Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article Special Issues

A study on the factors influencing the transfer of COVID-19 severe illness patients out of the ICU based on generalized linear mixed effect model

  • These authors contributed equally.
  • Received: 22 April 2022 Revised: 09 July 2022 Accepted: 14 July 2022 Published: 25 July 2022
  • The clinical data of 76 severe illness patients with novel coronavirus SARS-CoV-2 from July to August, 2020 admitted to the ICU Intensive Care Unit ward in a hospital in Urumqi were collected in the paper. By using the Laplace approximation parameter estimation method based on maximum likelihood estimation, the generalized linear mixed effect model (GLMM) was established to analyze the characteristics of clinical indicators in critical patients, and to screen the main influencing factors of COVID-19 critical patients' inability to be transferred out of the ICU in a short time: age, C-reactive protein, serum creatinine and lactate dehydrogenase.

    Citation: Zemin Luan, Zhaoxia Yu, Ting Zeng, Rui Wang, Maozai Tian, Kai Wang. A study on the factors influencing the transfer of COVID-19 severe illness patients out of the ICU based on generalized linear mixed effect model[J]. Mathematical Biosciences and Engineering, 2022, 19(10): 10602-10617. doi: 10.3934/mbe.2022495

    Related Papers:

    [1] Jalil Manafian, Onur Alp Ilhan, Sizar Abid Mohammed . Forming localized waves of the nonlinearity of the DNA dynamics arising in oscillator-chain of Peyrard-Bishop model. AIMS Mathematics, 2020, 5(3): 2461-2483. doi: 10.3934/math.2020163
    [2] Mahmoud A. E. Abdelrahman, Sherif I. Ammar, Kholod M. Abualnaja, Mustafa Inc . New solutions for the unstable nonlinear Schrödinger equation arising in natural science. AIMS Mathematics, 2020, 5(3): 1893-1912. doi: 10.3934/math.2020126
    [3] M. Hafiz Uddin, M. Ali Akbar, Md. Ashrafuzzaman Khan, Md. Abdul Haque . New exact solitary wave solutions to the space-time fractional differential equations with conformable derivative. AIMS Mathematics, 2019, 4(2): 199-214. doi: 10.3934/math.2019.2.199
    [4] Haikun Liu, Yongqiang Fu . On the variable exponential fractional Sobolev space Ws(·),p(·). AIMS Mathematics, 2020, 5(6): 6261-6276. doi: 10.3934/math.2020403
    [5] Samir Kumar Bhandari, Dhananjay Gopal, Pulak Konar . Probabilistic α-min Ciric type contraction results using a control function. AIMS Mathematics, 2020, 5(2): 1186-1198. doi: 10.3934/math.2020082
    [6] Manikandan G, Perumal R . Mate and mutual mate functions in a seminearring. AIMS Mathematics, 2020, 5(5): 4974-4982. doi: 10.3934/math.2020318
    [7] Huaji Cheng, Yanxia Hu . Exact solutions of the generalized (2+1)-dimensional BKP equation by the G'/G-expansion method and the first integral method. AIMS Mathematics, 2017, 2(3): 562-579. doi: 10.3934/Math.2017.2.562
    [8] Johnny Henderson, Abdelghani Ouahab, Samia Youcefi . Existence results for ϕ-Laplacian impulsive differential equations with periodic conditions. AIMS Mathematics, 2019, 4(6): 1610-1633. doi: 10.3934/math.2019.6.1610
    [9] Abdelkrim Salim, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez . On the nonlocal hybrid (k,φ)-Hilfer inverse problem with delay and anticipation. AIMS Mathematics, 2024, 9(8): 22859-22882. doi: 10.3934/math.20241112
    [10] Murali Ramdoss, Divyakumari Pachaiyappan, Inho Hwang, Choonkil Park . Stability of an n-variable mixed type functional equation in probabilistic modular spaces. AIMS Mathematics, 2020, 5(6): 5903-5915. doi: 10.3934/math.2020378
  • The clinical data of 76 severe illness patients with novel coronavirus SARS-CoV-2 from July to August, 2020 admitted to the ICU Intensive Care Unit ward in a hospital in Urumqi were collected in the paper. By using the Laplace approximation parameter estimation method based on maximum likelihood estimation, the generalized linear mixed effect model (GLMM) was established to analyze the characteristics of clinical indicators in critical patients, and to screen the main influencing factors of COVID-19 critical patients' inability to be transferred out of the ICU in a short time: age, C-reactive protein, serum creatinine and lactate dehydrogenase.



