Recently, researchers have become interested in modelling, monitoring, and treatment of hepatitis B virus infection. Understanding the various connections between pathogens, immune systems, and general liver function is crucial. In this study, we propose a higher-order stochastically modified delay differential model for the evolution of hepatitis B virus transmission involving defensive cells. Taking into account environmental stimuli and ambiguities, we presented numerical solutions of the fractal-fractional hepatitis B virus model based on the exponential decay kernel that reviewed the hepatitis B virus immune system involving cytotoxic T lymphocyte immunological mechanisms. Furthermore, qualitative aspects of the system are analyzed such as the existence-uniqueness of the non-negative solution, where the infection endures stochastically as a result of the solution evolving within the predetermined system's equilibrium state. In certain settings, infection-free can be determined, where the illness settles down tremendously with unit probability. To predict the viability of the fractal-fractional derivative outcomes, a novel numerical approach is used, resulting in several remarkable modelling results, including a change in fractional-order δ with constant fractal-dimension ϖ, δ with changing ϖ, and δ with changing both δ and ϖ. White noise concentration has a significant impact on how bacterial infections are treated.
Citation: Maysaa Al Qurashi, Saima Rashid, Fahd Jarad. A computational study of a stochastic fractal-fractional hepatitis B virus infection incorporating delayed immune reactions via the exponential decay[J]. Mathematical Biosciences and Engineering, 2022, 19(12): 12950-12980. doi: 10.3934/mbe.2022605
[1] | Quanguo Chen, Yong Deng . Hopf algebra structures on generalized quaternion algebras. Electronic Research Archive, 2024, 32(5): 3334-3362. doi: 10.3934/era.2024154 |
[2] |
Kengo Matsumoto .
|
[3] | Peigen Cao, Fang Li, Siyang Liu, Jie Pan . A conjecture on cluster automorphisms of cluster algebras. Electronic Research Archive, 2019, 27(0): 1-6. doi: 10.3934/era.2019006 |
[4] | Dong Su, Shilin Yang . Representation rings of extensions of Hopf algebra of Kac-Paljutkin type. Electronic Research Archive, 2024, 32(9): 5201-5230. doi: 10.3934/era.2024240 |
[5] | Hongyan Guo . Automorphism group and twisted modules of the twisted Heisenberg-Virasoro vertex operator algebra. Electronic Research Archive, 2021, 29(4): 2673-2685. doi: 10.3934/era.2021008 |
[6] |
Bing Sun, Liangyun Chen, Yan Cao .
On the universal |
[7] | Neşet Deniz Turgay . On the mod p Steenrod algebra and the Leibniz-Hopf algebra. Electronic Research Archive, 2020, 28(2): 951-959. doi: 10.3934/era.2020050 |
[8] | Jingjing Hai, Xian Ling . Normalizer property of finite groups with almost simple subgroups. Electronic Research Archive, 2022, 30(11): 4232-4237. doi: 10.3934/era.2022215 |
[9] | Xue Yu . Orientable vertex imprimitive complete maps. Electronic Research Archive, 2024, 32(4): 2466-2477. doi: 10.3934/era.2024113 |
[10] | Hongliang Chang, Yin Chen, Runxuan Zhang . A generalization on derivations of Lie algebras. Electronic Research Archive, 2021, 29(3): 2457-2473. doi: 10.3934/era.2020124 |
Recently, researchers have become interested in modelling, monitoring, and treatment of hepatitis B virus infection. Understanding the various connections between pathogens, immune systems, and general liver function is crucial. In this study, we propose a higher-order stochastically modified delay differential model for the evolution of hepatitis B virus transmission involving defensive cells. Taking into account environmental stimuli and ambiguities, we presented numerical solutions of the fractal-fractional hepatitis B virus model based on the exponential decay kernel that reviewed the hepatitis B virus immune system involving cytotoxic T lymphocyte immunological mechanisms. Furthermore, qualitative aspects of the system are analyzed such as the existence-uniqueness of the non-negative solution, where the infection endures stochastically as a result of the solution evolving within the predetermined system's equilibrium state. In certain settings, infection-free can be determined, where the illness settles down tremendously with unit probability. To predict the viability of the fractal-fractional derivative outcomes, a novel numerical approach is used, resulting in several remarkable modelling results, including a change in fractional-order δ with constant fractal-dimension ϖ, δ with changing ϖ, and δ with changing both δ and ϖ. White noise concentration has a significant impact on how bacterial infections are treated.
The study of algebraic automorphisms on different algebraic systems is a classic direction in algebra. Usually, it is very difficult to determine the automorphisms of an algebra. How to describe the automorphisms in an algebra is still an open problem. A well-studied example is the automorphism group of an incidence algebra [1,2]. Andruskiewitsch and Dumas studied the algebra automorphisms and Hopf algebra automorphisms of the positive part of the quantum enveloping algebra of simple complex finite-dimensional Lie algebras in [3]. For more works on the algebra automorphisms of other algebras, please refer to [4,5,6,7,8,9,10].
