coefficients of mock theta function B(q) which are in arithmetic progression in terms of recurrence of some restricted partition functions.
This paper is organized as follows: Section 2, here we recall some preliminary lemmas and present the proof of Theorems 1.1 and 1.2. Section 3 includes some more congruences based on the above results. Section 4 depicts the links between b(n) and some of the restricted partition functions.
Before proving the results, we recall Ramanujan's theta function:
j(a,b)=∞∑n=−∞an(n+1)2bn(n−1)2, for|ab|<1. |
Some special cases of j(a,b) are:
ϕ(q):=j(q,q)=∞∑n=−∞qn2=f52f21f24,ψ(q):=j(q,q3)=∞∑n=0qn(n+1)/2=f22f1. |
Also,
ϕ(−q)=f21f2. |
The above function satisfy the following properties (see Entries 19, 20 in [17]).
j(a,b)=(−a,−b,ab;ab)∞,(Jacobi's triple product identity), |
j(−q,−q2)=(q;q)∞,(Euler's pentagonal number theorem). |
We note the following identities which will be used below.
Lemma 2.1. [[18], Eq (3.1)] We have
f32f31=f6f3+3qf46f59f83f18+6q2f36f29f218f73+12q3f26f518f63f9. | (2.1) |
Lemma 2.2. We have
f22f1=f6f29f3f18+qf218f9, | (2.2) |
f2f21=f46f69f83f318+2qf36f39f73+4q2f26f318f63. | (2.3) |
Proof. The first identity follows from [[19] Eq (14.3.3)]. The proof of second identity can be seen from [20].
Lemma 2.3. We have
1f41=f144f142f48+4qf24f48f102, | (2.4) |
f41=f104f22f48−4qf22f48f24. | (2.5) |
Proof. Identity (2.4) is Eq (1.10.1) from [19]. To obtain (2.5), replacing q by −q and then using
(−q;−q)∞=f32f1f4. |
Now, we present the proof of Theorems 1.1 and 1.2.
Proof of Theorems 1.1 and 1.2. From Eq (1.6), we have
∞∑n=0b(4n+1)qn=2(f32f31)3⋅f22f1. |
Substituting the values from Eqs (2.1) and (2.2) in above, we get
∞∑n=0b(4n+1)qn=2f36f29f33f18+2qf26f218f23f9+12qf66f79f103f218+18q2f96f129f173f318+36q2f56f49f18f93+90q3f86f99f163+72q3f46f9f418f83+48q4f36f718f73f29+288q4f76f69f318f153+504q5f66f39f618f143+576q6f56f918f133. | (2.6) |
Bringing out the terms involving q3n+2, dividing by q2 and replacing q3 by q, we get (1.10). Considering Eq (1.5), we have
∞∑n=0b(2n)qn=f32f31⋅f22f1. |
Substituting the values from Eqs (2.1) and (2.2), we obtain
∞∑n=0b(2n)qn=(f6f3+3qf46f59f83f18+6q2f36f29f218f73+12q3f26f518f63f9)(f6f29f3f18+qf218f9). |
Extracting the terms involving q3n,q3n+1,q3n+2 from the above equation, we have
∞∑n=0b(6n)qn=f22f23f21f6+18qf32f3f46f71, | (2.7) |
∞∑n=0b(6n+2)qn=f2f26f1f3+3f52f73f91f26+12qf22f76f61f23, | (2.8) |
∞∑n=0b(6n+4)qn=9f42f43f6f81. | (2.9) |
Using Eqs (2.4) and (2.5) in Eq (2.9), we get
∞∑n=0b(6n+4)qn=9f42f6(f144f142f48+4qf24f48f102)2(f1012f26f424−4q3f26f424f212). |
Extracting the terms involving q2n,q2n+1 from above, we arrive at
∞∑n=0b(12n+4)qn=9(f282f106f241f3f84f412+16qf42f84f106f161f3f412−32q2f162f33f412f201f26), | (2.10) |
∞∑n=0b(12n+10)qn=9(8f162f106f201f3f412−4qf282f33f412f241f84f26−16q2f42f33f84f412f161f26). | (2.11) |
From Eq (2.11), we ultimately arrive at Eq (1.11). To prove Theorem 1.2, consider Eq (2.9) as:
∞∑n=0b(6n+4)qn=9f43f6(f2f21)4. |
Using Eq (2.3) in above, we get
∞∑n=0b(6n+4)qn=9f176f249f283f1218+72qf166f219f273f918+360q2f156f189f263f618+288q3f146f159f253f318+864q3f126f159f193f618+2736q4f136f129f243+4608q5f126f99f318f233+5760q6f116f69f618f223+4608q7f106f39f918f213+2304q8f96f1218f203. | (2.12) |
Bringing out the terms involving q3n+1 and q3n+2 from Eq (2.12), we get Eqs (1.12) and (1.13), respectively.
