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Abstract: Recently, researchers have become interested in modelling, monitoring, and treatment
of hepatitis B virus infection. Understanding the various connections between pathogens, immune
systems, and general liver function is crucial. In this study, we propose a higher-order stochastically
modified delay differential model for the evolution of hepatitis B virus transmission involving defensive
cells. Taking into account environmental stimuli and ambiguities, we presented numerical solutions
of the fractal-fractional hepatitis B virus model based on the exponential decay kernel that reviewed
the hepatitis B virus immune system involving cytotoxic T lymphocyte immunological mechanisms.
Furthermore, qualitative aspects of the system are analyzed such as the existence-uniqueness of
the non-negative solution, where the infection endures stochastically as a result of the solution
evolving within the predetermined system’s equilibrium state. In certain settings, infection-free can be
determined, where the illness settles down tremendously with unit probability. To predict the viability
of the fractal-fractional derivative outcomes, a novel numerical approach is used, resulting in several
remarkable modelling results, including a change in fractional-order δ with constant fractal-dimension
$, δ with changing $, and δ with changing both δ and $. White noise concentration has a significant
impact on how bacterial infections are treated.
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1. Introduction

Hepatitis B virus causes hepatitis B (HB), an extremely fatal liver disease, and is responsible for
more than 2 billion chronic infections that have been discovered globally [1, 2]. It is a significant
issue for wellbeing promotion. It can lead to prolonged liver damage, persistent inflammation, and a
significant chance of fatality through hepatocellular carcinoma and encephalopathy [3]. Hepatitis B
infestations can only happen if the pathogen can get into the circulatory system and affect the liver
(see Figure 1). Once inside the liver, the infection multiplies and emits a significant quantity of fresh
pathogens into the interstitial fluid [4, 5].

Figure 1. Life cycle of HBV infection; see [3].

However, there are two potential stages of this infectious disease: acute and chronic. HB virus that
is severe seems to last less than 6 months, typically. If the illness is severe, the defensive mechanism
is expected to eradicate the organism of the pathogen, and the patient should fully recover in the next
few weeks. The majority of individuals who develop HB have an active virus. The incubation period
for persistent HB is 12 weeks or more. Most newborns who contract HBV during infancy, as well as
several children between the ages of one and six, develop a degenerative disease. Individuals having
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persistent HBV disease constitute a sizable 2/3 of chronically transmitted individuals. Despite carrying
and spreading germs, these individuals do not exhibit any indications of illness [6]. The surviving
one-third experienced acute hepatitis, a liver condition that could potentially be incredibly dangerous
(see Figure 2). Over 2.4 billion individuals worldwide suffer from recurrent liver problems. HB’s
severe or long-term effects cause over 600,000 deaths a year [6]. Cytotoxic T lymphocytes (CTLs) can
deliberately threaten contaminated hepatocellular through severe HBV infections and contribute to the
pathophysiology of liver failure by coordinating various immunological mechanisms; see [6].

Figure 2. Future medical approaches to get rid of HBV infection; see [6].

It is crucial to take into account the impact of temporal constraints on the HBV pathway because
intercellular propagation and disease penetration are processes that require to be accomplished within
a certain environment [7, 8]. Additionally, the criteria for development and contact are based on the
disease’s kind and phase, the defensive system’s health, and the milieu of the organism wherein the
association works [9]. The participant’s general lack of well-being affects the environment of the
body. One strategy for investigating the effects of internal environmental parameters on the evolution
of HBV transmission could be to modify the determinism account of the bacteriophage association to
incorporate the randomized pressure in both an incremental and random manner. Numerous studies,
including [10–12], have investigated numerical simulations to look into the mechanisms of HBV
spreading with sound intensity.

When trying to evaluate the analogous prediction systems, stochastic modelling of highly
contagious infection agents has a vital influence and adds a sense of authenticity [13]. In general,
various organisms respond in the equivalent habitat to virus-induced designs and highly infectious
pathogens, and the consequences can vary. Because the environment is constantly changing, the
system’s attributes actually oscillate around certain optimum levels [14]. Wang et al. [15] created an
insidiously contagious and randomized stochastic HIV infectious framework and studied the results of
stationary transmission durability. The researchers [16] addressed how a randomized HBV candida
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transmission concept with a significant delay in the propagation factor causes regular eruptions and
the stagnant distribution and elimination consequences. In addition, the pathogens will be wiped out
if the stochastic procreative quantity is below one, and if the stochastic procreative index is
significantly higher than one, the infectious disease will be stochastically persistent with a
perturbation theory model generated. According to Sun et al. [17], the presence of a solution for the
stochastic highly contagious pathogenic framework of CTL feedback and decentralized delay was
investigated. Rihan and Alsakaji [18] presented an investigation of an HBV infection framework,
including a delayed immune reaction. For further details on epidemic systems; see [19–21] and the
references cited therein.

Due to their involvement in assisting representatives in exploring the concealed characteristics of
the complexities of interactive structures in rheological, permeation, machine design, electromagnetic
fields, control, remote sensing, and thermodynamics, implementations of deterministic fractional
differential equations (DEs) and fractional stochastic DEs motivated by Brownain motion (BM) have
historically attracted the majority of attention in potential implementation. The basic differential and
integral operators are unable to capture imperfections, but both fractional derivative/integral operators
have been recognized as powerful computing tools [22–24]. Furthermore, when simulating physical
and experimental events, F-F formulations exhibit diverse and distinct types of variability [25–27]. I
think it seems that there are undoubtedly many real-world problems that neither fractal nor fractional
interpretations are able to accurately reproduce on an individualized dimension. Researchers realized
that novel mathematical procedures were required to replicate extremely complicated formations.
Despite the assertion that there is hardly anything novel or transformative, it is difficult to believe that
the combination of two existing concepts may produce a groundbreaking procedure. For added
complexity, a unique differential formula was first implemented in [28]. This logical statement might
be understood as the result of the accumulation of the fractal differentiation of a fractional derivative
of a specific model. Evidently, there are three possible readings; it all depends on the kernels [29–32].
The concept was contested and applied to other challenges such as chaotic outgrowths, outbreaks, and
diffusion, among others ( [33–36]), and the overwhelming majority of publications provided
extremely impressive predicted findings.

In fact, random events are prevalent worldwide. Systems frequently experience random
disturbances. Various studies have been conducted on stochastic dynamics; for example, a wide range
of scientific theories, including meteorology, accounting, biology, and telecommunication systems,
frequently exhibit randomized fluctuations with long-term dependency. In order to analyze fractional
stochastic processes, fractional BM employing the Hurst index H(1/2, 1) has been proposed as an
alternative to classical BM [37, 38]. Kerboua et al. [39] investigated the SFDEs with perturbed
regulatory frameworks involving fractional BM. Pei and Xu [40] investigated the non-Lipschitz SDEs
driven by fractional BM. In 2021, authors [41] presented a novel notion for analyzing and predicting
the transmission of COVID-19 throughout Africa and Europe using stochastic and deterministic
methods. Alkahtani and Koca [42] contemplated the fractional stochastic SIR system within the
fractional calculus technique. Rashid et al. [43] expounded the stochastic F-F tuberculosis model via
a nonsingular kernel with random densities.

In the research analysis, we examine the behaviour of fractional stochastic delay DEs of the HBV
system involving cell-to-cell propagation and CTLs immunological responsiveness via the
fractal-fractional operator based on the exponential decay kernel with random densities, which is
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inspired by the aforementioned clinical and mathematical concerns. This biological model governed
by fractional BM has not yet been demonstrated in the mainstream. As a result of this reality and in
an effort to fill this discrepancy, we commence scientific work on one of these formulae in this article.
We include the impact of several time delays (TD) and randomness inside a recipient to furnish a
highly authentic scenario for the virus’s design phase. In the meantime, existence-uniqueness,
stochastic basic reproductive number, and the local stability of disease steady states are investigated in
the stochastic context. Numerical results are presented by employing the revolutionary technique
proposed by Atangana and Araz [41] in the F-F derivative sense. Graphical illustrations are presented
with low random densities, incorporating the fractal-dimension and fractional-order. In a nutshell, we
presented the simulation findings with and without control.

2. Preliminaries

Before advancing on to the formal description, it is imperative to study certain fundamental F-F
operator concepts. Take into account the parameters provided in [28] as well as the functional w(t1),
which is continuous and fractal differentiable on [c, d] with fractal-dimension $ and fractional-order
δ.

Definition 2.1. ( [28]) The F-F operator of w(t1) involving the index kernel in terms of
Riemann–Liouville (RL) can be presented as follows for δ ∈ [0, 1]:

FFPDδ,$0,t1
(w(t1)) =

1
Γ(s − δ)

d
dt$1

t1∫
0

(t1 − u)s−δ−1w(u)du, (2.1)

where dw(u)
du$ = lim

t1 7→u
w(t1)−w(u)

t$1 −u$ and s − 1 < δ,$ ≤ s ∈ N.

Definition 2.2. ( [28]) The F-F operator of w(t1) involving the exponential function kernel in terms of
RL can be described as follows for δ ∈ [0, 1]:

FFEDδ,$0,t1
(w(t1)) =

M(δ)
1 − δ

d
dt$1

t1∫
0

exp
(
−

δ

1 − δ
(t1 − u)

)
w(u)du, (2.2)

such thatM(0) = M(1) = 1 having δ > 0, $ ≤ s ∈ N.