The purpose of this paper is to find an effective method to determine the automorphisms of finite-dimensional algebras. Using the method, we not only describe all automorphisms of low-dimensional algebras, but also identify some good automorphisms of high-dimensional algebras.
The paper is organized as follows:
In Section 2, we establish a criterion for automorphisms of finite-dimensional algebras. In Section 3, as an application, we give all automorphisms of the single-parameter generalized quaternion algebra. As special cases of the single-parameter generalized quaternion algebra, all automorphisms on the semi-quaternion algebra and the split semi-quaternion algebra are given. Since Sweedler's 4-dimensional Hopf algebra, as an algebra, is a split semi-quaternion algebra, all algebraic automorphisms in Sweedler's 4-dimensional Hopf algebra are described.
Throughout the paper, R denotes the real number field. All algebras are over R, and linear refers to R-linear. Given a matrix M, MT denotes the transpose of M.
Let
η1=(10⋮0),η2=(01⋮0),⋯,ηn=(00⋮1) |
be the standard basis of Rn.
Let A be a finite-dimensional algebra with unit 1 and generators g1,g2,⋯,gs which are subject to certain relationships. Assume that {α1=1,α2,⋯,αn} is a basis for A. Using the relationships among the gi, we have
(α1α2⋮αn)(α1,α2,⋯,αn)=U1α1+U2α2+⋯+Unαn, | (2.1) |
where each Ui is a n×n digital matrix. By dividing Ui into block matrices by the columns, we obtain
Ui=(iγ1,iγ2,⋯,iγn), iγj=(iu1jiu2j⋮iunj). |
Construct the following matrices
Wi=(1γi,2γi,⋯,nγi),i=1,2,⋯,n. |
Definition 2.1. With the matrices Ui(i=1,2,⋯,n) as above. We call Wi(i=1,2,⋯,n) the matrix induced from the i-th columns of {Uj}nj=1.
Lemma 2.2. Let P be a linear transformation on A, and
P=(a11a12⋯a1na21a22⋯a2n⋮⋮⋮⋮an1an2⋯ann)=(ξ1,ξ2,⋯,ξn), |
the matrix of P with respect to the basis α1,α2,⋯,αn. Then we have
P(αi)P(αj)=(α1,α2,⋯,αn)(ξjξj⋱ξj)TCTξi, | (2.2) |
for all i,j=1,2,⋯,n, where
C=(U1,U2,⋯,Un). |
Proof. For all i,j, since
P(αi)P(αj)=ξTi(α1α2⋮αn)(α1,α2,⋯,αn)ξj=ξTi(U1α1+U2α2+⋯+Unαn)ξj=ξTiU1ξjα1+ξTiU2ξjα2+⋯+ξTiUnξjαn=ξTiC(ξjξj⋱ξj)(α1α2⋮αn), |
it follows that (2.2) holds.
Example 2.3. Recall that a single-parameter quaternion q is an expression of the form
q=a0+a1e1+a2e2+a3e3, |
where a0,a1,a2,a3 are real numbers and e1,e2,e3 satisfy the following equalities:
e21=−μ,e22=0,e23=0,e1e2=e3=−e2e1,e2e3=0=−e3e2,e3e1=μe2=−e1e3, |
where 0≠μ∈R. The set of single-parameter quaternions is denoted by Hμ[8], and Hμ is an associative algebra. We call Hμ an algebra of single-parameter quaternions (or single-parameter quaternion algebra).