This segment of the paper contains some more interesting congruence relations for b(n).
Theorem 3.1. For n≥0, we have
b(12n+1)≡{2(−1)k(mod6),ifn=3k(3k+1)/2,0(mod6),otherwise. | (3.1) |
Theorem 3.2. For n≥0, we have
b(2n)≡{(−1)k(2k+1)(mod4),ifn=k(k+1),0(mod4),otherwise. | (3.2) |
Theorem 3.3. For n≥0, we have
b(36n+10)≡0(mod72), | (3.3) |
b(36n+13)≡0(mod6), | (3.4) |
b(36n+25)≡0(mod12), | (3.5) |
b(36n+34)≡0(mod144), | (3.6) |
b(108n+t)≡0(mod18),for t∈{49,85}. | (3.7) |
Theorem 3.4. For n≥0, we have
b(20n+t)≡0(mod5),for t∈{8,16} | (3.8) |
b(20n+t)≡0(mod20),for t∈{6,18} | (3.9) |
b(20n+17)≡0(mod10), | (3.10) |
b(28n+t)≡0(mod14),for t∈{5,21,25}. | (3.11) |
Proof of Theorem 3.1. From Eq (2.6), picking out the terms involving q3n and replacing q3 by q, we have
∞∑n=0b(12n+1)qn=2f32f23f31f6+90qf82f93f161+72qf42f3f46f81+576q2f52f96f31. | (3.12) |
Reducing modulo 6, we obtain
∞∑n=0b(12n+1)qn≡2f3(mod6). | (3.13) |
With the help of Euler's pentagonal number theorem,
∞∑n=0b(12n+1)qn≡2∞∑k=−∞(−1)kq3k(3k+1)2(mod6), |
which completes the proof of Theorem 3.1.
Proof of Theorem 3.2. Reducing Eq (1.5) modulo 4, we get
∞∑n=0b(2n)qn≡f32(mod4). | (3.14) |
From Jacobi's triple product identity, we obtain
∞∑n=0b(2n)qn≡∞∑k=0(−1)k(2k+1)qk(k+1)(mod4), |
which completes the proof of Theorem 3.2.
Proof of Theorem 3.3. Consider Eq (1.11), reducing modulo 72
∞∑n=0b(12n+10)qn≡36qf282f33f412f241f84f26(mod72), |
∞∑n=0b(12n+10)qn≡36qf282f33f412f122f84f12=36qf162f33f312f84(mod72) |
or
∞∑n=0b(12n+10)qn≡36qf33f312(mod72). | (3.15) |
Extracting the terms involving q3n, replacing q3 by q in Eq (3.15), we arrive at Eq (3.3). Similarly, consider Eq (1.13) and reducing modulo 144, we have
∞∑n=0b(18n+16)qn≡72⋅5f152f183f261f66(mod144),≡72f152f96f132f66=72f22f36(mod144). |
Extracting the terms involving q2n+1, dividing both sides by q and replacing q2 by q, we get Eq (3.6).
From Eq (3.20), we get
∞∑n=0b(12n+1)qn≡2f3(mod6). |
Bringing out the terms containing q3n+1, dividing both sides by q and replacing q3 by q, we have b(36n+13)≡0(mod6). Reducing Eq (3.12) modulo 12, we have
∞∑n=0b(12n+1)qn≡2f32f23f31f6+90qf82f93f161(mod12), |
∞∑n=0b(12n+1)qn≡2f23f6(f6f3+3qf46f59f83f18+6q2f36f29f218f73+12q3f26f518f63f9)+6qf82f93f82. |
Extracting the terms containing q3n+2, dividing by q2 and replacing q3 by q, we obtain Eq (3.5). Reducing Eq (3.12) modulo 18,
∞∑n=0b(12n+1)qn≡2f32f23f31f6(mod18),=2f23f6(f6f3+3qf46f59f83f18+6q2f36f29f218f73+12q3f26f518f63f9). |
Extracting the terms involving q3n+1, dividing both sides by q and replacing q3 by q, we have
∞∑n=0b(36n+13)qn≡6f32f53f61f6≡6f6f53f23f6(mod18) |
or
∞∑n=0b(36n+13)qn≡6f33(mod18). |
Extracting the terms containing q3n+1,q3n+2 from above to get Eq (3.7).