Definition 2.3. ( [28]) The corresponding F-F integral operator of (2.1) is stated as:

FFPJδ0,t1
(w(t1)) =

$

Γ(δ)

t1∫
0

(t1 − u)δ−1u$−1w(u)du. (2.3)

Definition 2.4. ( [28]) The corresponding F-F integral operator of (2.2) is stated as:

FFEJδ0,t1
(w(t1)) =

δ$

M(δ)

t1∫
0

u$−1w(u)du +
$(1 − δ)t$−1

1 w(t1)
M(δ)

. (2.4)
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3. Model configuration

In this study, we reveal a revolutionary system of stochastic delay DEs for Hepatitis B virus
replication in a single recipient, despite the fact that the intracellular stage of over expression is not
entirely appreciated. We surmise that throughout an HBV infestation, balanced (unexposed)
metabolic enzymes can become infectious both by interaction with contaminated hepatocytes and by
freshly generated complimentary pathogens. We furthermore suppose that the
challenge-contaminated lymphocytes can be especially attacked by the cytotoxic T lymphocytes
(CTLs). With the infiltration of a membrane and the ejection of retroviruses and the creation of
viruses, there is still an unavoidably intracellular TD (significant-delay). Additionally, TD is
necessary to reflect the gestation, which is the duration needed for the creation of fresh pathogens.
Furthermore, we offer a delay differential framework to integrate the CTL community alongside
infections predicated on the underlying framework of Nowak et al. [44]. A model is used to evaluate
the structure


˙̃H(t1) = λ − φ1H̃(t1) − γ1H̃(t1)Ṽ(t1) − γ2H̃(t1)Ĩ(t1),
˙̃I(t1) = γ1H̃(t1 − ζ1)Ṽ(t1 − ζ1) + γ2H̃(t1 − ζ1)Ĩ(t1 − ζ1) − γ3Ĩ(t1)D̃(t1) − φ2Ĩ(t1),
˙̃V(t1) = ωĨ(t1 − ζ2) − φ3Ṽ(t1),
˙̃D(t1) = ϑ − φ4D̃(t1) + γ4Ĩ(t1)D̃(t1),

(3.1)

where H̃(t1), Ĩ(t1), Ṽ(t1), D̃(t1), respectively, indicate the hepatocytes that are pure and productive of
pathogens, infectious hepatocellular, HB infection pathogens as well as the CTLs. From the first
component of the following formula, TD containing ζ1 is applied to estimate the length of period it
takes from the first infections of a tissue and the generation of additional vesicles. The other
component also incorporates the response time vital for proper hepatocytes to be invaded by
malignant hepatocytes interactions before becoming contaminated hepatocellular, whilst ζ2 denotes
the time that is required for recently generated particulates to develop before becoming contagious
components. Either uncontrolled pathogens attack normal tissue at a pace of γ1H̃Ṽ (disease
transmission mechanism), or viral proteins communicate directly normal tissues at a speed of γ2H̃Ĩ
(cell-to-cell spread mechanism). As a result, the expression “γ1H̃Ṽ + γ2H̃Ĩ” denotes the overall
disease incidence of susceptible organisms. CTLs generate at a consistent rate of η2 from the
hypothalamus and at a pace of γ4ĨD̃ as a consequence of stimulating invading pathogens, and they
remove invading pathogens at a rate of γ3ĨD̃, where ω is the rate at which viral proteins producing
free radicals infections (see Figure 3).
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Figure 3. schematic diagram of HBV infection.

In addition, the complexities of HBV transmission may be impacted by unpredictable
perturbations in the mechanism of transmission within the recipient, including fluctuations in climate,
emotion, and other endogenous rhythms. Because of this, many researchers have included
randomization to determinism in studies of biologic processes to illustrate the influence of
environmental heterogeneity, as seen in [44, 45].
By incorporating nonlinear disturbance on the spontaneous mortality rate using white noise into every
other component of the scheme, we capture the influence of randomness in the host for a more
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reasonable position of the virus’s progression (3.2). Although the HBV infection model’s
characteristics are not known in advance, the region to which they correspond can indeed be easily
identified. So, we suggest a delayed probabilistic approach of the following:

dH̃(t1) =
(
λ − φ1H̃(t1) − γ1H̃(t1)Ṽ(t1) − γ2H̃(t1)Ĩ(t1)

)
dt1 + σ1H̃B1(t1),

dĨ(t1) =
(
γ1H̃(t1 − ζ1)Ṽ(t1 − ζ1) + γ2H̃(t1 − ζ1)Ĩ(t1 − ζ1) − γ3Ĩ(t1)D̃(t1) − φ3Ĩ(t1)

)
dt1 + σ2ĨB2(t1),

dṼ(t1) =
(
ωĨ(t1 − ζ2) − φ3Ṽ(t1)

)
dt1 + σ3ṼB3(t1),

dD̃(t1) =
(
ϑ − φ4D̃(t1) + γ4Ĩ(t1)D̃(t1)

)
dt1 + σ4D̃B4(t1),

(3.2)

depending on the ICs H̃(δ) = µ1(δ), Ĩ(δ) = µ2(δ), Ṽ(δ) = µ3(δ), D̃(δ) = µ4(δ).
Also, δ ∈ [−ζ, 0], ζ = max{ζ1, ζ2}, µκ(δ) ∈ C, κ = 1, ..., 4. C([−ζ, 0],R4

+) is the collection of Lebesgue
integrable functions in this case including Bκ, κ = 1, ..., 4 is a real-valued standard BM specified on a
complete probability space (ω,A,P) meeting the basic requirements [46] and σκ, κ = 1, ..., 4 denote
the concentrations of the white noise.

Table 1. Explanation of system’s feature.

S ymbols Explanation

λ Rate of viral hepatocellular development via bone marrow and various tissues
ϑ Rate at which CTLs are produced in the thymus
φ1 Percentage of uninfectious hepatocytes that naturally die
φ2 Percentage of infectious hepatocytes that naturally die
φ3 Frequency of harmless pathogens dying
φ4 Fatality rate of CTLs
γ1 Successful viral interaction incidence with healthy hepatocytes
γ2 Efficient proportion of interaction between healthy and diseased hepatocytes
γ3 CTLs’ efficiency at eradicating infectious hepatocytes
γ4 CTL development speed as a result of contaminated cells’ activation
ω Speed of spontaneous viral activity in affected tissues

4. Qualitative analysis

In previous decades, the idea of reproduction has been extensively used in epidemiological
modelling since it has been recognized as a valuable mathematical tool for evaluating reproduction in
a specific illness. According to the concept proposed by Atangana [48], one will identify two
components F and Ṽ, then

(FṼ − λĨ) = 0

will be analyzed to generate reproductive number [49]. The component F is particularly intriguing
because it is derived from the nonlinear part of the infected classes.

∂

∂˜̃I

( Ĩ
N

)
=

[N − Ĩ]
N2

Mathematical Biosciences and Engineering Volume 19, Issue 12, 12950–12980.



12958

and

∂2

∂Ĩ2

( (N − Ĩ)
N2

)
= −2

[N − Ĩ]
N3

=
−2(H̃ + Ṽ + D̃)

(H̃ + Ĩ + Ṽ + D̃)3
.

At disease free equilibrium E0 = ( λ
φ1
, 0, 0, ϑ

φ4
), we have

∂2

∂Ĩ2

( (N − Ĩ)
N2

)
=
−2(H̃0 + D̃0)
(H̃0 + D̃0)3

.

Therefore, we have

FA =
[
−2(γ1H̃0+D̃0)

(H̃0+D̃0)3 0
]

=

[
−2γ1( λ

φ1
+ ϑ
φ4

)

( λ
φ1

+ ϑ
φ4

)3 0
]

=
[
−2γ1(φ1φ4)2

(λφ4+ϑφ1)2 0
]

Then,
det(FAṼ−1 − λĨ) = 0

gives

A =
−2γ1φ

2
1φ

3
4

(λφ4 + ϑφ1)2(γ3ϑ + φ2φ4)
< 0.

Also,A indicates that the expansion will not repeat and will consequently have a single magnitude and
wipe out. A > 0 indicates that there is sufficient intensity to initiate the regeneration phase, implying
that the dispersion will have more than one cycle. Consequently, researchers will supply a strong
insight of the aforesaid number.

4.1. Existence-uniqueness of the HBV model

In this part, we outline a few prerequisites that will ensure a non-negative solution of the stochastic
delay DEs scheme presented in (3.2). This is feasible because a favourable result will exist if the
system’s coefficients satisfy the growth and Lipschitz assumptions.

Theorem 4.1. Suppose there is a system (3.2) (H̃(t1), Ĩ(t1), Ṽ(t1), D̃(t1)) with ICs having t1 ≥ −ζ and
the solution will stay in R4

+, almost probably.