Observe that Hμ is a 4-dimensional algebra with basis 1,e1,e2,e3. By computing
(1e1e2e3)(1,e1,e2,e3)=(1e1e2e3e1−μe3−μe2e2−e300e3μe200)=(10000−μ0000000000)1+(0100100000000000)e1+(0010000−μ10000μ00)e2+(000100100−1001000)e3. |
We have the corresponding Ui(i=1,2,3,4) as follows:
U1=(10000−μ0000000000),U2=(0100100000000000),U3=(0010000−μ10000μ00), |
U4=(000100100−1001000). |
Thus we have
C=(10000100001000010−μ001000000−μ00100000000010000−100000000000μ001000). |
Let P be a linear transformation on Hμ, and
P=(a11a12a13a14a21a22a23a24a31a32a33a34a41a42a43a44)=(ξ1,ξ2,ξ3,ξ4), |
the matrix of P with respect to the basis α1=1,α2=e1,α3=e2,α4=e3. For instance, we aim to compute P(e1)P(e2), i.e., P(α2)P(α3). Since
(a13000a23000a33000a430000a13000a23000a33000a430000a13000a23000a33000a430000a13000a23000a33000a43)TCT(a12a22a32a42)=(a12a13−a22a23μa13a22+a12a23−a22a43μ+a23a42μ+a13a32+a12a33−a23a32+a22a33+a13a42+a12a43) |
by Lemma 2.2, we have
P(e1)P(e2)=(1,e1,e2,e3)(a12a13−a22a23μa13a22+a12a23−a22a43μ+a23a42μ+a13a32+a12a33−a23a32+a22a33+a13a42+a12a43). |
Theorem 2.4. With notation as shown in Lemma 2.2. Then P is an automorphism if and only if ξ1=η1 and the matrix P is an invertible matrix and satisfies the following equation:
(W1,W2,⋯,Wn)(P0000P0000⋱0000P)T=PTC(P0000P0000⋱0000P)K, | (2.3) |
where C is shown in Lemma 2.2 and
K=(η10⋯0η20⋯0⋯ηn0⋯00η1⋯00η2⋯0⋯0ηn⋯0⋮⋮⋱⋮⋮⋮⋱⋮⋯⋮⋮⋱⋮00⋯η100⋯η2⋯00⋯ηn). |
Proof. From (2.1), it follows that
αiαj=(α1,α2,⋯,αn)(1uij2uij⋮nuij),∀i,j=1,2,⋯,n. | (2.4) |
For a fixed j, by using (2.4), we have
P(αiαj)=(α1,α2,⋯,αn)P(1uij2uij⋮nuij). |
Since P(αiαj)=P(αi)P(αj), for all i, it follows that
(ξjξj⋱ξj)TCTξi=P(1uij2uij⋮nuij), |
which is equivalent to
(ξjξj⋱ξj)TCTP=P(1u1j1u2j⋯1unj2u1j2u2j⋯2unj⋮⋮⋮⋮nu1jnu2j⋯nunj)=PWTj. |
Thus
(W1,W2,⋯,Wn)(P0000P0000⋱0000P)T=PTC(ξ10⋯0ξ20⋯0⋯ξn0⋯00ξ1⋯00ξ2⋯0⋯0ξn⋯0⋮⋮⋱⋮⋮⋮⋱⋮⋯⋮⋮⋱⋮00⋯ξ100⋯ξ2⋯00⋯ξn)=PTC(P0000P0000⋱0000P)K. |
From P(1)=1, we obtain ξ1=η1. The proof is completed.
Example 2.5. Let Ui(i=1,2,3,4) and C be given in Example 2.3. By Definition 2.1, we can obtain the desired Wi(i=1,2,3,4) as follows:
W1=(1000010000100001),W2=(0100−μ000000−100μ0),W3=(0010000100000000), |
W4=(000100−μ000000000). |
Thus, we have
(W1,W2,W3,W4)=(10000100001000010100−μ000000100−μ00010000−100000000000100μ000000000) |
and
K=(1000000000000000000010000000000000000000100000000000000000001000010000000000000000000100000000000000000001000000000000000000010000100000000000000000001000000000000000000010000000000000000000100001000000000000000000010000000000000000000100000000000000000001). |
In this section, we consider the application of Theorem 2.4 to Hμ. To describe all automorphisms on Hμ, we need to determine the matrices P that satisfy the condition (2.3). Let
P=(1a12a13a140a22a23a240a32a33a340a42a43a44). |
Since
LHS of (2.3)=(W1,W2,W3,W4)(P0000P0000P0000P)T=(10000100001000010100−μ000000100−μ00010000−100000000000100μ000000000)(1a12a13a140000000000000a22a23a240000000000000a32a33a340000000000000a42a43a4400000000000000001a12a13a140000000000000a22a23a240000000000000a32a33a340000000000000a42a43a4400000000000000001a12a13a140000000000000a22a23a240000000000000a32a33a340000000000000a42a43a4400000000000000001a12a13a140000000000000a22a23a240000000000000a32a33a340000000000000a42a43a44)T=(M1,M2,M3,M4), |
where
M1=(1000a12a22a32a42a13a23a33a43a14a24a34a44),M2=(a12a22a32a42−μ000−a14−a24−a34−a44a13μa23μa33μa43μ), |
M3=(a13a23a33a43a14a24a34a4400000000),M4=(a14a24a34a44a13(−μ)a23(−μ)a33(−μ)a43(−μ)00000000), |
and