Proof of Theorem 3.4. From Eqs (1.5) and (2.4), we have
∞∑n=0b(2n)qn=f52(f144f142f48+4qf24f48f102). |
Bringing out the terms containing even powers of q, we obtain
∞∑n=0b(4n)qn=f142f91f44, |
which can be written as:
∞∑n=0b(4n)qn=f152f101f54.f1f4f2≡f310f25f20.f1f4f2(mod5). |
Here
f1f4f2=(q;q)∞(q4;q4)∞(q2;q2)∞,=(q;q2)∞(q2;q2)∞(q4;q4)∞(q2;q2)∞, |
f1f4f2=(q,q3,q4;q4)∞=∞∑n=−∞(−1)nq2n2−n, | (3.16) |
where the last equality follows from Jacobi's triple product identity. Using the above identity, we have
∞∑n=0b(4n)qn≡f310f25f20∞∑n=−∞(−1)nq2n2−n(mod5). | (3.17) |
Since 2n2−n≢2,4(mod5), it follows that the coefficients of q5n+2,q5n+4 in ∑∞n=0b(4n)qn are congruent to 0(mod5), which proves that b(20n+t)≡0(mod5), for t∈{8,16}.
Consider Eq (1.7)
∞∑n=0b(4n+2)qn=4f54f51f22f4≡4f20f5f22f4(mod20). |
Now
f22f4=(q2;q2)2∞(q4;q4)∞,=(q2;q2)∞(q2;q4)∞(q4;q4)∞(q4;q4)∞, |
f22f4=(q2,q2,q4;q4)∞=∞∑n=−∞(−1)nq2n2. |
Using the above identity, we get
∞∑n=0b(4n+2)qn≡4f20f5∞∑n=−∞(−1)nq2n2(mod20). | (3.18) |
Since 2n2≢1,4(mod5), it follows that the coefficients of q5n+1,q5n+4 in ∑∞n=0b(4n+2)qn are congruent to 0(mod20), which proves Eq (3.9). For the proof of next part, consider Eq (1.6) as:
∞∑n=0b(4n+1)qn=2f52f101f31f32≡2f10f25f31f32(mod10), |
∞∑n=0b(4n+1)qn≡2f10f25∞∑k=0(−1)k(2k+1)qk(k+1)2∞∑m=0(−1)m(2m+1)qm(m+1)(mod10). | (3.19) |
Therefore, to contribute the coefficient of q5n+4, (k,m)≡(2,2)(mod5) and thus the contribution towards the coefficient of q5n+4 is a multiple of 5.
Consider Eq (1.6) as:
∞∑n=0b(4n+1)qn=2f72f71f2≡2f14f7f2(mod14). |
With the help of Euler's pentagonal number theorem,
∞∑n=0b(4n+1)qn≡2f14f7∞∑n=−∞(−1)nqn(3n+1)(mod14). | (3.20) |
As n(3n+1)≢1,5,6(mod7), it readily proves Eq (3.11).
In this section, we find some recurrence relations connecting b(n) and restricted partition functions. First we define some notations. Let ¯pl(n) denotes the number of overpartitions of n with l copies. Then
∞∑n=0¯pl(n)qn=(f2f21)l. |
Let pld(n) denotes the number of partitions of n into distinct parts with l copies. Then
∞∑n=0pld(n)qn=(f2f1)l. |
Theorem 4.1. We have
b(2n)=¯p2(n)−3¯p2(n)+5¯p2(n)+⋯+(−1)k(2k+1)¯p2(n−k(k+1))+⋯, | (4.1) |
(2n)=p4d(n)−p4d(n−2)−p4d(n−4)+p4d(n−10)+p4d(n−14)+⋯+(−1)kp4d(n−k(3k−1))+(−1)kp4d(n−k(3k+1))+⋯. | (4.2) |
Theorem 4.2.
(4n+1)=2p8d(n)−2p8d(n−1)−2p8d(n−2)+2p8d(n−5)+2p8d(n−7)+⋯+(−1)k2p8d(n−k(3k−1)2)+(−1)k2p8d(n−k(3k+1)2)+⋯, | (4.3) |
b(4n+1)=2n∑c=0b(2c)p3d(n−c). | (4.4) |
Theorem 4.3.