Proof. By means of the system (3.2), satisfies the Lipschitz continuous, there exists a peculiar
solution (H̃(t1), Ĩ(t1), Ṽ(t1), D̃(t1)) defined on [−ζ, ζe), where ζe signifies the explosion time. In order
to demonstrate the solution, we need to to illustrate that ζe = ∞. Assume that Λ0 > 0 be a large
enough, thus, we have
(H̃(t1), Ĩ(t1), Ṽ(t1), D̃(t1)) =

{
(µ1(t1), µ2(t1), µ3(t1), µ4(t1)) : t1 ∈ (−ζ, 0)

}
∈ C([−ζ, 0];R4

+) contained in[
1

Λ0
,Λ0

]
. Introducing the stopping time, so for every Λ ≥ Λ0, we have

ζΛ := inf
{
t1 ∈ [−ζ, ζe) : min

{
H̃(t1), Ĩ(t1), Ṽ(t1), D̃(t1)

}}
≤

1
Λ

or equivalently

ζΛ := inf
{
t1 ∈ [−ζ, ζe) : max

{
H̃(t1), Ĩ(t1), Ṽ(t1), D̃(t1)

}}
≥ Λ.
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Now letting inf ψ = ∞ and increasing function ζΛ on Λ. Also, suppose ζ∞ = lim
Λ7→∞

ζΛ, then ζ∞ ≤ ζe

and need to prove ζ∞ = ∞ almost surely. We intend to find that ζe = ∞ almost surely. If this claim is
factually inaccurate, then ∃ some constants T > 0 and ε ∈ (0, 1) such that P

{
ζ∞ ≤ T

}
> ε. Thus, for an

integer Λ1 ≥ Λ0 such that P
{
ζΛ ≤ T

}
> ε, ∀ Λ ≥ Λ1. Introducing a mapping U1 : R4

+ 7→ R+ as:

U1(H̃(t1), Ĩ(t1), Ṽ(t1), D̃(t1)) := (H̃ − 1 − ln H̃) + (Ĩ − 1 − ln Ĩ) + Λ2Ṽ + Λ2(D̃ − 1 − ln D̃)

+

t1∫
t1−ζ1

(
γ1H̃(s1)Ṽ(s1) + γ2H̃(s1)Ĩ(s1)

)
ds1 + ωΛ2

t1∫
t1−ζ1

Ĩ(s1)ds1,

where Λ2 refer to be a non-negative constant to be determined. In view of the Itô’s formula, we have

dU1(H̃(t1), Ĩ(t1), Ṽ(t1), D̃(t1)) =
(
1 −

1
H̃

)
dH̃ +

(
1 −

1
Ĩ

)
dĨ + Λ2

(
1 −

1
D̃

)
dD̃ + Λ2Ṽ +

1
2

1
H̃2

(dH̃)2

+
1
2

1
Ĩ2

(dĨ)2 + Λ2
1
2

1
D̃2

(dD̃)2 +
(
γ1H̃Ṽ − γ1H̃(t1 − ζ1)Ṽ(t1 − ζ1)

+γ2H̃Ĩ − γ2H̃(t1 − ζ1)Ĩ(t1 − ζ1) + ωΛ2Ĩ − ωΛ2Ĩ(t1 − ζ1)
)

= (H̃ − 1)σ1H̃dB1 + (Ĩ − 1)σ2ĨdB2 + Λ2(D̃ − 1)σ4D̃dB4 + Λ2σ3ṼdB3

+
{(
λ − φ1H̃ −

λ

H̃
+ φ1 + γ1Ṽ + γ2Ĩ +

1
2
σ2

1

)
+
(
φ2 + γ3D̃ − γ1

H̃(t1 − ζ1)Ṽ(t1 − ζ1)
Ĩ

− γ2
H̃(t1 − ζ1)Ĩ(t1 − ζ1)

Ĩ
+

1
2
σ2

2

)
+Λ2

(
ωĨ − φ3Ṽ

)
+ Λ2

(
ϑ − φ4D̃ + γ4ĨD̃ −

ϑ

D̃
+ φ4 − γ4Ĩ +

1
2
σ2

4
)}

dt1.

Simple computations yield

dU1(t1) = HU1dt1 −
{
σ1dB1(t1) + σ2dB2(t1) + σ3dB3(t1) + σ4dB4(t1)

}
,

whereHU1 =
(
λ − φ1H̃ − λ

H̃ + φ1 + γ1Ṽ + γ2Ĩ + 1
2σ

2
1

)
+

(
φ2 + γ3D̃ − γ1

H̃(t1−ζ1)Ṽ(t1−ζ1)
Ĩ − γ2

H̃(t1−ζ1)Ĩ(t1−ζ1)
Ĩ +

1
2σ

2
2

)
+ Λ2

(
ωĨ − φ3Ṽ

)
+ Λ2

(
ϑ − φ4D̃ + γ4ĨD̃ − ϑ

D̃ + φ4 − γ4Ĩ + 1
2σ

2
4
)

= C.

Thus, we have

dU1(t1) ≤ Cdt1 −
{
σ1dB1(t1) + σ2dB2(t1) + Λ2σ3dB3(t1) + Λ2σ4dB4(t1)

}
.

Performing integration from 0 to ζΛ∧Ψ, it can be deduced that∫ ζΛ∧Ψ

0
dU1(χ(t1)) ≤

∫ ζΛ∧Ψ

0
Cdt1 −

{ ∫ ζΛ∧Ψ

0
σ1dB1(t1) +

∫ ζΛ∧Ψ

0
σ2dB2(t1) + Λ2

∫ ζΛ∧Ψ

0
σ3dB3(t1)

+Λ2

∫ ζΛ∧Ψ

0
σ4dB4(t1)

}
,

using the fact that ζΛ∧T = min
{
ζn, t1

}
. Implementing the expectation on the aforesaid variants gives

U1
(
χ(ζΛ∧T)

)
≤ U1(χ(0)) + C

∫ ζΛ∧T

0
dt1 −

{ ∫ ζΛ∧T

0
σ1dB1(t1) +

∫ ζΛ∧T

0
σ2dB2(t1) + Λ2

∫ ζΛ∧T

0
σ3dB3(t1)
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+Λ2

∫ ζΛ∧T

0
σ4dB4(t1)

}
.

This implies that

EU1
(
χ(ζΛ∧T)

)
≤ U1(χ(0)) + CE ≤ U1(χ(0)) + CT. (4.1)

As U1
(
χ(ζΛ∧T)

)
> 0, then

EU1
(
χ(ζΛ∧T)

)
= E

[
U1

(
χ(ζΛ∧T)

)
x(ζΛ≤T)

]
+ E

[
U1

(
χ(ζΛ∧T)

)
x(ζΛ>ᵀ)

]
≥ E

[
U1

(
χ(ζΛ∧T)

)
x(ζΛ≤T)

]
. (4.2)

Further, for ζΛ, since certain factors of χ(ζΛ), say (H̃(ζΛ)) including 0 < H̃(ζΛ) ≤ 1
Λ
< 1.

Thus, U1(χ(ζΛ)) ≥ − ln
(

1
Λ

)
, this allow us to write U1(χ(ζΛ)) = ln

(
H̃(ζΛ)

)
≤ ln

(
1
Λ

)
.

As a result, from (4.2) and the previous expression, we have

EU1
(
χ(ζΛ∧T)

)
≥ E

[
U1

(
χ(ζΛ∧T)

)
x(ζΛ≤T)

]
≥

{
− ln

( 1
Λ

)}
. (4.3)

Combining (4.1)-(4.3), we have

EU1
(
χ(ζΛ∧T)

)
≥ − ln

( 1
Λ

)
P(ζΛ∧T). (4.4)

It follows that

P(ζΛ∧T) ≤
EU1

(
χ(ζΛ∧T)

)
ln Λ

≤
U1

(
χ(0)

)
+ CT

ln Λ
.

Applying limit sup Λ 7→ ∞ on (4.4), ∀ T > 0, we find

P(ζΛ∧T) ≤ 0 =⇒ lim
t1 7→∞

P(ζΛ∧T) = 0.

This is the desired result.

The average number of subsequent viral infections that a contagious individual causes while they
are still dangerous is the primary reproductive component in this scenario. We also want to show that
stochastic reproduction (Rs

0) is a special kind of basic reproduction number.

4.2. Basic reproduction number (Rs
0)

Initially, considering the system’s (3.2) second cohort, that is

dĨ(t1) =
(
γ1H̃(t1 − ζ1)Ṽ(t1 − ζ1) + γ2H̃(t1 − ζ1)Ĩ(t1 − ζ1) − γ3Ĩ(t1)D̃(t1) − φ3Ĩ(t1)

)
dt1 + σ2ĨdB2(t1).(4.5)
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Considering the Itô’s technique for twice differentiation mapping f1(Ĩ) = ln(I), the Taylor series
representation is

d f1(t1, Ĩ(t1)) =
∂ f1

∂t1
dt1 +

∂ f1

∂Ĩ
dĨ +

1
2
∂2 f1

∂Ĩ2
(dĨ)2 +

∂2 f1

∂Ĩ∂t1
dt1dĨ +

1
2
∂2 f1

∂t2
1

(dt1)2.