RHS of (2.3)=PTC(P0000P0000⋱0000P)K=(1a12a13a140a22a23a240a32a33a340a42a43a44)T(10000100001000010−μ001000000−μ00100000000001000−1000000000000μ01000)(1a12a13a140000000000000a22a23a240000000000000a32a33a340000000000000a42a43a4400000000000000001a12a13a140000000000000a22a23a240000000000000a32a33a340000000000000a42a43a4400000000000000001a12a13a140000000000000a22a23a240000000000000a32a33a340000000000000a42a43a4400000000000000001a12a13a140000000000000a22a23a240000000000000a32a33a340000000000000a42a43a44)(1000000000000000000010000000000000000000100000000000000000001000010000000000000000000100000000000000000001000000000000000000010000100000000000000000001000000000000000000010000000000000000000100001000000000000000000010000000000000000000100000000000000000001)=(N1,N2,N3,N4), |
where
N1=(1000a12a22a32a42a13a23a33a43a14a24a34a44), |
N2=(a12a22a32a42a212−a222μ2a12a222a12a322a12a42a12a13−a22a23μa13a22+a12a23−a23a42μ+a22a43μ+a13a32+a12a33a23a32−a22a33+a13a42+a12a43a12a14−a22a24μa14a22+a12a24−a24a42μ+a22a44μ+a14a32+a12a34a24a32−a22a34+a14a42+a12a44), |
N3=(a13a23a33a43a12a13−a22a23μa13a22+a12a23−a22a43μ+a23a42μ+a13a32+a12a33−a23a32+a22a33+a13a42+a12a43a213−a223μ2a13a232a13a332a13a43a13a14−a23a24μa14a23+a13a24−a24a43μ+a23a44μ+a14a33+a13a34a24a33−a23a34+a14a43+a13a44), |
N4=(a14a24a34a44a12a14−a22a24μa14a22+a12a24−a22a44μ+a24a42μ+a14a32+a12a34−a24a32+a22a34+a14a42+a12a44a13a14−a23a24μa14a23+a13a24−a23a44μ+a24a43μ+a14a33+a13a34−a24a33+a23a34+a14a43+a13a44a214−a224μ2a14a242a14a342a14a44), |
we have Mi=Ni(i=1,2,3,4), and obtain the following system of equations:
a222μ−a212−μ=0, | (a1) |
−2a12a22=0, | (a2) |
−2a12a32=0, | (a3) |
−2a12a42=0, | (a4) |
a22a23μ−a12a13+a14=0, | (a5) |
−a13a22−a12a23+a24=0, | (a6) |
−a23a42μ+a22a43μ−a13a32−a12a33+a34=0, | (a7) |
a23a32−a22a33−a13a42−a12a43+a44=0, | (a8) |
a13(−μ)+a22a24μ−a12a14=0, | (a9) |
−a23μ−a14a22−a12a24=0, | (a10) |
−a33μ−a24a42μ+a22a44μ−a14a32−a12a34=0, | (a11) |
−a43μ+a24a32−a22a34−a14a42−a12a44=0, | (a12) |
a22a23μ−a12a13−a14=0, | (a13) |
−a13a22−a12a23−a24=0, | (a14) |
a23a42μ−a22a43μ−a13a32−a12a33−a34=0, | (a15) |
−a23a32+a22a33−a13a42−a12a43−a44=0, | (a16) |
a223μ−a213=0, | (a17) |
−2a13a23=0, | (a18) |
−2a13a33=0, | (a19) |
−2a13a43=0, | (a20) |
a23a24μ−a13a14=0, | (a21) |
−a14a23−a13a24=0, | (22) |
−a24a43μ+a23a44μ−a14a33−a13a34=0, | (a23) |
a24a33−a23a34−a14a43−a13a44=0, | (a24) |
a13μ+a22a24μ−a12a14=0, | (a25) |
a23μ−a14a22−a12a24=0, | (a26) |
a33μ+a24a42μ−a22a44μ−a14a32−a12a34=0, | (a27) |
a43μ−a24a32+a22a34−a14a42−a12a44=0, | (a28) |
a23a24μ−a13a14=0, | (a29) |
−a14a23−a13a24=0, | (a30) |
a24a43μ−a23a44μ−a14a33−a13a34=0, | (a31) |
−a24a33+a23a34−a14a43−a13a44=0, | (a32) |
a224μ−a214=0, | (a33) |
−2a14a24=0, | (a34) |
−2a14a34=0, | (a35) |
−2a14a44=0. | (a36) |
All automorphisms on Hμ can be described as follows:
Theorem 3.1. Each automorphism P on Hμ has one of the following forms:
(i) P(1)=1, P(e1)=−e1+ae2+de3, P(e2)=be2+cμe3, P(e3)=ce2−be3,
(ii) P(1)=1, P(e1)=e1+ae2+de3, P(e2)=be2−cμe3, P(e3)=ce2+be3,
where a,b,c,d are parameters and μb2+c2μ≠0.
Proof. From (a6) and (a14), we obtain a24=0. Therefore, from (a33), we have a14=0. Taking a24=0 and a14=0 in (a25) and (a26) yields a13=a23=0.
If a12=0, then, from (a1), we have a22=1 or −1. If a22=1, then the system of Eqs (a1)–(a36) is equivalent to the following system of equations
a43μ+a34=0,a44−a33=0. |
Thus, we obtain the desired P as follows:
P=(100001000a32a33a340a42−a34μa33), |
which is just the (ⅱ) of Theorem 3.1. If a22=−1, then we get the (ⅰ) of Theorem 3.1.