(6n+2)=4p10d(n)−8p10d(n−3)+8p10d(n−12)+8p10d(n−27)+⋯+8(−1)kp10d(n−3k2)+⋯. | (4.5) |
Proof of Theorem 4.1. Consider (1.5) as:
∞∑n=0b(2n)qn=(f2f21)2⋅f32. |
Then
∞∑n=0b(2n)qn=(∞∑n=0¯p2(n)qn)(∞∑k=0(−1)k(2k+1)qk(k+1)),=∞∑n=0∞∑k=0(−1)k(2k+1)¯p2(n)qn+k(k+1),=∞∑n=0(∞∑k=0(−1)k(2k+1)¯p2(n−k(k+1)))qn. |
From the last equality, we readily arrive at (4.1). To prove (4.2), consider (1.5) as:
∞∑n=0b(2n)qn=(f2f1)4⋅f2,=(∞∑n=0p4d(n)qn)(∞∑k=−∞(−1)kqk(3k+1)),=(∞∑n=0p4d(n)qn)(1+∞∑k=1(−1)kqk(3k−1)+∞∑k=1(−1)kqk(3k+1)), |
∞∑n=0b(2n)qn=∞∑n=0p4d(n)qn+∞∑n=0(∞∑k=1(−1)kp4d(n)qk(3k−1)+n)+∞∑n=0(∞∑k=1(−1)kp4d(n)qk(3k+1)+n), |
∞∑n=0b(2n)qn=∞∑n=0p4d(n)qn+∞∑n=0(∞∑k=1(−1)kp4d(n−k(3k−1))qn)+∞∑n=0(∞∑k=1(−1)kp4d(n−k(3k+1))qn), |
which proves Eq (4.2).
Proof of Theorem 4.2. Consider Eq (1.6) as:
∞∑n=0b(4n+1)qn=2(f2f1)8f1,=2(∞∑n=0p8d(n)qn)(∞∑k=−∞(−1)kqk(3k+1)2),=2(∞∑n=0p8d(n)qn)(1+∞∑k=1(−1)kqk(3k−1)/2+∞∑k=1(−1)kqk(3k+1)/2), |
∞∑n=0b(4n+1)qn=∞∑n=0p8d(n)qn+∞∑n=0∞∑k=1(−1)kp8d(n)qk(3k−1)/2+n+∞∑n=0∞∑k=1(−1)kp8d(n)qk(3k+1)/2+n, |
∞∑n=0b(4n+1)qn=∞∑n=0p8d(n)qn+∞∑n=0(∞∑k=1(−1)kp8d(n−k(3k−1)2))qn+∞∑n=0(∞∑k=1(−1)kp8d(n−k(3k+1)2))qn, |
which proves Eq (4.3). To prove Eq (4.4), consider Eq (1.6) as:
∞∑n=0b(4n+1)qn=2(f52f41)f32f31,=2(∞∑n=0b(2n)qn)(∞∑k=0p3d(k)qk),=2∞∑n=0(n∑c=0b(2c)p3d(n−c))qn. |
Comparing the coefficients of qn, we arrive at Eq (4.4).
Proof of Theorem 4.3. Consider Eq (1.8) as:
∞∑n=0b(6n+2)qn=4(f2f1)10⋅f23f6,=4(∞∑n=0p10d(n)qn)(∞∑k=−∞(−1)kq3k2),=4(∞∑n=0p10d(n)qn)(1+2∞∑k=1(−1)kq3k2),=4∞∑n=0p10d(n)qn+8∞∑n=0(∞∑k=1(−1)kp10d(n)q3k2+n),=4∞∑n=0p10d(n)qn+8∞∑n=0(∞∑k=1(−1)kp10d(n−3k2))qn. |
Comparing the coefficients of qn to obtain Eq (4.5).
In this paper, we have provided the arithmetic properties of second order mock theta function B(q), introduced by McIntosh. Some congruences are proved for the coefficients of B(q) modulo specific numbers. The questions which arise from this work are:
(i) Are there exist congruences modulo higher primes for B(q)?
(ii) Is there exist any other technique (like modular forms) that helps to look for some more arithmetic properties of B(q)?
(iii) How can we explore the other second order mock theta function A(q)?
The first author is supported by University Grants Commission (UGC), under grant Ref No. 971/(CSIR-UGC NET JUNE 2018) and the the second author is supported by Science and Engineering Research Research Board (SERB-MATRICS) grant MTR/2019/000123. The authors of this paper are thankful to Dr. Rupam Barman, IIT Guwahati, for his valuable insight during establishing Theorems 3.1 and 3.2. We would like to thank the referee for carefully reading our paper and offering corrections and helpful suggestions.
The authors declare there is no conflicts of interest.