    Fractional partial differential equations (FPDEs) are the generalizations of classical partial differential equations with integer orders, which are used to describe several phenomena in many fields of sciences, such as mechanics, signal processing, plasma physics, systems identification, electricity, chemistry, biology, control theory and other areas.

    The exact solutions of FPDEs play a crucial role in the study of nonlinear sciences. It is used to describe observed various qualitative and quantitative features of nonlinear phenomenons in many fields of mathematical physics, it can let our better understand some complex physics phenomena. Therefore, it is an important task to seek more exact solutions of different forms for the FPDEs.

    In recent decades, with the development of science and technology, especially symbolic computation package such as Maple and Mathematica, many researchers have presented many direct and powerful approaches to establish exact solutions of fractional partial differential equations. For example, the fractional sub-equation method [1,2], the first integral method [3], the extended fractional Riccati expansion method [4], the fractional complex transform [5], the Jacobi elliptic equation method [6], the fractional mapping method [7], the (G/G)-expansion method [8], the improved fractional (DαG/G) method [9], the extended fractional (DαξG/G)-expansion method [10], the separation variables approach [11], the modified extended tanh method [12], the exp(Φ(ξ)) method [13,14], the invariant subspace method [15], and other methods [16,17,18,19]. Due to these methods, various exact solutions or numerical solutions of FPDEs have been established successfully.

    The two variable (ϕ/ϕ,1/ϕ)-expansion method is the generalization of (G/G)-expansion method, the main idea of this method is that the solutions to FPDEs are represented as a polynomial in two variables (ϕ/ϕ) and (1/ϕ), wherein ϕ=ϕ(ξ) satisfies the second order ODE ϕ+δϕ=μ, where δ and μ are constants. The objective of this article is to establish further general and some fresh close form solitary wave solution to the time-fractional Kuramoto-Sivashinsky (K-S) equation, (3+1)-dimensional time-fractional KdV-Zakharov-Kuznetsov (KdV-ZK) equation and time-fractional Sharma-Tasso-Olver (FSTO) equation by means of the two variable (ϕ/ϕ,1/ϕ)-expansion method, the results suggest that the method is significative and further general.

    The organization of the paper is as follows. In Section 2, the description of conformable fractional derivative and its properties are given. In Section 3, we describe the algorithm for solving time-fractional partial differential equations by using the two variable (ϕ/ϕ,1/ϕ)-expansion method with the help of fractional complex transform. In Section 4, we apply the two variable (ϕ/ϕ,1/ϕ)-expansion to the time-fractional K-S equation, (3+1)-dimensional KdV-ZK equation and FSTO equation. In Section 5, some typical wave figures of the exact solutions are given. Results and discussion part are added in Section 6. The conclusion part is in Section 7.

    In fractional calculus, the most famous fractional derivatives are the Riemann-Liouville and the Caputo fractional derivatives, the Riemann-Liouville fractional derivative is defined as follows [20]:

    If n is a positive integer and αϵ[n1,n], the α derivative of a function f is given by

     Dαt(f)(t)=1Γ(nα)dndtntaf(x)(tx)αn+1dx. (2.1)

    Also, the Caputo fractional derivative is defined as follows [20]

     Dαt(f)(t)=1Γ(nα)dndtntaf(n)(x)(tx)αn+1dx. (2.2)

    Some flaws arise in these definitions of these fractional derivatives, for example, all these derivatives do not satisfy: the known formula of the derivative of the product of two functions, the known formula of the derivative of the quotient of two functions and the chain rule of two functions.

    In 2014, Khalil et al. [21] introduced a novel definition of fractional derivative named the conformable fractional derivative to overcome the flaws found in Riemann-Liouville and the Caupto fractional derivatives.

    Definition 1. Suppose f: [0,)R is a function. Then, the conformable fractional derivative of f of order α is defined as

     Dαt(f)(t)=lim (2.3)

    for all t > 0 and \alpha\in(0, 1] . If f is \alpha -differentiable in some (0, a) , a > 0 , and lim_{t\rightarrow 0^+}f^{(\alpha)}(t) exists, then f^{(\alpha)}(0) = lim_{t\rightarrow 0^+}f^{(\alpha)}(t) .