If a12≠0, from (a34)–(a36), one has a34=a44=0, which makes P degenerate.
If μ=1, then Hμ is the algebra of semi-quaternions. If μ=−1, then Hμ is the algebra of split semi-quaternions. By applying Theorem 3.1 to these special cases, we have the following:
Corollary 3.2. Each automorphism P on the algebra of semi-quaternions has one of the following forms:
(i) P(1)=1, P(e1)=−e1+ae2+de3, P(e2)=be2+ce3, P(e3)=ce2−be3,
(ii) P(1)=1, P(e1)=e1+ae2+de3, P(e2)=be2−ce3, P(e3)=ce2+be3,
where a,b,c,d are parameters and b2+c2≠0.
Corollary 3.3. Each automorphism P on the algebra of split semi-quaternions has one of the following forms:
(i) P(1)=1, P(e1)=−e1+ae2+de3, P(e2)=be2−ce3, P(e3)=ce2−be3,
(ii) P(1)=1, P(e1)=e1+ae2+de3, P(e2)=be2+ce3, P(e3)=ce2+be3,
where a,b,c,d are parameters and c2−b2≠0.
Corollary 3.3 gives us an extra surprise. Using Corollary 3.3, we can determine all automorphisms on Sweedler's 4-dimensional Hopf algebra. First, recall that Sweedler algebra H4 is generated by two elements g and ν subject to
g2=1,ν2=0,gν+νg=0. |
The comultiplication, antipode, and counit of H4 are given by
Δ(g)=g⊗g,Δ(ν)=g⊗ν+ν⊗1,ε(g)=1,ε(ν)=0,S(g)=g,S(ν)=−gν. |
Note that the dimension of H4 is four with 1,g,ν,gν forming a basis for H4. By setting e1=g,e2=ν,e3=gv, we see that H4 as an algebra is a split semi-quaternion algebra. Thus, by Corollary 3.3, we have the following result.
Corollary 3.4. Each automorphism P on Sweedler's 4-dimensional Hopf algebra has one of the following forms:
(i) P(1)=1, P(g)=−g+aν+dgν, P(ν)=bν−cgν, P(gν)=cν−bgν,
(ii) P(1)=1, P(g)=g+aν+dgν, P(ν)=bν+cgν, P(gν)=cν+bgν,
where a,b,c,d are parameters and c2−b2≠0.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors sincerely thank the referees for numerous very valuable comments and suggestions on this article. This work was supported by the National Natural Science Foundation of China (No. 12271292), the Natural Science Foundation of Shandong Province (No. ZR2022MA002) and the Natural Science Foundation of Xinjiang Uygur Autonomous Region (No. 2019D01B04).
The authors declare there are no conflicts of interest.
[1] |
S. M. Ciupe, R. M. Ribeiro, P. W. Nelson, A. S. Perelson, Modeling the mechanisms of acute hepatitis B virus infection, J. Theor. Biol., 247 (2007), 23–35. https://doi.org/10.1016/j.jtbi.2007.02.017 doi: 10.1016/j.jtbi.2007.02.017
![]() |
[2] |
R. M. Ribeiro, A. Lo, A. S. Perelson, Dynamics of hepatitis B virus infection, Microb. Infect., 4 (2002), 829–835. https://doi.org/10.1016/S1286-4579(02)01603-9 doi: 10.1016/S1286-4579(02)01603-9
![]() |
[3] |
D. H. Kim, H. S. Kang, K.-H. Kim, Roles of hepatocyte nuclear factors in hepatitis B virus infection, World J Gastroenterol., 22 (2016), 7017–7029. https://doi.org/10.3748/wjg.v22.i31.7017 doi: 10.3748/wjg.v22.i31.7017
![]() |
[4] |
I. S. Oh, S. H. Park, Immune-mediated liver injury in hepatitis B virus infection, Immun. Netw, 15 (2015), 191. https://doi.org/10.4110/in.2015.15.4.191 doi: 10.4110/in.2015.15.4.191
![]() |
[5] | C. A. Janeway, J. P. Travers, M. Walport, M. J. Sholmchik, Immunobiology: The Immune System in Health and Disease 5th edition, New York, Garland Science, 2001. |
[6] |
R. Kapoor, S. Kottilil, Strategies to eliminate HBV infection, Future Virol., 9 (2014). https://doi.org/10.2217/fvl.14.36 doi: 10.2217/fvl.14.36
![]() |
[7] |
K. Hattaf, N. Yousfi, A generalized HBV model with diffusion and two delays, Comput. Math. Appl. 69 (2015), 31–40. https://doi.org/10.1016/j.camwa.2014.11.010 doi: 10.1016/j.camwa.2014.11.010
![]() |
[8] |
K. Manna, S. P. Chakrabarty, Global stability of one and two discrete delay models for chronic hepatitis B infection with HBV DNA-containing capsids, Comput. Appl. Math, 36 (2017), 525–536. https://doi.org/10.1007/s40314-015-0242-3 doi: 10.1007/s40314-015-0242-3