[1] |
X. Zou, K. Wang, Optimal harvesting for a stochastic regime-switching logistic diffusion system with jumps, Nonlinear Anal. Hybrid Syst., 13 (2014), 32–44. https://doi.org/10.1016/j.nahs.2014.01.001 doi: 10.1016/j.nahs.2014.01.001
![]() |
[2] |
J. Roy, D. Barman, S. Alam, Role of fear in a predator-prey system with ratio-dependent functional response in deterministic and stochastic environment, Biosystems, 197 (2020), 104176. https://doi.org/10.1016/j.biosystems.2020.104176 doi: 10.1016/j.biosystems.2020.104176
![]() |
[3] |
Q. Liu, D. Jiang, Influence of the fear factor on the dynamics of a stochastic predator-prey model, Appl. Math. Lett., 112 (2021), 106756. https://doi.org/10.1016/j.aml.2020.106756 doi: 10.1016/j.aml.2020.106756
![]() |
[4] |
Q. Yang, X. Zhang, D. Jiang, Dynamical behaviors of a stochastic food chain system with Ornstein-Uhlenbeck process, J. Nonlinear Sci., 32 (2022), 1–40. https://doi.org/10.1007/s00332-021-09760-y doi: 10.1007/s00332-021-09760-y
![]() |
[5] |
L. Wang, D. Jiang, Ergodicity and threshold behaviors of a predator-prey model in stochastic chemostat driven by regime switching, Math. Meth. Appl. Sci., 44 (2021), 325–344. https://doi.org/10.1002/mma.6738 doi: 10.1002/mma.6738
![]() |
[6] |
Q. Luo, X. Mao, Stochastic population dynamics under regime switching, J. Math. Anal. Appl., 334 (2007), 69–84. https://doi.org/10.1016/j.jmaa.2006.12.032 doi: 10.1016/j.jmaa.2006.12.032
![]() |
[7] |
Q. Luo, X. Mao, Stochastic population dynamics under regime switching Ⅱ, J. Math. Anal. Appl., 355 (2009), 577–593. https://doi.org/10.1016/j.jmaa.2009.02.010 doi: 10.1016/j.jmaa.2009.02.010
![]() |
[8] |
C. Zhu, G. Yin, On hybrid competitive Lotka-Volterra ecosystems, Nonlinear Anal., 71 (2009), 1370–1379. https://doi.org/10.1016/j.na.2009.01.166 doi: 10.1016/j.na.2009.01.166
![]() |
[9] |
X. Li, A. Gray, D. Jiang, X. Mao, Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching, J. Math. Anal. Appl., 376 (2011), 11–28. https://doi.org/10.1016/j.jmaa.2010.10.053 doi: 10.1016/j.jmaa.2010.10.053
![]() |
[10] |
M. Ouyang, X. Li, Permanence and asymptotical behavior of stochastic prey-predator system with Markovian switching, Appl. Math. Comput., 266 (2015), 539–559. https://doi.org/10.1016/j.amc.2015.05.083 doi: 10.1016/j.amc.2015.05.083
![]() |
[11] |
J. Bao, J. Shao, Permanence and extinction of regime-switching predator-prey models, SIAM J. Math. Anal., 48 (2016), 725–739. https://doi.org/10.1137/15M1024512 doi: 10.1137/15M1024512
![]() |
[12] |
M. Liu, X. He, J. Yu, Dynamics of a stochastic regime-switching predator-prey model with harvesting and distributed delays, Nonlinear Anal. Hybrid Syst., 28 (2018), 87–104. https://doi.org/10.1016/j.nahs.2017.10.004 doi: 10.1016/j.nahs.2017.10.004
![]() |
[13] |
Y. Cai, S. Cai, X. Mao, Stochastic delay foraging arena predator-prey system with Markov switching, Stoch. Anal. Appl., 38 (2020), 191–212. https://doi.org/10.1080/07362994.2019.1679645 doi: 10.1080/07362994.2019.1679645
![]() |
[14] |
J. Bao, X. Mao, G. Yin, C. Yuan, Competitive Lotka-Volterra population dynamics with jumps, Nonlinear Anal., 74 (2011), 6601–6616. https://doi.org/10.1016/j.na.2011.06.043 doi: 10.1016/j.na.2011.06.043
![]() |
[15] |
J. Bao, C. Yuan, Stochastic population dynamics driven by Lévy noise, J. Math. Anal. Appl., 391 (2012), 363–375. https://doi.org/10.1016/j.jmaa.2012.02.043 doi: 10.1016/j.jmaa.2012.02.043
![]() |
[16] |
M. Liu, K. Wang, Dynamics of a Leslie-Gower Holling-type Ⅱ predator-prey system with Lévy jumps, Nonlinear Anal., 85 (2013), 204–213. https://doi.org/10.1016/j.na.2013.02.018 doi: 10.1016/j.na.2013.02.018
![]() |
[17] |