    Some properties of the conformable fractional derivative are given below as in [21]

    Thereom 1. Suppose \alpha\in(0, 1] , and f = f(t) and g = g(t) are \alpha- differentiable at t > 0 . Then

    \begin{equation} \ D^\alpha_t(af+bg) = aD^\alpha_t(f)+bD^\alpha_t(g), \ \ \ \ \ \forall a, b\in R. \end{equation} (2.4)
    \begin{equation} \ D^\alpha_t(t^\mu) = \mu t^{\mu-\alpha}, \ \ \ \ \ \forall \mu \in R. \end{equation} (2.5)
    \begin{equation} \ D^\alpha_t(fg) = fD^\alpha_t(g)+gD^\alpha_t(f). \end{equation} (2.6)
    \begin{equation} \ D^\alpha_t(\frac{f}{g}) = \frac{gD^\alpha_t(f)-fD^\alpha_t(g)}{g^2}. \end{equation} (2.7)

    If, in addition to f differentiable, then

    \begin{equation} \ D^\alpha_t(f)(t) = t^{1-\alpha}\frac{df}{dt}. \end{equation} (2.8)

    Thereom 2. Suppose functions f, g : [0, \infty) \rightarrow R be \alpha- differentiable, where (0 < \alpha \leq1) . Then the following rule is obtained

    \begin{equation} \ D^\alpha_t(f\circ g)(t) = t^{1-\alpha}g'(t)f'(g(t)). \end{equation} (2.9)

    The above equations play an important role in fractional calculus in the following sections.

    In this section we give the description of the two variable (\phi'/\phi, 1/\phi) -expansion method to find exact traveling wave solutions of time-fractional partial differential equation.

    Suppose that a time-fractional partial differential equation in the variables x, y, z, t is given by

    \begin{equation} \ P(u, u_{x}, u_{y}, u_{z}, u_{xx}, u_{xy}, u_{xz}, u_{xxx}, \cdots, D_{t}^{\alpha}u, D_{tt}^{2\alpha}u, \cdots) = 0, \ \ \ \ 0 \lt \alpha\leq 1, \end{equation} (3.1)

    where D_{t}^{\alpha}u, D_{tt}^{2\alpha}u are fraction-order derivatives of u with respect to t , P is a polynomial of u = u(x, y, z, t) and its various partial conformable derivatives including the highest order derivatives and nonlinear terms.

    We use the conformable wave transformation:

    \begin{equation} \ u(x, y, z, t) = u(\xi), \xi = c(x+y+z-\frac{\upsilon t^{\alpha}}{\alpha}), \end{equation} (3.2)

    where c and \upsilon are constant to be determine later, the FPDE (3.1) is reduced to the following nonlinear ordinary differential equation (ODE) for u(x, y, z, t) = u(\xi) :

    \begin{equation} \ P(u, cu', c^2u'', c^3u''', \cdots, -c\upsilon u', \ldots) = 0, \end{equation} (3.3)

    where u' = u_\xi, u'' = u_{\xi\xi}, \cdots.

    We suppose the solution u of (3.3) can be expressed in the following form:

    \begin{equation} u = \sum\limits_{i = 0}^{n} a_i (\frac{\phi'}{\phi})^i+\sum\limits_{j = 0}^{n-1} b_i (\frac{\phi'}{\phi})^j\frac{1}{\phi}, \end{equation} (3.4)

    where a_i, b_j(i = 0, 1, 2, \ldots, n; j = 0, 1, 2, \ldots, n-1) are constants and a_nb_{n-1}\neq 0 . The positive number n can be determined by considering the homogeneous balance between the highest order derivatives and nonlinear terms appearing in (3.3). The function \phi = \phi(\xi) satisfies the second order linear ODE in the form

    \begin{equation} \phi''+\delta \phi = \mu, \end{equation} (3.5)

    where \delta and \mu are constants. Equation (3.5) has three types of general solution with double arbitrary parameters as follows [22]:

    \begin{equation} \ \phi(\xi) = \left\{\begin{array}{cc} A_1\cosh(\sqrt{-\delta}\xi)+A_2\sinh(\sqrt{-\delta}\xi)+\frac{\mu}{\delta}, \ \rm{when} \ \ \ \delta \lt 0, \\ A_1\cos(\sqrt{\delta}\xi)+A_2\sin(\sqrt{\delta}\xi)+\frac{\mu}{\delta}, \ \ \ \ \ \ \ \ \ \rm{when} \ \ \ \delta \gt 0, \\ A_1\xi+A_2+\frac{\mu}{2}\xi^2, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \rm{when} \ \ \ \delta = 0.\ \end{array}\right. \end{equation} (3.6)