![]() |
[9] |
T. Luzyanina, G. Bocharov, Stochastic modeling of the impact of random forcing on persistent hepatitis B virus infection, Math. Comput. Simul., 96 (2014), 54–65. https://doi.org/10.3934/mbe.2021034 doi: 10.3934/mbe.2021034
![]() |
[10] |
X. Wang, Y. Tan, Y. Cai, K. Wang, W. Wang, Dynamics of a stochastic HBV infection model with cell-to-cell transmission and immune response, Math. Biosci. Eng., 18 (2021), 616–642. https://doi.org/10.3934/mbe.2021034 doi: 10.3934/mbe.2021034
![]() |
[11] |
C. Ji, The stationary distribution of hepatitis B virus with stochastic perturbation, Appl. Math. Lett., 100 (2020), 106017. https://doi.org/10.1016/j.aml.2019.106017 doi: 10.1016/j.aml.2019.106017
![]() |
[12] |
D. Kiouach, Y. Sabbar, Ergodic stationary distribution of a stochastic hepatitis B epidemic model with interval-valued parameters and compensated poisson process, Comput. Math. Meth. Med., 2020 (2020). https://doi.org/10.1155/2020/9676501 doi: 10.1155/2020/9676501
![]() |
[13] |
H. Hui, L. F. Nie, Analysis of a stochastic HBV infection model with nonlinear incidence rate, J. Bio. Syst., 27 (2019), 399–421. https://doi.org/10.1142/S0218339019500177 doi: 10.1142/S0218339019500177
![]() |
[14] |
C. Ji, The stationary distribution of hepatitis B virus with stochastic perturbation, Appl. Math. Lett., 100 (2020), 106017. https://doi.org/10.1016/j.aml.2019.106017 doi: 10.1016/j.aml.2019.106017
![]() |
[15] |
Y. Wang, K. Qi, D. Jiang, An HIV latent infection model with cell-to-cell transmission and stochastic perturbation, Chaos Soliton. Fract., 151 (2021), 111215. https://doi.org/10.1016/j.chaos.2021.111215 doi: 10.1016/j.chaos.2021.111215
![]() |
[16] |
A. Din, Y. Li, A. Yusuf, Delayed hepatitis B epidemic model with stochastic analysis, Chaos Soliton. Fract., 146 (2021), 110839. https://doi.org/10.1016/j.chaos.2021.110839 doi: 10.1016/j.chaos.2021.110839
![]() |
[17] |
J.Sun, M. Gao, D. Jiang, Threshold dynamics of a Non-linear stochastic viral model with Time Delay and CTL responsiveness, Life, 11 (2021), 766. https://doi.org/10.3390/life11080766 doi: 10.3390/life11080766
![]() |
[18] |
F. A. Rihan, H. J. Alsakaji, Analysis of a stochastic HBV infection model with delayed immune response, Math. Biosci. Eng, 18 (2021), 5194–5220. https://doi.org/10.3934/mbe.2021264 doi: 10.3934/mbe.2021264
![]() |
[19] | T.-H. Zhao, O. Castillo, H. Jahanshahi, A. Yusuf, M. O. Alassafi, F. E. Alsaadi, Y.-M. Chu, A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak, Appl. Comput. Math, 20 (2021), 160–176. |
[20] |
S.-W Yao, M. Farman, M. Amin, M. Inc, A. Akgül, A. Ahmad, Fractional order COVID-19 model with transmission rout infected through environment, AIMS Math., 7 (2022), 5156–5174. https://doi.org/10.3934/math.2022288 doi: 10.3934/math.2022288
![]() |
[21] |
Z. Ul. A. Zafar, H. Rezazadeh, M. Inc, K. S. Nisar, T. A. Sulaiman, et al., Fractional order heroin epidemic dynamics, Alexandria Eng. J., 60 (2021), 5157–5165. https://doi.org/10.1016/j.aej.2021.04.039 doi: 10.1016/j.aej.2021.04.039
![]() |
[22] | I. Podlubny, Fractional differential equations, San Diego: Academic Press, (1999). |
[23] |
T.-H. Zhao, M. Ijaz Khan, Y.-M. Chu, Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-Newtonian fluid between two rotating disks, Math. Methods Appl. Sci., (2021). https://doi.org/10.1002/mma.7310 doi: 10.1002/mma.7310
![]() |
[24] |
K. Karthikeyan, P. Karthikeyan, H. M. Baskonus, K. Venkatachalam, Y.-M. Chu, Almost sectorial operators on Ψ-Hilfer derivative fractional impulsive integro-differential equations, Math. Methods Appl. Sci, (2021). https://doi.org/10.1002/mma.7954 doi: 10.1002/mma.7954
![]() |
[25] |