M. Liu, K. Wang, Stochastic Lotka-Volterra systems with Lévy noise, J. Math. Anal. Appl., 410 (2014), 750–763. https://doi.org/10.1016/j.jmaa.2013.07.078 doi: 10.1016/j.jmaa.2013.07.078
![]() |
[18] |
M. Liu, M. Deng, B. Du, Analysis of a stochastic logistic model with diffusion, Appl. Math. Comput., 266 (2015), 169–182. https://doi.org/10.1016/j.amc.2015.05.050 doi: 10.1016/j.amc.2015.05.050
![]() |
[19] |
X. Zhang, W. Li, M. Liu, K. Wang, Dynamics of a stochastic Holling Ⅱ one-predator two-prey system with jumps, Phys. A, 421 (2015), 571–582. https://doi.org/10.1016/j.physa.2014.11.060 doi: 10.1016/j.physa.2014.11.060
![]() |
[20] |
D. Valenti, G. Denaro, A. Cognata, B. La Spagnolo, A. Bonanno, G. Basilone, et al., Picophytoplankton dynamics in noisy marine environment, Acta Phys. Pol. B, 43 (2012), 1227–1240. https://doi.org/10.5506/APhysPolB.43.1227 doi: 10.5506/APhysPolB.43.1227
![]() |
[21] |
C. Guarcello, D. Valenti, G. Augello, B. Spagnolo, The role of non-Gaussian sources in the transient dynamics of long Josephson junctions, Acta Phys. Pol. B, 44 (2013), 997–1005. https://doi.org/10.5506/APhysPolB.44.997 doi: 10.5506/APhysPolB.44.997
![]() |
[22] |
C. Guarcello, D. Valenti, B. Spagnolo, V. Pierro, G. Filatrella, Josephson-based threshold detector for Lévy-distributed current fluctuations, Phys. Rev. Appl., 11 (2019), 044078. https://doi.org/10.1103/PhysRevApplied.11.044078 doi: 10.1103/PhysRevApplied.11.044078
![]() |
[23] |
A. A. Dubkov, A. La Cognata, B. Spagnolo, The problem of analytical calculation of barrier crossing characteristics for Lévy flights, J. Stat. Mech. Theory Exp., 2009 (2019), P01002. https://doi.org/10.1088/1742-5468/2009/01/P01002 doi: 10.1088/1742-5468/2009/01/P01002
![]() |
[24] |
B. Lisowski, D. Valenti, B. Spagnolo, M. Bier, E. Gudowska-Nowak, Stepping molecular motor amid Lévy white noise, Phys. Rev. E, 91 (2015), 042713. https://doi.org/10.1103/PhysRevE.91.042713 doi: 10.1103/PhysRevE.91.042713
![]() |
[25] |
I. A. Surazhevsky, V. A. Demin, A. I. Ilyasov, A. V. Emelyanov, K. E. Nikiruy, V. V. Rylkov, et al., Noise-assisted persistence and recovery of memory state in a memristive spiking neuromorphic network, Chaos Solitons Fractals, 146 (2021), 110890. https://doi.org/10.1016/j.chaos.2021.110890 doi: 10.1016/j.chaos.2021.110890
![]() |
[26] |
A. N. Mikhaylov, D. V. Guseinov, A. I. Belov, D. S. Korolev, V. A. Shishmakova, M. N. Koryazhkina, et al., Stochastic resonance in a metal-oxide memristive device, Chaos Solitons Fractal, 144 (2021), 110723. https://doi.org/10.1016/j.chaos.2021.110723 doi: 10.1016/j.chaos.2021.110723
![]() |
[27] |
Y. V. Ushakov, A. A. Dubkov, B. Spagnolo, Spike train statistics for consonant and dissonant musical accords in a simple auditory sensory model, Phys. Rev. E, 81 (2010), 041911. https://doi.org/10.1103/PhysRevE.81.041911 doi: 10.1103/PhysRevE.81.041911
![]() |
[28] |
N. V. Agudov, A. V. Safonov, A. V. Krichigin, A. A. Kharcheva, A. A. Dubkov, D. Valenti, et al., Nonstationary distributions and relaxation times in a stochastic model of memristor, J. Stat. Mech. Theory Exp., 2020 (2020), 024003. https://doi.org/10.1088/1742-5468/ab684a doi: 10.1088/1742-5468/ab684a
![]() |
[29] |
D. O. Filatov, D. V. Vrzheshch, O. V. Tabakov, A. S. Novikov, A. I. Belov, I. N. Antonov, et al., Noise-induced resistive switching in a memristor based on ZrO2(Y)/Ta2O5 stack, J. Stat. Mech. Theory Exp., 2019 (2019), 124026. https://doi.org/10.1088/1742-5468/ab5704 doi: 10.1088/1742-5468/ab5704
![]() |
[30] |
A. Carollo, B. Spagnolo, A. A. Dubkov, D. Valenti, On quantumness in multi-parameter quantum estimation, J. Stat. Mech. Theory Exp., 2019 (2019), 094010. https://doi.org/10.1088/1742-5468/ab3ccb doi: 10.1088/1742-5468/ab3ccb