This implies that

d f1(t1, Ĩ(t1)) =
1

Ĩ(t1)

{(
γ1H̃(t1 − ζ1)Ṽ(t1 − ζ1) + γ2H̃(t1 − ζ1)Ĩ(t1 − ζ1)

−γ3Ĩ(t1)D̃(t1) − φ3Ĩ(t1)
)
dt1 + σ2ĨdB2(t1)

}
−

1
2Ĩ2(t1)

{(
γ1H̃(t1 − ζ1)Ṽ(t1 − ζ1) + γ2H̃(t1 − ζ1)Ĩ(t1 − ζ1)

−γ3Ĩ(t1)D̃(t1) − φ3Ĩ(t1)
)
dt1 + σ2ĨdB2(t1)

}2
.

It follows that

d f1(t1, Ĩ(t1)) =
{(γ1H̃(t1 − ζ1)Ṽ(t1 − ζ1)

Ĩ(t1)
+ γ2H̃(t1 − ζ1) − γ3D̃(t1) − φ3

)
dt1 + σ2dB2(t1)

}
−

1
2Ĩ2(t1)

{
A2

1(dt1)2 + 2A1A2dt1dB2(t1) +A2
2(dB2(t1))2

}
,

whereA1 = γ1H̃(t1 − ζ1)Ṽ(t1 − ζ1) + γ2H̃(t1 − ζ1)Ĩ(t1 − ζ1)− γ3Ĩ(t1)D̃(t1)− φ3Ĩ(t1) andA2 = σ2Ĩ, then
(4.6) can be written as

d f1(t1, Ĩ(t1)) =
{(γ1H̃(t1 − ζ1)Ṽ(t1 − ζ1)

Ĩ(t1)
+ γ2H̃(t1 − ζ1) − γ3D̃(t1) − φ3

)
dt1 + σ2dB2(t1)

}
−

1
2Ĩ2(t1)

{
A2

2(dB2(t1))2
}

=
{(γ1H̃(t1 − ζ1)Ṽ(t1 − ζ1)

Ĩ(t1)
+ γ2H̃(t1 − ζ1) − γ3D̃(t1) − φ3

)
dt1 + σ2dB2(t1)

}
−

1
2Ĩ2(t1)

{
(σ2Ĩ)2

}
dt1. (4.6)

As dt1 7→ 0, (dt1)2, dt1dB2(t1) 7→ 0 and (dB2(t1))2 can be converted to dt1 (By the variance of Wiener
technique), we have

d f1(t1, Ĩ(t1)) =
{(γ1H̃(t1 − ζ1)Ṽ(t1 − ζ1)

Ĩ(t1)
+ γ2H̃(t1 − ζ1) − γ3D̃(t1) − φ3

)
dt1 + σ2dB2(t1)

}
−

1
2

(σ2)2dt1

=
{(γ1H̃(t1 − ζ1)Ṽ(t1 − ζ1)

Ĩ(t1)
+ γ2H̃(t1 − ζ1) − γ3D̃(t1) − φ3

)
dt1 −

1
2
σ2

2

}
dt1 + σ2dB2(t1).

(4.7)

Taking into consideration the next generation matrices [47] are as follows

F =

[γ2λ

φ1

γ1λ

φ1

0 0

]
and Ṽ =

[γ3ϑ

φ4
+ φ2 0
−ω φ3

]
.
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Therefore, F and Ṽ at disease-free equilibrium E0 =
(
λ
φ1
, 0, 0, ϑ

φ4

)
, we find

Ṽ−1 =

 φ4
γ3ϑ+φ2φ4

0
ωφ4

φ3(φ2φ4+γ3ϑ) 1/φ3

 .
Thus, the basic reproduction number is Rs

0 = ρ(FṼ−1) is

Rs
0 =

λφ4(ωγ1 + φ3γ2)
φ1φ3(ϑγ3 + φ2φ4)

,

which is the required stochastic fundamental reproduction number.

4.3. Local stability of diseases-free equilibrium point (DFEP) in stochastic sense

Theorem 4.2. For a community’s infection to be eradicated, then Rs
0 < 1.

If Rs
0 < 1, then for any provided ICs

(
H̃(0), Ṽ(0), Ĩ(0), D̃(0)

)
=

(
H̃0, Ṽ0, Ĩ0,R0

)
∈ R4

+. Therefore, Ĩ(t1)
admits lim

t1 7→∞
sup ln(Ĩ(t1))

t1
≤ φ3(Rs

0 − 1) almost surely.

Proof. Taking into consideration (4.5), we have

d f1(t1, Ĩ(t1)) =
{(
γ1H̃Ṽ + γ2H̃ − γ3D̃ − φ3 −

1
2
σ2

2
)
dt1 + σ2dB2(t1)

}
.

It follows that

d ln(Ĩ) =
(
γ1H̃Ṽ + γ2H̃ − γ3D̃ − φ3 −

1
2
σ2

2
)
dt1 + σ2dB2(t1).

After performing integration, we have

ln(Ĩ) = ln(Ĩ0) +

t1∫
0

(
γ1H̃Ṽ + γ2H̃ − γ3D̃ − φ3 −

1
2
σ2

2
)
dt1 + σ2

t1∫
0

dB2(t1)

≤ ln(Ĩ0) +
(
γ2
λ

φ1
− γ3

ϑ

φ4
−

1
2
σ2

2 − φ3
)
t1︸                               ︷︷                               ︸

at DFEP E0

+σ2

t1∫
0

dB2(t1)

≤ ln(Ĩ0) +
(
γ2
λ

φ1
− γ3

ϑ

φ4
−

1
2
σ2

2 − φ3

)
t1 + Υ(t1), (4.8)

where Υ(t1) = σ3

t1∫
0

dB3(t1) is the martingale. therefore, by the strong principal of large values for

Υ(t1), see [50], we get lim
t1 7→∞

sup Υ(t1)
t1

= 0 almost probably.

After dividing by t1 and applying limit t1 7→ ∞, then (4.8) reduces to

lim
t1 7→∞

sup
ln(Ĩ)

t1
≤ γ2

λ

φ1
− γ3

ϑ

φ4
−

1
2
σ2

2 − φ3
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= φ3

(
λφ4(ωγ1 + φ3γ2)
φ1φ3(ϑγ3 + φ2φ4)

−
1

2φ3
σ2

2

)
= φ3(Rs

0 − 1) < 0.

This indicates that Rs
0 < 1.

Finally, Rs
0 should be smaller than 1 for virus elimination in a population.

Remark 4.1. Under some settings, the solution of framework (3.2) oscillates all around endemic
equilibrium of the undisturbed system (3.1) if Rs

0 > 1. This indicates that as long as the
concentrations of white noise are low enough, the sickness will endure.

5. Numerical illustration of the fractal-fractional stochastic HBV model

In what follows, the framework is further expanded to F-F derivative operators.
Firstly, we present the Caputo-Fabrizio F-F derivative for the classical derivative formulation. As a
result, the stochastic F-F framework will be quantitatively determined employing the numerical
technique described previously. This type of system is presented by

FFE
0 Dδ,$t1

H̃(t1) =
(
λ − φ1H̃(t1) − γ1H̃(t1)Ṽ(t1) − γ1H̃(t1)Ĩ(t1)

)
+ σ1G1(t1, H̃)B1(t1),

FFE
0 Dδ,$t1

Ĩ(t1) =
(
γ1H̃(t1 − ζ1)Ṽ(t1 − ζ1) + γ2H̃(t1 − ζ1)Ĩ(t1 − ζ1) − γ3Ĩ(t1)D̃(t1) − φ3Ĩ(t1)

)
+ σ2G2(t1, Ĩ)B2(t1),

FFE
0 Dδ,$t1

Ṽ(t1) =
(
ωĨ(t1 − ζ2) − φ3Ṽ(t1)

)
+ σ3G3(t1, Ṽ)B3(t1),

FFE
0 Dδ,$t1

D̃(t1) =
(
ϑ − φ4D̃(t1) + γ4Ĩ(t1)D̃(t1)

)
+ σ4G4(t1, D̃)B4(t1).