    and

    \begin{equation} \ \left(\frac{\phi'}{\phi}\right)^2 = \left\{\begin{array}{cc} (\delta A_1^2-\delta A_2^2-\frac{\mu^2}{\delta})(\frac{1}{\phi})^2-\delta+\frac{2\mu}{\phi}, \ \ \ \rm{when} \ \delta \lt 0, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ (\delta A_1^2+\delta A_2^2-\frac{\mu^2}{\delta})(\frac{1}{\phi})^2-\delta+\frac{2\mu}{\phi}, \ \ \ \rm{when} \ \delta \gt 0, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ (A_1^2-2\mu A_2)(\frac{1}{\phi})^2+\frac{2\mu}{\phi}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \rm{when} \ \delta = 0. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \end{array}\right. \end{equation} (3.7)

    where A_1, A_2 are arbitrary constants.

    By substituting (3.4) into (3.3) and using the second order linear ODE (3.5) and (3.7), collecting all terms with the same order of \frac{1}{\phi^i} and \frac{1}{\phi^i}\frac{\phi'}{\phi} together, the left-hand side of (3.3) is converted into another polynomial in \frac{1}{\phi^i} and \frac{1}{\phi^i}\frac{\phi'}{\phi} . Equating each coefficient of this different power terms to zero yields a set of algebraic equations for a_i, b_j(i = 0, 1, 2, \ldots, n; j = 0, 1, 2, \ldots, n-1), \delta, \mu, c and \upsilon .

    Assuming constants a_i, b_j(i = 0, 1, 2, \ldots, n; j = 0, 1, 2, \ldots, n-1), \delta, \mu, c and \upsilon can be determined by solving the nonlinear algebraic equations. Then substituting these terms and the general solutions (3.6) of (3.5) into (3.4), we can obtain more exact traveling wave solutions of (3.1).

    In this subsection, we investigate more general and new exact traveling wave solutions of time-fractional differential equations by means of the two variable (\phi'/\phi, 1/\phi) -expansion method.

    we consider the time-fractional Kuramoto-Sivashinsky (K-S) equation [23]:

    \begin{equation} \ D_{t}^{\alpha}u+auu_x+bu_{xx}+ku_{xxxx} = 0, \end{equation} (4.1)

    where 0 < \alpha\leq 1 and a, b, k are arbitrary constants.

    The K-S equation (4.1) was examined as a prototypical example of spatiotemporal chaos in one space dimension. This equation represents the motion of a fluid going down a vertical wall, the variations of the position of a flame front, or a spatially uniform oscillating chemical reaction in a homogeneous medium.

    To solve (4.1), we use the wave transformations:

    \begin{equation} \ u = u(\xi), \ \ \ \xi = c(x-\frac{\upsilon t^{\alpha}}{\alpha}), \end{equation} (4.2)

    then (4.1) is reduced into a nonlinear ODE in the form

    \begin{equation} \ -c\upsilon u'(\xi)+acu(\xi)u'(\xi)+bc^2u''(\xi)+kc^4u^{(4)}(\xi) = 0. \end{equation} (4.3)

    By reducing (4.3), we get

    \begin{equation} \ -\upsilon u'(\xi)+au(\xi)u'(\xi)+bcu''(\xi)+kc^3u^{(4)}(\xi) = 0. \end{equation} (4.4)

    By balancing the highest order derivative term u^{(4)} and nonlinear term uu' in (4.4), the value of n can be determined, which is n = 3 in this problem. Therefore, by (3.4), we have the following ansatz:

    \begin{equation} u(\xi) = a_0+a_1\left(\frac{\phi'}{\phi}\right)+a_2\left(\frac{\phi'}{\phi}\right)^{2}+a_3\left(\frac{\phi'}{\phi}\right)^{3}+b_0\frac{1}{\phi}+b_1\left(\frac{\phi'}{\phi}\right) \frac{1}{\phi}+b_2\left(\frac{\phi'}{\phi}\right)^{2}\frac{1}{\phi}, \end{equation} (4.5)

    where a_0, a_1, a_2, a_3, b_0, b_1 and b_2 are constants to be determined later, and function \phi(\xi) satisfies (3.5).