![]() |
[31] |
R. Stassi, S. Savasta, L. Garziano, B. Spagnolo, F. Nori, Output field-quadrature measurements and squeezing in ultrastrong cavity-QED, New J. Phys., 18 (2016), 123005. https://doi.org/10.1088/1367-2630/18/12/123005 doi: 10.1088/1367-2630/18/12/123005
![]() |
[32] |
S. Ciuchi, F. De Pasquale, B. Spagnolo, Nonlinear relaxation in the presence of an absorbing barrier, Phys. Rev. E, 47 (1993), 3915. https://doi.org/10.1103/PhysRevE.47.3915 doi: 10.1103/PhysRevE.47.3915
![]() |
[33] | Y. Kuang, Delay Differential Equations: With Applications in Population Dynamics, Academic Press, Boston, 1993. |
[34] |
W. Zuo, D. Jiang, X. Sun, T. Hayat, A. Alsaedi, Long-time behaviors of a stochastic cooperative Lotka-Volterra system with distributed delay, Phys. A, 506 (2018), 542–559. https://doi.org/10.1016/j.physa.2018.03.071 doi: 10.1016/j.physa.2018.03.071
![]() |
[35] |
F. A. Rihan, H. J. Alsakaji, Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species, Discret. Contin. Dyn. Syst. Ser. S, 15 (2020), 245. https://doi.org/10.3934/dcdss.2020468 doi: 10.3934/dcdss.2020468
![]() |
[36] |
H. J. Alsakaji, S. Kundu, F. A. Rihan, Delay differential model of one-predator two-prey system with Monod-Haldane and holling type Ⅱ functional responses, Appl. Math. Comput., 397 (2021), 125919. https://doi.org/10.1016/j.amc.2020.125919 doi: 10.1016/j.amc.2020.125919
![]() |
[37] |
L. Wang, R. Zhang, Y. Wang, Global exponential stability of reaction-diffusion cellular neural networks with S-type distributed time delays, Nonlinear Anal., 10 (2009), 1101–1113. https://doi.org/10.1016/j.nonrwa.2007.12.002 doi: 10.1016/j.nonrwa.2007.12.002
![]() |
[38] |
L. Wang, D. Xu, Global asymptotic stability of bidirectional associative memory neural networks with S-type distributed delays, Int. J. Syst. Sci., 338 (2002), 869–877. https://doi.org/10.1080/00207720210161777 doi: 10.1080/00207720210161777
![]() |
[39] |
S. Abbas, D. Bahuguna, M. Banerjee, Effect of stochastic perturbation on a two species competitive model, Nonlinear Anal. Hybrid Syst., 3 (2009), 195–206. https://doi.org/10.1016/j.nahs.2009.01.001 doi: 10.1016/j.nahs.2009.01.001
![]() |
[40] |
Q. Han, D. Jiang, C. Ji, Analysis of a delayed stochastic predator-prey model in a polluted environment, Appl. Math. Model., 38 (2014), 3067–3080. https://doi.org/10.1016/j.apm.2013.11.014 doi: 10.1016/j.apm.2013.11.014
![]() |
[41] |
Q. Liu, Q. Chen, Analysis of a stochastic delay predator-prey system with jumps in a polluted environment, Appl. Math. Comput., 242 (2014), 90–100. https://doi.org/10.1016/j.amc.2014.05.033 doi: 10.1016/j.amc.2014.05.033
![]() |
[42] |
Y. Zhao, S. Yuan, Optimal harvesting policy of a stochastic two-species competitive model with Lévy noise in a polluted environment, Phys. A, 477 (2017), 20–33. https://doi.org/10.1016/j.physa.2017.02.019 doi: 10.1016/j.physa.2017.02.019
![]() |
[43] |
M. Liu, X. He, J. Yu, Dynamics of a stochastic regime-switching predator-prey model with harvesting and distributed delays, Nonlinear Anal. Hybrid Syst., 28 (2018), 87–104. https://doi.org/10.1016/j.nahs.2017.10.004 doi: 10.1016/j.nahs.2017.10.004
![]() |
[44] |
M. Liu, C. Bai, Dynamics of a stochastic one-prey two-predator model with Lévy jumps, Appl. Math. Comput., 284 (2016), 308–321. https://doi.org/10.1016/j.amc.2016.02.033 doi: 10.1016/j.amc.2016.02.033
![]() |
[45] |
Y. Zhao, L. You, D. Burkow, S. Yuan, Optimal harvesting strategy of a stochastic inshore-offshore hairtail fishery model driven by Lévy jumps in a polluted environment, Nonlinear Dyn., 95 (2019), 1529–1548. https://doi.org/10.1007/s11071-018-4642-y doi: 10.1007/s11071-018-4642-y