(5.1)

For tm+1 = (m + 1)∆t1, then we the aforementioned system can be integrated as follows

H̃m+1 = H̃0 +
(1 − δ)δ$
M(δ)

$t1
$−1
m+1


H̃∗

(
t1m+1, H̃

q
m+1, Ĩ

q
m+1, Ṽ

q
m+1, D̃

q
m+1

)
+σ1G1

(
t1m+1, H̃

q
m+1

)(
B1(t1m+1) − B1(t1m)

) 
+
δ$

M(δ)

m∑
`=0


t1`+1∫
t1`

%δ−1H̃∗(%, H̃, Ĩ, Ṽ, D̃)d% +

t1`+1∫
t1`

%δ−1σ1G1(%, H̃)dB1%

 ,

Ĩm+1 = Ĩ0 +
(1 − δ)δ$
M(δ)

$t1
$−1
m+1


Ĩ∗

(
t1m+1, H̃

q
m+1, Ĩ

q
m+1, Ṽ

q
m+1, D̃

q
m+1

)
+σ2G2

(
t1m+1, Ĩ

q
m+1

)(
B2(t1m+1) − B2(t1m)

) 
+
δ$

M(δ)

m∑
`=0


t1`+1∫
t1`

%δ−1Ĩ∗(%, H̃, Ĩ, Ṽ, D̃)d% +

t1`+1∫
t1`

%δ−1σ2G2(%, Ĩ)dB2%

 ,

Ṽm+1 = Ṽ0 +
(1 − δ)δ$
M(δ)

$t1
$−1
m+1


Ṽ∗

(
t1m+1, Ĩ

q
m+1, Ṽ

q
m+1

)
+σ3G3

(
t1m+1, Ṽ

q
m+1

)(
B3(t1m+1) − B3(t1m)

) 
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+
δ$

M(δ)

m∑
`=0


t1`+1∫
t1`

%δ−1Ṽ∗(%, Ĩ, Ṽ)d% +

t1`+1∫
t1`

%δ−1σ3G3(%, Ṽ)dB3%

 ,

D̃m+1 = D̃0 +
(1 − δ)δ$
M(δ)

$t1
$−1
m+1


D̃∗

(
t1m+1, Ĩ

q
m+1, D̃

q
m+1

)
+σ4G4

(
t1m+1, D̃

q
m+1

)(
B4(t1m+1) − B4(t1m)

) 
+
δ$

M(δ)

m∑
`=0


t1`+1∫
t1`

%δ−1D̃∗(%, Ĩ, D̃)d% +

t1`+1∫
t1`

%δ−1σ4G4(%, D̃)dB4%

 .
Utilizing the fact of polynomials in the aforesaid system, we find

H̃m+1 = H̃0 +
(1 − δ)δ$
M(δ)

$t1
$−1
m+1


H̃∗

(
t1m+1, H̃

q
m+1, Ĩ

q
m+1, Ṽ

q
m+1, D̃

q
m+1

)
+σ1G1

(
t1m+1, H̃

q
m+1

)(
B1(t1m+1) − B1(t1m)

) 

+
δ$

M(δ)

m−1∑
`=0





H̃∗
(
t1`+1, H̃`+1, Ĩ`+1, Ṽ`+1, D̃`+1

)h$
$

(
(` + 1)$ − `$

)
+

H̃∗
(

t1`+1,H̃`+1,Ĩ`+1,Ṽ`+1,D̃`+1

)
−H̃∗

(
t1`,H̃`,Ṽ`,Ĩ`,D̃`

)
h

×

(
h$+1(`$(`+1+$)−(`+1)$+1)

$($+1)

)
+

H̃∗
(

t1`+1,H̃`+1,Ĩ`+1,Ṽ`+1,D̃`+1

)
−2H̃∗

(
t1`,H̃`,Ṽ`,Ĩ`,D̃`

)
+H̃∗

(
t1`−1,H̃`−1,Ĩ`−1,Ṽ`−1,D̃`−1

)
2h2

×

(
2h$+2

(
(`−$2 )(`+1)$+1−`$+1(`+1+$

2 )
)

$($+1)($+2)

)



+
σ1δ$

M(δ)

m−1∑
`=0





G1
(
t1`+1, H̃`+1

)(
B1(t1`+1) − B1(t1`)

)h$
$

(
(` + 1)$ − `$

)
+
{
G1

(
t1`+1, H̃`+1

)(
B1(t1`+1) − B1(t1`)

)
− G1

(
t1`, H̃`

)(
B1(t1`) − B1(t1`−1)

)}
×

(
h$+1(`$(`+1+$)−(`+1)$+1)

$($+1)

)
+
{
G1

(
t1`+1,H̃`+1

)(
B1(t1`+1)−B1(t1`)

)
−2G1

(
t1`,H̃`

)(
B1(t1`+1)−B1(t1`)

)
2h

+
G1

(
t1`−1,H̃`−1

)(
B1(t1`)−B1(t1`−1)

)
2h

}(2h$+2
(

(`−$2 )(`+1)$+1−`$+1(`+1+$
2 )
)

$($+1)($+2)

)


,

Ĩm+1 = Ĩ0 +
(1 − δ)δ$
M(δ)

$t1
$−1
m+1


Ĩ∗

(
t1m+1, H̃

q
m+1, Ĩ

q
m+1, Ṽ

q
m+1, D̃

q
m+1

)
+σ2G2

(
t1m+1, Ĩ

q
m+1

)(
B2(t1m+1) − B2(t1m)

) 

+
δ$

M(δ)

m−1∑
`=0





Ĩ∗
(
t1`+1, H̃`+1, Ĩ`+1, Ṽ`+1,R`+1

)h$
$

(
(` + 1)$ − `$

)
+

Ĩ∗
(

t1`+1,H̃`+1,Ĩ`+1,Ṽ`+1,D̃`+1

)
−Ĩ∗

(
t1`,H̃`,Ĩ`,Ṽ`,D̃`

)
h

×

(
h$+1(`$(`+1+$)−(`+1)$+1)

$($+1)

)
+

Ĩ∗
(

t1`+1,H̃`+1,Ĩ`+1,Ṽ`+1,D̃`+1

)
−2Ĩ∗

(
t1`,H̃`,Ĩ`,Ṽ`,D̃`

)
+Ĩ∗

(
t1`−1,H̃`−1,Ĩ`−1,Ṽ`−1,D̃`−1

)
2h2

×

(
2h$+2

(
(`−$2 )(`+1)$+1−`$+1(`+1+$

2 )
)

$($+1)($+2)

)


Mathematical Biosciences and Engineering Volume 19, Issue 12, 12950–12980.



12965

+
σ2δ$

M(δ)

m−1∑
`=0





G2
(
t1`+1, Ĩ`+1

)(
B2(t1`+1) − B2(t1`)

)h$
$

(
(` + 1)$ − `$

)
+
{
G2

(
t1`+1, Ĩ`+1

)(
B2(t1`+1) − B2(t1`)

)
− G2

(
t1`, Ĩ`

)(
B2(t1`) − B2(t1`−1)

)}
×

(
h$+1(`$(`+1+$)−(`+1)$+1)

$($+1)

)
+
{
G2

(
t1`+1,Ĩ`+1

)(
B2(t1`+1)−B2(t1`)

)
−2G2

(
t1`,Ĩ`

)(
B2(t1`+1)−B2(t1`)

)
2h

+
G2

(
t1`−1,Ĩ`−1

)(
B2(t1`)−B2(t1`−1)

)
2h

}(2h$+2
(

(`−$2 )(`+1)$+1−`$+1(`+1+$
2 )
)

$($+1)($+2)

)


,

Ṽm+1 = Ṽ0 +
(1 − δ)δ$
M(δ)

$t1
$−1
m+1


Ṽ∗

(
t1m+1, Ĩ

q
m+1, Ṽ

q
m+1

)
+σ2G2

(
t1m+1, Ṽ

q
m+1

)(
B3(t1m+1) − B3(t1m)

) 

+
δ$

M(δ)

m−1∑
`=0





Ṽ∗
(
t1`+1, Ĩ`+1, Ṽ`+1

)h$
$

(
(` + 1)$ − `$

)
+

Ṽ∗
(

t1`+1,Ĩ`+1,Ṽ`+1

)
−Ṽ∗

(
t1`,Ĩ`,Ṽ`

)
h

×

(
h$+1(`$(`+1+$)−(`+1)$+1)

$($+1)

)
+

Ṽ∗
(

t1`+1,Ĩ`+1,Ṽ`+1

)
−2Ṽ∗

(
t1`,Ĩ`,Ṽ`

)
+Ṽ∗

(
t1`−1,Ĩ`−1,Ṽ`−1

)
2h2

×

(
2h$+2

(
(`−$2 )(`+1)$+1−`$+1(`+1+$

2 )
)

$($+1)($+2)

)



+
σ2δ$

M(δ)

m−1∑
`=0





G2
(
t1`+1, Ṽ`+1

)(
B3(t1`+1) − B3(t1`)

)h$
$

(
(` + 1)$ − `$

)
+
{
G3

(
t1`+1, Ṽ`+1

)(
B3(t1`+1) − B3(t1`)

)
− G3

(
t1`, Ṽ`

)(
B3(t1`) − B3(t1`−1)

)}
×

(
h$+1(`$(`+1+$)−(`+1)$+1)

$($+1)

)
+
{
G3

(
t1`+1,Ṽ`+1

)(
B3(t1`+1)−B3(t1`)

)
−2G3

(
t1`,Ṽ`

)(
B3(t1`+1)−B3(t1`)

)
2h

+
G3

(
t1`−1,Ṽ`−1

)(
B3(t1`)−B3(t1`−1)

)
2h

}(2h$+2
(

(`−$2 )(`+1)$+1−`$+1(`+1+$
2 )
)

$($+1)($+2)

)


,

D̃m+1 = D̃0 +
(1 − δ)δ$
M(δ)

$t1
$−1
m+1


D̃∗

(
t1m+1, Ĩ

q
m+1, D̃

q
m+1

)
+σ4G4

(
t1m+1, D̃

q
m+1

)(
B4(t1m+1) − B4(t1m)

) 

+
δ$

M(δ)

m−1∑
`=0





D̃∗
(
t1`+1, Ĩ`+1, D̃`+1

)h$
$

(
(` + 1)$ − `$

)
+

D̃∗
(

t1`+1,Ĩ`+1,D̃`+1

)
−D̃∗

(
t1`,Ĩ`,D̃`

)
h

×

(
h$+1(`$(`+1+$)−(`+1)$+1)

$($+1)

)
+

D̃∗
(

t1`+1,Ĩ`+1,D̃`+1

)
−2D̃∗

(
t1`,Ĩ`,D̃`

)
+D̃∗

(
t1`−1,Ĩ`−1,D̃`−1

)
2h2

×

(
2h$+2

(
(`−$2 )(`+1)$+1−`$+1(`+1+$

2 )
)

$($+1)($+2)

)


Mathematical Biosciences and Engineering Volume 19, Issue 12, 12950–12980.



