We first determine the automorphism group of the twisted Heisenberg-Virasoro vertex operator algebra $ V_{\mathcal{L}}(\ell_{123},0) $. Then, for any integer $ t>1 $, we introduce a new Lie algebra $ \mathcal{L}_{t} $, and show that $ \sigma_{t} $-twisted $ V_{\mathcal{L}}(\ell_{123},0) $($ \ell_{2} = 0 $)-modules are in one-to-one correspondence with restricted $ \mathcal{L}_{t} $-modules of level $ \ell_{13} $, where $ \sigma_{t} $ is an order $ t $ automorphism of $ V_{\mathcal{L}}(\ell_{123},0) $. At the end, we give a complete list of irreducible $ \sigma_{t} $-twisted $ V_{\mathcal{L}}(\ell_{123},0) $($ \ell_{2} = 0 $)-modules.
Citation: Hongyan Guo. Automorphism group and twisted modules of the twisted Heisenberg-Virasoro vertex operator algebra[J]. Electronic Research Archive, 2021, 29(4): 2673-2685. doi: 10.3934/era.2021008
We first determine the automorphism group of the twisted Heisenberg-Virasoro vertex operator algebra $ V_{\mathcal{L}}(\ell_{123},0) $. Then, for any integer $ t>1 $, we introduce a new Lie algebra $ \mathcal{L}_{t} $, and show that $ \sigma_{t} $-twisted $ V_{\mathcal{L}}(\ell_{123},0) $($ \ell_{2} = 0 $)-modules are in one-to-one correspondence with restricted $ \mathcal{L}_{t} $-modules of level $ \ell_{13} $, where $ \sigma_{t} $ is an order $ t $ automorphism of $ V_{\mathcal{L}}(\ell_{123},0) $. At the end, we give a complete list of irreducible $ \sigma_{t} $-twisted $ V_{\mathcal{L}}(\ell_{123},0) $($ \ell_{2} = 0 $)-modules.
[1] | D. Adamović and G. Radobolja, Free field realization of the twisted Heisenberg-Virasoro algebra at level zero and its applications, J. Pure Appl. Algebra, 219 (2015), 4322–4342. doi: 10.1016/j.jpaa.2015.02.019 |
[2] | D. Adamović and G. Radobolja, Self-dual and logarithmic representations of the twisted Heisenberg-Virasoro algebra at level zero, Commun. Contemp. Math., 21 (2019), 1850008, 26 pp. doi: 10.1142/S0219199718500086 |
[3] | Moduli spaces of curves and representation theory. Comm. Math. Phys. (1988) 117: 1-36. |
[4] | Representations of the twisted Heisenberg-Virasoro algebra at level zero. Canad. Math. Bull. (2003) 46: 529-537. |
[5] | Y. Billig, A category of modules for the full toroidal Lie algebra, Int. Math. Res. Not., (2006), Art. ID. 68395, 46pp. doi: 10.1155/IMRN/2006/68395 |
[6] | Classification of irreducible modules for the vertex operator algebra $M(1)^+$. J. Algebra (1999) 216: 384-404. |
[7] | I. B. Frenkel, Y.-Z. Huang and J. Lepowsky, On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc., 104 (1993), no. 494, ⅷ+64 pp. doi: 10.1090/memo/0494 |
[8] | Quantum group $GL_{q}(2)$ and quantum Laplace operator via semi-infinite cohomology. J. Noncommut. Geom. (2013) 7: 1007-1026. |
[9] | Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Math. J. (1992) 66: 123-168. |
[10] | $q$-Virasoro algebra and vertex algebras. J. Pure Appl. Algebra (2015) 219: 1258-1277. |
[11] | Associating vertex algebras with the unitary Lie algebra. J. Algebra (2015) 424: 126-146. |
[12] | Twisted Heisenberg-Virasoro vertex operator algebra. Glas. Mat. Ser. Ⅲ (2019) 54: 369-407. |
[13] | J. Lepowsky and H. Li, Introduction to Vertex Operator Algebras and their Representations, Progress in Mathematics, Vol. 227, Birkhäuser, Boston, Inc., Boston, MA, 2004. doi: 10.1007/978-0-8176-8186-9 |
[14] | H.-S. Li, Local systems of twisted vertex operators, vertex operator superalgebras and twisted modules, In: Moonshine, the Monster, and related topics, pp. 203–236, Contemp. Math. 193, Amer. Math. Soc., Providence, RI, 1996. doi: 10.1090/conm/193/02373 |
[15] | The derivation algebra and automorphism group of the twisted Heisenberg-Virasoro algebra. Comm. Algebra (2006) 34: 2547-2558. |
[16] | W. Wang, Rationality of virasoro vertex operator algebras, Internat. Math. Res. Notices, (1993), 197–211. doi: 10.1155/S1073792893000212 |