S. Rashid, S. Sultana, Y. Karaca, A. Khalid, Y.-M. Chu, Some further extensions considering discrete proportional fractional operators, Fractals, 30 (2022), Article ID 2240026. https://doi.org/10.1142/S0218348X22400266 doi: 10.1142/S0218348X22400266
![]() |
[26] |
S. N. Hajiseyedazizi, M. E. Samei, J. Alzabut, Y.-M. Chu, On multi-step methods for singular fractional q-integro-differential equations, Open Math., 19 (2021), 1378–1405. https://doi.org/10.1515/math-2021-0093 doi: 10.1515/math-2021-0093
![]() |
[27] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl., 2 (2015), 73–85. |
[28] |
A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos Soliton. Fract., 396 (2017), 102. https://doi.org/10.1016/j.chaos.2017.04.027 doi: 10.1016/j.chaos.2017.04.027
![]() |
[29] |
A. Atangana, S. Jain, A new numerical approximation of the fractal ordinary differential equation, Eur. Phys. J. Plus., 133 (2018), 37. https://doi.org/10.1140/epjp/i2018-11895-1 doi: 10.1140/epjp/i2018-11895-1
![]() |
[30] |
F. Jin, Z.-S. Qian, Y.-M. Chu, M. ur Rahman, On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative, J. Appl. Anal. Comput., 12 (2022), 790–806. https://doi.org/10.11948/20210357 doi: 10.11948/20210357
![]() |
[31] |
S. Rashid, E. I. Abouelmagd, A. Khalid, F. B. Farooq, Y.-M. Chu, Some recent developments on dynamical ℏ-discrete fractional type inequalities in the frame of nonsingular and nonlocal kernels, Fractals, 30 (2022), Article ID 2240110. https://doi.org/10.1142/S0218348X22401107 doi: 10.1142/S0218348X22401107
![]() |
[32] |
F.-Z. Wang, M. N. Khan, I. Ahmad, H. Ahmad, H. Abu-Zinadah, Y.-M. Chu, Numerical solution of traveling waves in chemical kinetics: time-fractional fishers equations, Fractals, 30 (2022), Article ID 2240051. https://doi.org/10.1142/S0218348X22400515 doi: 10.1142/S0218348X22400515
![]() |
[33] |
S. Rashid, R. Ashraf, F. Jarad, Strong interaction of Jafari decomposition method with nonlinear fractional-order partial differential equations arising in plasma via the singular and nonsingular kernels, AIMS Math., 7 (2022), 7936–7963. https://doi.org/10.3934/math.2022444 doi: 10.3934/math.2022444
![]() |
[34] |
S. Rashid, F. Jarad, A. G. Ahmad, K. M. Abualnaja, New numerical dynamics of the heroin epidemic model using a fractional derivative with Mittag-Leffler kernel and consequences for control mechanisms, Results Phy., 35 (2022). https://doi.org/10.1016/j.rinp.2022.105304 doi: 10.1016/j.rinp.2022.105304
![]() |
[35] |
S. Rashid, E. I. Abouelmagd, S. Sultana, Y.-M. Chu, New developments in weighted n-fold type inequalities via discrete generalized ˆh-proportional fractional operators, Fractals, 30 (2022), Article ID 2240056. https://doi.org/10.1142/S0218348X22400564 doi: 10.1142/S0218348X22400564
![]() |
[36] |
S. A. Iqbal, M. G. Hafez, Y.-M. Chu, C. Park, Dynamical Analysis of nonautonomous RLC circuit with the absence and presence of Atangana-Baleanu fractional derivative, J. Appl. Anal. Comput., 12 (2022), 770–789. https://doi.org/10.11948/20210324 doi: 10.11948/20210324
![]() |
[37] | A. N. Shiryaev, Essentials of Stochastic Finance, Facts, Models and Theory. World Scientific, Singapore, (1999). https://doi.org/10.1142/3907 |
[38] |
K. X. Li, Stochastic delay fractional evolution equations driven by fractional Brownian motion, Math. Methods Appl. Sci., 38 (2015), 1582–1591. https://doi.org/10.1002/mma.3169 doi: 10.1002/mma.3169
![]() |
[39] |
M. Kerboua, A. Debbouche, D. Baleanu, Approximate controllability of Sobolev-type nonlocal fractional stochastic dynamic systems in Hilbert spaces, Abstr. Appl. Anal., 2013 (2013), Article ID 262191. https://doi.org/10.1155/2013/262191 doi: 10.1155/2013/262191
![]() |
[40] |
B. Pei, Y. Xu, On the non-Lipschitz stochastic differntial equations driven by fractional Brownian motion, Adv. Differ. Equ., 2016 (2016), 194. https://doi.org/10.1186/s13662-016-0916-1 doi: 10.1186/s13662-016-0916-1