12966

+
σ1δ$

M(δ)

m−1∑
`=0





G4
(
t1`+1, D̃`+1

)(
B4(t1`+1) − B4(t1`)

)h$
$

(
(` + 1)$ − `$

)
+
{
G4

(
t1`+1, D̃`+1

)(
B4(t1`+1) − B4(t1`)

)
− G4

(
t1`, D̃`

)(
B4(t1`) − B4(t1`−1)

)}
×

(
h$+1(`$(`+1+$)−(`+1)$+1)

$($+1)

)
+
{
G4

(
t1`+1,D̃`+1

)(
B4(t1`+1)−B4(t1`)

)
−2G4

(
t1`,D̃`

)(
B4(t1`+1)−B4(t1`)

)
2h

+
G4

(
t1`−1,D̃`−1

)(
B4(t1`)−B4(t1`−1)

)
2h

}(2h$+2
(

(`−$2 )(`+1)$+1−`$+1(`+1+$
2 )
)

$($+1)($+2)

)


.

Furthermore, we can write

H̃m+1 = H̃0 +
(1 − δ)δ$
M(δ)

$t1
$−1
m+1


H̃∗

(
t1m+1, H̃

q
m+1, Ĩ

q
m+1, Ṽ

q
m+1, D̃

q
m+1

)
+σ1G1

(
t1m+1, H̃

q
m+1

)(
B1(t1m+1) − B1(t1m)

) 

+
δ$

M(δ)

m−1∑
`=0





H̃∗
(
t1`+1, H̃`+1, Ĩ`+1, Ṽ`+1, D̃`+1

)h$
$

(
(` + 1)$ − `$

)
+

H̃∗
(

t1`+1,H̃`+1,Ĩ`+1,Ṽ`+1,D̃`+1

)
−H̃∗

(
t1`,H̃`,Ĩ`,Ṽ`,D̃`

)
h

×

(
h$+1(`$(`+1+$)−(`+1)$+1)

$($+1)

)
+

H̃∗
(

t1`+1,H̃`+1,Ĩ`+1,Ṽ`+1,D̃`+1

)
−2H̃∗

(
t1`,H̃`,Ĩ`,Ṽ`,D̃`

)
+H̃∗

(
t1`−1,H̃`−1,Ĩ`−1,Ṽ`−1,D̃`−1

)
2h2

×

(
2h$+2

(
(`−$2 )(`+1)$+1−`$+1(`+1+$

2 )
)

$($+1)($+2)

)



+
σ1δ$

M(δ)

m−1∑
`=0





G1
(
t1`+1, H̃`+1

)(
B1(t1`+1) − B1(t1`)

)h$
$

(
(` + 1)$ − `$

)
+
{
G1

(
t1`+1, H̃`+1

)(
B1(t1`+1) − B1(t1`)

)
− G1

(
t1`, H̃`

)(
B1(t1`) − B1(t1`−1)

)}
×

(
h$+1(`$(`+1+$)−(`+1)$+1)

$($+1)

)
+
{
G1

(
t1`+1,H̃`+1

)(
B1(t1`+1)−B1(t1`)

)
−2G1

(
t1`,H̃`

)(
B1(t1`+1)−B1(t1`)

)
2h

+
G1

(
t1`−1,H̃`−1

)(
B1(t1`)−B1(t1`−1)

)
2h

}(2h$+2
(

(`−$2 )(`+1)$+1−`$+1(`+1+$
2 )
)

$($+1)($+2)

)



+
δ$

M(δ)





{
H̃∗

(
t1m+1, H̃

q
m+1, Ĩ

q
m+1, Ṽ

q
m+1, D̃

q
m+1

)
+G1

(
t1m+1, H̃

q
m+1

)(
B1(t1m+1) − B1(t1m)

)}h$
$

(
(m + 1)$ −m$

)
+

H̃∗
(

t1m+1,H̃m+1,Ĩm+1,Ṽm+1,D̃m+1

)
−H̃∗

(
t1m,H̃m,Ĩm,Ṽm,D̃m

)
h

+
{
G1

(
t1m+1, H̃m+1

)(
B1(t1m+1) − B1(t1m)

)
−G1

(
t1m, H̃m

)(
B1(t1m) − B1(t1m−1)

)}
×

(
h$+1(`$(`+1+$)−(`+1)$+1)

$($+1)

)
+

H̃∗
(

t1m+1,H̃m+1,Ĩm+1,Ṽm+1,D̃m+1

)
−2H̃∗

(
t1m,H̃m,Ĩm,Ṽm,D̃m

)
+H̃∗

(
t1m−1,H̃m−1,Ĩm−1,Ṽm−1,D̃m−1

)
2h2

+

{
G1

(
t1m+1,H̃m+1

)(
B1(t1m+1)−B1(t1m)

)
−2G1

(
t1m,H̃m

)(
B1(t1m)−B1(t1m−1)

)
2h

+
G1

(
t1m−1,H̃m−1

)(
B1(t1m−1)−B1(t1m−2)

)
2h

}(
2h$+2

(
(`−$2 )(`+1)$+1−`$+1(`+1+$

2 )
)

$($+1)($+2)

)



,

Ĩm+1 = Ĩ0 +
(1 − δ)δ$
M(δ)

$t1
$−1
m+1


Ĩ∗

(
t1m+1, H̃

q
m+1, Ĩ

q
m+1, Ṽ

q
m+1, D̃

q
m+1

)
+σ2G2

(
t1m+1, Ĩ

q
m+1

)(
B3(t1m+1) − B2(t1m)

) 
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+
δ$

M(δ)

m−1∑
`=0





Ĩ∗
(
t1`+1, H̃`+1, Ĩ`+1, Ṽ`+1, D̃`+1

)h$
$

(
(` + 1)$ − `$

)
+

Ĩ∗
(

t1`+1,H̃`+1,Ĩ`+1,Ṽ`+1,D̃`+1

)
−Ĩ∗

(
t1`,H̃`,Ĩ`,Ṽ`,D̃`

)
h

×

(
h$+1(`$(`+1+$)−(`+1)$+1)

$($+1)

)
+

Ĩ∗
(

t1`+1,H̃`+1,Ĩ`+1,Ṽ`+1,D̃`+1

)
−2Ṽ∗

(
t1`,H̃`,Ĩ`,Ṽ`,D̃`

)
+Ṽ∗

(
t1`−1,H̃`−1,Ĩ`−1,Ṽ`−1,D̃`−1

)
2h2

×

(
2h$+2

(
(`−$2 )(`+1)$+1−`$+1(`+1+$

2 )
)

$($+1)($+2)

)



+
σ3δ$

M(δ)

m−1∑
`=0





G2
(
t1`+1, Ĩ`+1

)(
B2(t1`+1) − B2(t1`)

)h$
$

(
(` + 1)$ − `$

)
+
{
G2

(
t1`+1, Ĩ`+1

)(
B2(t1`+1) − B2(t1`)

)
− G2

(
t1`, Ĩ`

)(
B2(t1`) − B2(t1`−1)

)}
×

(
h$+1(`$(`+1+$)−(`+1)$+1)

$($+1)

)
+
{
G2

(
t1`+1,Ĩ`+1

)(
B2(t1`+1)−B2(t1`)

)
−2G2

(
t1`,Ĩ`

)(
B2(t1`+1)−B2(t1`)

)
2h

+
G2

(
t1`−1,Ĩ`−1

)(
B2(t1`)−B2(t1`−1)

)
2h

}(2h$+2
(

(`−$2 )(`+1)$+1−`$+1(`+1+$
2 )
)

$($+1)($+2)

)



+
δ$

M(δ)





{
Ĩ∗
(
t1m+1, H̃

q
m+1, Ĩ

q
m+1, Ṽ

q
m+1, D̃

q
m+1

)
+G2

(
t1m+1, Ĩ

q
m+1

)(
B2(t1m+1) − B2(t1m)

)}h$
$

(
(m + 1)$ −m$

)
+

Ĩ∗
(

t1m+1,H̃m+1,Ĩm+1,Ṽm+1,D̃m+1

)
−Ĩ∗

(
t1m,H̃m,Ĩm,Ṽm,dm

)
h

+
{
G2

(
t1m+1, Ĩm+1

)(
B2(t1m+1) − B2(t1m)

)
−G2

(
t1m, Ĩm

)(
B2(t1m) − B2(t1m−1)

)}
×

(
h$+1(`$(`+1+$)−(`+1)$+1)

$($+1)

)
+

Ĩ∗
(

t1m+1,H̃m+1,Ĩm+1,Ṽm+1,D̃m+1

)
−2Ĩ∗

(
t1m,H̃m,Ĩm,Ṽm,D̃m

)
+Ĩ∗

(
t1m−1,H̃m−1,Ĩm−1,Ṽm−1,D̃m−1

)
2h2

+

{
G2

(
t1m+1,Ĩm+1

)(
B2(t1m+1)−B2(t1m)