![]() |
[46] |
Q. Liu, D. Jiang, N. Shi, T. Hayat, A. Alsaedi, Stochastic mutualism model with Lévy jumps, Commun. Nonlinear Sci. Numer. Simul., 43 (2017), 78–90. https://doi.org/10.1016/j.cnsns.2016.05.003 doi: 10.1016/j.cnsns.2016.05.003
![]() |
[47] |
H. Qiu, W. Deng, Optimal harvesting of a stochastic delay competitive Lotka-Volterra model with Lévy jumps, Appl. Math. Comput., 317 (2018), 210–222. https://doi.org/10.1016/j.amc.2017.08.044 doi: 10.1016/j.amc.2017.08.044
![]() |
[48] |
M. Liu, K. Wang, Survival analysis of stochastic single-species population models in polluted environments, Ecol. Model., 220 (2009), 1347–1357. https://doi.org/10.1016/j.ecolmodel.2009.03.001 doi: 10.1016/j.ecolmodel.2009.03.001
![]() |
[49] |
G. Liu, X. Meng, Optimal harvesting strategy for a stochastic mutualism system in a polluted environment with regime switching, Phys. A, 536 (2019), 120893. https://doi.org/10.1016/j.physa.2019.04.129 doi: 10.1016/j.physa.2019.04.129
![]() |
[50] |
S. Wang, L. Wang, T. Wei, Optimal harvesting for a stochastic logistic model with S-type distributed time delay, J. Differ. Equation Appl., 23 (2017), 618–632. https://doi.org/10.1080/10236198.2016.1269761 doi: 10.1080/10236198.2016.1269761
![]() |
[51] |
M. Liu, K. Wang, Q. Wu, Survival analysis of stochastic competitive models in a polluted environment and stochastic competitive exclusion principle, Bull. Math. Biol., 73 (2011), 1969–2012. https://doi.org/10.1007/s11538-010-9569-5 doi: 10.1007/s11538-010-9569-5
![]() |
[52] |
M. Liu, C. Bai, On a stochastic delayed predator-prey model with Lévy jumps, Appl. Math. Comput., 228 (2014), 563–570. https://doi.org/10.1016/j.amc.2013.12.026 doi: 10.1016/j.amc.2013.12.026
![]() |
[53] |
Q. Liu, Q. Chen, Z. Liu, Analysis on stochastic delay Lotka-Volterra systems driven by Lévy noise, Appl. Math. Comput., 235 (2014), 261–271. https://doi.org/10.1016/j.amc.2014.03.011 doi: 10.1016/j.amc.2014.03.011
![]() |
[54] | X. Mao, Stochastic Differential Equations and Applications, Horwood Publishing Limited, 2007. https://doi.org/10.1533/9780857099402 |
[55] | D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge University Press, 2009. https://doi.org/10.1017/CBO9780511809781 |
[56] | I. Barbalat, Systems dequations differentielles d'osci d'oscillations, Rev. Roumaine Math. Pures Appl., 4 (1959), 267–270. |
[57] |
M. Kinnally, R. Williams, On existence and uniqueness of stationary distributions for stochastic delay differential equations with positivity constraints, Electron. J. Probab., 15 (2010), 409–451. https://doi.org/10.1214/EJP.v15-756 doi: 10.1214/EJP.v15-756
![]() |
[58] |
M. Hairer, J. C. Mattingly, M. Scheutzow, Asymptotic coupling and a general form of Harris' theorem with applications to stochastic delay equations, Probab. Theory Related Fields, 149 (2011), 223–259. https://doi.org/10.1007/s00440-009-0250-6 doi: 10.1007/s00440-009-0250-6
![]() |
[59] | G. Prato, J. Zabczyk, Ergodicity for Infinite Dimensional Systems, Cambridge University Press, 1996. |
[60] |
M. Liu, Optimal harvesting policy of a stochastic predator-prey model with time delay, Appl. Math. Lett., 48 (2015), 102–108. https://doi.org/10.1016/j.aml.2014.10.007 doi: 10.1016/j.aml.2014.10.007
![]() |
1. | Olivia X.M. Yao, New congruences modulo 9 for the coefficients of Gordon-McIntosh's mock theta function ξ ( q ) , 2024, 47, 1607-3606, 239, 10.2989/16073606.2023.2205604 | |
2. | Yueya Hu, Eric H. Liu, Olivia X. M. Yao, Congruences modulo 4 and 8 for Ramanujan’s sixth-order mock theta function ρ(q), 2025, 66, 1382-4090, 10.1007/s11139-024-01018-x |