![]() |
[41] |
A. Atangana, S. I. Araz, Modeling and forecasting the spread of COVID-19 with stochastic and deterministic approaches: Africa and Europe, Adv. Differ. Eqs., 2021 (2021), 1–107. https://doi.org/10.1186/s13662-021-03213-2 doi: 10.1186/s13662-021-03213-2
![]() |
[42] |
B. S. T. Alkahtani, I. Koca, Fractional stochastic SIR model, Results Phy., 24 (2021), 104124. https://doi.org/10.1016/j.rinp.2021.104124 doi: 10.1016/j.rinp.2021.104124
![]() |
[43] |
S. Rashid, M. K. Iqbal, A. M. Alshehri, R. Ahraf, F. Jarad, A comprehensive analysis of the stochastic fractal-fractional tuberculosis model via Mittag-Leffler kernel and white noise, Results Phy., 39 (2022), 105764. https://doi.org/10.1016/j.rinp.2022.105764 doi: 10.1016/j.rinp.2022.105764
![]() |
[44] |
X. Zhang, H. Peng, Stationary distribution of a stochastic cholera epidemic model with vaccination under regime switching, Appl. Math. Lett., 102 (2020). https://doi.org/10.1016/j.aml.2019.106095 doi: 10.1016/j.aml.2019.106095
![]() |
[45] |
F. A. Rihan, H. J. Alsakaji, C. Rajivganthi, Stochastic SIRC epidemic model with time-delay for COVID-19, Adv. Differ. Equ., 2020 (2020), 1–20. https://doi.org/10.1186/s13662-019-2438-0 doi: 10.1186/s13662-019-2438-0
![]() |
[46] |
Q. Liu, D. Jiang, Stationary distribution and extinction of a stochastic SIR model with nonlinear perturbation, Appl. Math. Lett., 73 (2017), 8–15. https://doi.org/10.1016/j.aml.2017.04.021 doi: 10.1016/j.aml.2017.04.021
![]() |
[47] |
O. Diekmann, J. A. P. Heesterbeek, M. G. Roberts, The construction of next-generation matrices for compartmental epidemic models, J. R. Soc. Interface., 7 (2010), 873–885. https://doi.org/10.1098/rsif.2009.0386 doi: 10.1098/rsif.2009.0386
![]() |
[48] |
A. Atangana, Mathematical model of survival of fractional calculus, critics and their impact: How singular is our world? Adv. Diff. Equ., 2021 (2021), 403. https://doi.org/10.1186/s13662-021-03494-7 doi: 10.1186/s13662-021-03494-7
![]() |
[49] |
P. Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
![]() |
[50] | P. Baldi, L. Mazliak, P. Priouret, Pierre, Martingales and Markov Chains, Chapman and Hall., ISBN 978-1-584-88329-6, (1991). |
[51] |
D. Wodarz, J. P. Christensen, A. R. Thomsen, The importance of lytic and nonlytic immune responses in viral infections, Trends Immunol., 23 (2002), 194–200. https://doi.org/10.1016/S1471-4906(02)02189-0 doi: 10.1016/S1471-4906(02)02189-0
![]() |
[52] | B. Berrhazi, M. E. Fatini, T. G. Caraballo, R. Pettersson, A stochastic SIRI epidemic model with levy noise, Discret. Contin. Dyn. Syst. Ser. B., 23 (2018), 3645–3661. |
[53] |
K. Hattaf, A new generalized definition of fractional derivative with non-singular kernel, Computation, 8 (2020), 4. https://doi.org/10.3390/computation8020049 doi: 10.3390/computation8020049
![]() |
[54] |
J. M. Heffernan, R. J. Smith, L. M. Wahl, Perspectives on the basic reproductive ratio, J. R. Soc. Interf., 2 (2005), 281–293. https://doi.org/10.1098/rsif.2005.0042 doi: 10.1098/rsif.2005.0042
![]() |
[55] |
H. Dahari, A. Lo, R. M. Ribeiro, A. S. Perelson, Modeling hepatitis C virus dynamics: Liver regeneration and critical drug efficacy, J. Theor. Biol., 247 (2007), 371–381. https://doi.org/10.1016/j.jtbi.2007.03.006 doi: 10.1016/j.jtbi.2007.03.006
![]() |
[56] |
J. Reyes-Silveyra, A. R. Mikler, Modeling immune response and its effect on infectious disease outbreak dynamics, Theor. Biol. Med. Model., 13 (2016), 1–21. https://doi.org/10.1186/s12976-016-0033-6 doi: 10.1186/s12976-016-0033-6
![]() |
[57] |
D. Wodarz, Hepatitis C virus dynamics and pathology: the role of CTL and antibody responses, J. Gen. Virol., 84 (2003), 1743–1750. https://doi.org/10.1099/vir.0.19118-0 doi: 10.1099/vir.0.19118-0
![]() |