)
−2G2

(
t1m,Ĩm

)(
B2(t1m)−B2(t1m−1)

)
2h

+
G2

(
t1m−1,Ĩm−1

)(
B2(t1m−1)−B2(t1m−2)

)
2h

}(
2h$+2

(
(`−$2 )(`+1)$+1−`$+1(`+1+$

2 )
)

$($+1)($+2)

)



,

Ṽm+1 = Ṽ0 +
(1 − δ)δ$
M(δ)

$t1
$−1
m+1


Ṽ∗

(
t1m+1, Ĩ

q
m+1, Ṽ

q
m+1

)
+σ3G3

(
t1m+1, Ṽ

q
m+1

)(
B3(t1m+1) − B3(t1m)

) 

+
δ$

M(δ)

m−1∑
`=0





Ṽ∗
(
t1`+1, Ĩ`+1, Ṽ`+1

)h$
$

(
(` + 1)$ − `$

)
+

Ṽ∗
(

t1`+1,Ĩ`+1,Ṽ`+1

)
−Ṽ∗

(
t1`,Ĩ`,Ṽ`

)
h

×

(
h$+1(`$(`+1+$)−(`+1)$+1)

$($+1)

)
+

Ṽ∗
(

t1`+1,Ĩ`+1,Ṽ`+1

)
−2Ṽ∗

(
t1`,Ĩ`,Ṽ`

)
+Ṽ∗

(
t1`−1,Ĩ`−1,Ṽ`−1

)
2h2

×

(
2h$+2

(
(`−$2 )(`+1)$+1−`$+1(`+1+$

2 )
)

$($+1)($+2)

)
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+
σ1δ$

M(δ)

m−1∑
`=0





G3
(
t1`+1, Ṽ`+1

)(
B3(t1`+1) − B3(t1`)

)h$
$

(
(` + 1)$ − `$

)
+
{
G3

(
t1`+1, Ṽ`+1

)(
B1(t1`+1) − B3(t1`)

)
− G3

(
t1`, Ṽ`

)(
B3(t1`) − B3(t1`−1)

)}
×

(
h$+1(`$(`+1+$)−(`+1)$+1)

$($+1)

)
+
{
G3

(
t1`+1,Ṽ`+1

)(
B3(t1`+1)−B3(t1`)

)
−2G3

(
t1`,Ṽ`

)(
B3(t1`+1)−B3(t1`)

)
2h

+
G3

(
t1`−1,Ṽ`−1

)(
B3(t1`)−B3(t1`−1)

)
2h

}(2h$+2
(

(`−$2 )(`+1)$+1−`$+1(`+1+$
2 )
)

$($+1)($+2)

)



+
δ$

M(δ)





{
Ṽ∗

(
t1m+1, Ĩ

q
m+1, Ṽ

q
m+1

)
+G3

(
t1m+1, Ṽ

q
m+1

)(
B3(t1m+1) − B3(t1m)

)}h$
$

(
(m + 1)$ −m$

)
+

Ṽ∗
(

t1m+1,Ĩm+1,Ṽm+1

)
−Ṽ∗

(
t1m,Ĩm,Ṽm

)
h

+
{
G3

(
t1m+1, Ṽm+1

)(
B3(t1m+1) − B3(t1m)

)
−G3

(
t1m, Ṽm

)(
B3(t1m) − B3(t1m−1)

)}
×

(
h$+1(`$(`+1+$)−(`+1)$+1)

$($+1)

)
+

Ṽ∗
(

t1m+1,Ĩm+1,Ṽm+1

)
−2Ṽ∗

(
t1m,Ĩm,Ṽm

)
+Ṽ∗

(
t1m−1,Ĩm−1,Ṽm−1

)
2h2

+

{
G3

(
t1m+1,Ṽm+1

)(
B3(t1m+1)−B3(t1m)

)
−2G3

(
t1m,Ṽm

)(
B3(t1m)−B3(t1m−1)

)
2h

+
G3

(
t1m−1,Ṽm−1

)(
B3(t1m−1)−B3(t1m−2)

)
2h

}(
2h$+2

(
(`−$2 )(`+1)$+1−`$+1(`+1+$

2 )
)

$($+1)($+2)

)
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D̃m+1 = D̃0 +
(1 − δ)δ$
M(δ)

$t1
$−1
m+1


D̃∗

(
t1m+1, Ĩ

q
m+1, D̃

q
m+1

)
+σ4G4

(
t1m+1, D̃

q
m+1

)(
B4(t1m+1) − B4(t1m)
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+
δ$

M(δ)
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D̃∗
(
t1`+1, Ĩ`+1, D̃`+1
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$

(
(` + 1)$ − `$

)
+

D̃∗
(

t1`+1,Ĩ`+1,D̃`+1

)
−D̃∗

(
t1`,Ĩ`,D̃`

)
h

×

(
h$+1(`$(`+1+$)−(`+1)$+1)

$($+1)

)
+

D̃∗
(

t1`+1,Ĩ`+1,D̃`+1

)
−2D̃∗

(
t1`,Ĩ`,D̃`

)
+D̃∗

(
t1`−1,Ĩ`−1,D̃`−1

)
2h2

×

(
2h$+2

(
(`−$2 )(`+1)$+1−`$+1(`+1+$

2 )
)

$($+1)($+2)
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+
σ4δ$

M(δ)
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`=0
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(
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$

(
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)
+
{
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(
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)
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(
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)(
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)}
×

(
h$+1(`$(`+1+$)−(`+1)$+1)

$($+1)

)
+
{
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(
t1`+1,D̃`+1

)(
B4(t1`+1)−B4(t1`)

)
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(
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)(
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)
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+
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(
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)(
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)
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+
δ$

M(δ)





{
D̃∗

(
t1m+1, Ĩ

q
m+1, D̃

q
m+1

)
+G4

(
t1m+1, D̃

q
m+1

)(
B4(t1m+1) − B4(t1m)
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$

(
(m + 1)$ −m$

)
+

D̃∗
(

t1m+1,Ĩm+1,D̃m+1

)
−D̃∗

(
t1m,Ĩm,D̃m

)
h

+
{
G4

(
t1m+1, D̃m+1

)(
B4(t1m+1) − B4(t1m)

)
−G4

(
t1m, D̃m

)(
B4(t1m) − B4(t1m−1)

)}
×

(
h$+1(`$(`+1+$)−(`+1)$+1)

$($+1)

)
+

D̃∗
(

t1m+1,Ĩm+1,D̃m+1

)
−2D̃∗

(
t1m,Ĩm,D̃m

)
+D̃∗

(
t1m−1,Ĩm−1,D̃m−1

)
2h2

+

{
G4

(
t1m+1,D̃m+1

)(
B4(t1m+1)−B4(t1m)

)
−2G4

(
t1m,D̃m

)(
B4(t1m)−B4(t1m−1)

)
2h

+
G4

(
t1m−1,D̃m−1

)(
B4(t1m−1)−B4(t1m−2)

)
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}(
2h$+2

(
(`−$2 )(`+1)$+1−`$+1(`+1+$

2 )
)

$($+1)($+2)

)



,

where

H̃q
m+1 = H̃0 +

(1 − δ)δ$
M(δ)

t1
$−1
m+1


H̃∗

(
t1m, H̃m, Ĩm, Ṽm, D̃m

)
+$σ1G1

(
t1m+1, H̃m+1

)(
B1(t1m+1) − B1(t1m)

) 
+
δ$

M(δ)

m−1∑
`=0


H̃∗

(
t1m, H̃m, Ĩm, Ṽm, D̃m

)h$
$

(
(` + 1)$ − `$

)
+σ1G1

(
t1m, H̃m

)(
B1(t1m+1) − B1(t1m)

)h$
$

(
(` + 1)$ − `$

)  ,

Ĩq
m+1 = Ĩ0 +

(1 − δ)δ$
M(δ)

t1
$−1
m+1


Ĩ∗

(
t1m, H̃m, Ĩm, Ṽm, D̃m

)
+$σ2G2

(
t1m+1, Ĩm+1

)(
B2(t1m+1) − B2(t1m)

) 
+
δ$

M(δ)

m−1∑
`=0


Ĩ∗

(
t1m, H̃m, Ĩm, Ṽm, D̃m

)h$
$

(
(` + 1)$ − `$

)
+σ2G2

(
t1m, Ĩm

)(
B2(t1m+1) − B2(t1m)

)h$
$

(
(` + 1)$ − `$

)  ,

Ṽq
m+1 = Ṽ0 +

(1 − δ)δ$
M(δ)

t1
$−1
m+1


Ṽ∗

(
t1m, Ĩm, Ṽm

)
+$σ3G3

(
t1m+1, Ṽm+1

)(
B3(t1m+1) − B3(t1m)

) 
+
δ$

M(δ)

m−1∑
`=0


Ṽ∗

(
t1m, Ĩm, Ṽm

)h$
$

(
(` + 1)$ − `$

)
+σ3G3

(
t1m, Ṽm

)(
B3(t1m+1) − B3(t1m)

)h$
$

(
(` + 1)$ − `$

)  ,

D̃q
m+1 = D̃0 +

(1 − δ)δ$
M(δ)

t1
$−1
m+1


D̃∗

(
t1m, Ĩm, D̃m

)
+$σ4G4

(
t1m+1, D̃m+1

)(
B4(t1m+1) − B4(t1m)

) 
+
δ$

M(δ)

m−1∑
`=0


D̃∗

(
t1m, Ĩm, D̃m

)h$
$

(
(` + 1)$ − `$

)
+σ4G4

(
t1m, D̃m

)(
B4(t1m+1) − B4(t1m)

)h$
$

(
(` + 1)$ − `$

)  .
5.1. Results and discussion

To illustrate the aforementioned mathematical findings, we will provide a few simulation studies
in this part. We find the system’s stochastic F-F derivative in the Caputo-Fabrizio context using a
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revolutionary numerical approach introduced in [41]. An evolutionary algorithm was developed to
numerically predict outcomes since state formulas possess ICs. Table 2 is an overview of the primary
attribute settings. The outcomes with no controls, just vaccine restrictions, just therapy regulation, and
both vaccination and medication regulations are compared.

Table 2. List of parameters.

S ymbols Values References Units

λ 6 [18] cell ml−1 day−1

ϑ 0.2 [9] cell ml−1 day−1

φ1 0.01 [55] day−1

φ2 0.1 [51] day−1

φ3 0.1 [18] day−1

φ4 0.3 [9] day−1

γ1 0.01 [57] virions−1 day−1

γ2 0.1 [18] cell−1 day−1

γ3 0.2 [56] cell−1 day−1

γ4 0.015 [18] cell−1 day−1

ω 0.4 [56] cell−1 day−1

Figures 4–5 presents the dynamics of the F-F HBV model (5.1) with attributed values of Table 2
involving TDs ζ1 = 1, ζ2 = 2, assuming σ1 = 0.003, σ2 = 0.004, σ3 = 0.006 and σ4 = 0.004.
Straightforward computations result in Rs

0 < 1, satisfying the requirements of Theorem 4.2. Figures
4-5 demonstrate that there are fewer individuals who have been treated by untreated adults and that
the proportion of acutely and chronically contaminated youngsters is declining, respectively.
Therefore, we observe that controlling the preponderance of individuals who are HBV-positive may
significantly lower or reduce the amount of contaminated neonates who are released during the
distribution process when fractional-order δ decreasing and fractal-dimension $ remains fixed. It is
concluded that the F-F HBV model (5.1) generated in this research is perfectly accurate. It is thought
that it can highlight several important characteristics that are also true in more simulation designs of
HBV infection.
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Figure 4. Graphical illustrations of the stochastic F-F HBV model (5.1) for healthy cells
H̃(t1) and infectious cells Ĩ(t1) when there is a significant decrease in δ and $ = 1..
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Figure 5. Graphical illustrations of the stochastic F-F HBV model (5.1) for HBV cells Ṽ(t1)
and CTL cells D̃(t1) when there is a significant decrease in δ and $ = 1..

Figures 6–7 define the complexities of the F-F HBV model (5.1) with aforementioned parametric
descriptions considering TDs ζ1 = 1, ζ2 = 2, assuming σ1 = 0.003, σ2 = 0.004, σ3 = 0.006 and
σ4 = 0.004. This also predicts that, through cytolytic and non-cytolytic processes, CTL cells are
essential for the prevention and treatment of HBV infection. Infectious colonies are killed by cytolytic
control by manipulating, while noncytolytic regulatory processes “treat” the intracellular
pathogens [51]. According to F-F investigations, the infectious equilibrium state is robust and the
pace at which pathogens produce free viral infection is low. If a medicine with a profound impact is
discovered, the value of the rate of the viral bacteria’s item will decrease, and other immunization
collaborators should step up their efforts to reduce interaction rates to a meaningful scale when δ is
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fixed and $ declines. The HBV infection can be treated.
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Figure 6. Graphical illustrations of the stochastic F-F HBV model (5.1) for healthy cells
H̃(t1) and infectious cells Ĩ(t1) when there is a significant decrease in $ and δ = 1..

0 5 10 15 20 25 30

-10

0

10

20

30

40

50

60

(a)

0 5 10 15 20 25 30

-500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

(b)

Figure 7. Graphical illustrations of the stochastic F-F HBV model (5.1) for HBV cells Ṽ(t1)
and CTL cells D̃(t1) when there is a significant decrease in $ and δ = 1..

Figures 8–9 illustrate the complexities of the F-F HBV model, (5.1) with aforementioned
parametric descriptions, considering TDs ζ1 = 1, ζ2 = 2, assuming σ1 = 0.1, σ2 = 0.2, σ3 = 0.3 and
σ4 = 0.4. The likelihood that the sickness will disappear is, therefore, one. It has been demonstrated
that a white noise setting with a higher intensity may aid in curing the illness more quickly than a
simulation sans noise when δ decreases and $ increased. Our analysis’s clear and fundamental goal is
to minimize the harm inflicted by HBV by reducing the population’s infection rate while increasing
the population’s rate of recovery. The authorities have a mission to ensure that people are notified of
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the proliferation of the HBV.
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Figure 8. Graphical illustrations of the stochastic F-F HBV model (5.1) for healthy cells
H̃(t1) and infectious cells Ĩ(t1) when δ falls significantly and µ increases.
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Figure 9. Graphical illustrations of the stochastic F-F HBV model (5.1) for HBV cells Ṽ(t1)
and CTL cells D̃(t1) when δ falls significantly and µ increases.

Figures 10–11 show the intricacies of the F-F HBV model, (5.1) utilizing the parameterized
representations stated above and TDs ζ1 = 1, ζ2 = 2, assuming σ1 = 0.1, σ2 = 0.2, σ3 = 0.3 and
σ4 = 0.4. The aforementioned configurations 10-11 makes it evident that the basic reproduction ratio
Rs

0 in framework (3.1) does not incorporate the index of CTL cells, which means that Rs
0 is unable to

accurately represent the function of immunogenicity. However, formula (5.1) includes the δ and $,
which helps illustrate the function of the CTL cells. As a result, the model (5.1) ought to be more
feasible.
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Figure 10. Graphical illustrations of the stochastic F-F HBV model (5.1) for healthy cells
H̃(t1) and infectious cells Ĩ(t1) when $ falls significantly and δ increases.

0 5 10 15 20 25 30

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

(a)

0 5 10 15 20 25 30

-50

0

50

100

150

200

250

300

(b)

Figure 11. Graphical illustrations of the stochastic F-F HBV model (5.1) for HBV cells Ṽ(t1)
and CTL cells D̃(t1) when $ falls significantly and δ increases.

Figures 12–13 presents the solution for low densities of σκ, κ = 1, 2, 3, 4 using the Matlab
package. Therefore, if a treatment with a huge influence can be discovered, the HBV infection can be
treated provided that the value of ϑ is sufficiently diminished. According to the above mechanism,
since many people are uneducated and unaware of viral diseases associated with them, particularly
HBV, it indicates that the current regime should encourage good hygiene precautions in the general
populace. Both the recycling of syringes on minors in rural areas and inadequate sanitary standards in
public health sectors, which are major causes of HBV, should be prohibited. Blood donations must
follow a specified protocol and must first be tested and approved by an officially recognized lab.
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In a nutshell, the presence of an F-F derivative operator with stochastic disturbance (noise) and
intracellular TDs in the framework (3.1) is hypothesized to deliver a better awareness in the
presentation of the presented data, which has serious repercussions for treating alternatives and
targeted therapies.
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Figure 12. Graphical illustrations of the stochastic F-F HBV model (5.1) for healthy cells
H̃(t1) and infectious cells Ĩ(t1) without treatment (red zigzag line) and with treatment (blue
zigzag line).
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Figure 13. Graphical illustrations of the stochastic F-F HBV model (5.1) for HBV cells Ṽ(t1)
and CTL cells D̃(t1) without treatment (red zigzag line) and with treatment (blue zigzag line).

6. Conclusion

In the current study, we examined the effects of high-order stochastic disturbances on the
complexities of the delay differential framework of HBV disease, which includes internalized latency,
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immunotherapy, disease-to-organ and their transmissions via the F-F derivative within the exponential
decay kernel. We also presented the non-negative solution pertaining to the unit probability, stochastic
reproduction number, and local stability, which is calculated for the steady states. Under certain
assumptions, the sickness may eventually go away under certain circumstances, with probability 1. A
revolutionary approach is used in a handful of simulated findings to demonstrate the viability of the
outcomes. In the therapy of HBV and other viral disorders, the volume of Gaussian white noise is
crucial. The presence of random disturbances (noise) and biochemical TDs in the framework is
predicated to provide a greater understanding of the quantitative results, which has significant
consequences for antibiotic compounds and regenerative medicine. Several additional intriguing
subjects need to be looked into more thoroughly. Other types of environmental noise, including Lévy
noise, may be taken into consideration [52]. Additionally, the deterministic system can be expanded
to incorporate fractional derivatives in the framework to be able to take into account long-run memory
of the bacteria’s behavior, which is suggested by the research in [53, 54].
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