    By substituting (4.5) into (4.4) and using the second order linear ODE (3.5) and (3.7), collecting all terms with the same order of \frac{1}{\phi^i} and \frac{1}{\phi^i}\frac{\phi'}{\phi} together, the left-hand side of (4.4) is converted into another polynomial in \frac{1}{\phi^i} and \frac{1}{\phi^i}\frac{\phi'}{\phi} . Equating each coefficient of this different power terms to zero yields a set of algebraic equations for a_0, a_1, a_2, a_3, b_0, b_1, b_2, \delta, \mu, k, a, b, c and \upsilon . Solving this system of algebraic equations, with the aid of Maple, we obtain

    1. a_1 = \pm\frac{3b_2\delta}{2\sqrt{\Xi_i}}, \ a_2 = -\frac{b_2\mu}{2\Xi_i}, \ a_3 = \pm\frac{b_2}{\sqrt{\Xi_i}}, b_0 = \frac{b_2(\mu^2+\Xi_i\delta)}{\Xi_i}, \ b_1 = \mp\frac{3b_2\mu}{2\sqrt{\Xi_i}}, \ b = \pm\frac{19b_2a\delta}{60c\sqrt{\Xi_i}}, \ \
    \begin{equation} \ k = \pm\frac{ab_2}{60c^3\sqrt{\Xi_i}}, \ \ \upsilon = \frac{a(b_2\mu\delta+2a_0\Xi_i)}{2\Xi_i}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \end{equation} (4.6)
    2. a_1 = \pm\frac{21b_2\delta}{22\sqrt{\Xi_i}}, \ a_2 = -\frac{b_2\mu}{2\Xi_i}, \ a_3 = \pm\frac{b_2}{\sqrt{\Xi_i}}, b_0 = \frac{b_2(11\mu^2+5\Xi_i\delta)}{11\Xi_i}, \ \ b_1 = \mp\frac{3b_2\mu}{2\sqrt{\Xi_i}}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
    \begin{equation} \ b = \mp\frac{19b_2a\delta}{660c\sqrt{\Xi_i}}, \ \ k = \pm\frac{ab_2}{60c^3\sqrt{\Xi_i}}, \ \ \upsilon = \frac{a(b_2\mu\delta+2a_0\Xi_i)}{2\Xi_i}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \end{equation} (4.7)

    where \Xi_i(i = 1, 2, 3) are given later.

    Substituting (4.6) and (4.7) and the general solutions (3.6) of Eq. (3.5) into (4.5), we obtain more exact traveling wave solutions of (4.1):

    \begin{equation} u_{1i}(\xi) = a_0\pm\frac{3b_2\delta}{2\sqrt{\Xi_i}}\Phi_i-\frac{b_2\mu}{2\Xi_i}\Phi_i^2\pm\frac{b_2}{\sqrt{\Xi_i}}\Phi_i^3+\Psi_i(\frac{b_2(\mu^2+\Xi_i\delta)}{\Xi_i} \mp\frac{3b_2\mu}{2\sqrt{\Xi_i}}\Phi_i+b_2\Phi_i^2), \end{equation} (4.8)

    where \xi = c(x-\frac{(b_2\delta\mu+2a_0\Xi_i)a}{2\Xi_i\alpha}t^\alpha), \ \ b = \pm\frac{19b_2a\delta}{60c\sqrt{\Xi_i}}, \ \ k = \pm\frac{ab_2}{60c^3\sqrt{\Xi_i}}.

    \begin{equation} u_{2i}(\xi) = a_0\pm\frac{21b_2\delta}{22\sqrt{\Xi_i}}\Phi_i-\frac{b_2\mu}{2\Xi_i}\Phi_i^2\pm\frac{b_2}{\sqrt{\Xi_i}}\Phi_i^3+\Psi_i(\frac{b_2(11\mu^2+5\Xi_i\delta)}{11\Xi_i} \mp\frac{3b_2\mu}{2\sqrt{\Xi_i}}\Phi_i+b_2\Phi_i^2), \end{equation} (4.9)

    where \xi = c(x-\frac{(b_2\delta\mu+2a_0\Xi_i)a}{2\Xi_i\alpha}t^\alpha), \ \ b = \mp\frac{19b_2a\delta}{660c\sqrt{\Xi_i}}, \ \ k = \pm\frac{ab_2}{60c^3\sqrt{\Xi_i}} .

    When i = 1 for \delta < 0 , i = 2 for \delta > 0 , i = 3 for \delta = 0 . And

    \begin{equation} \Phi_1 = \frac{A_1\sinh(\sqrt{-\delta}\xi)+A_2\cosh(\sqrt{-\delta}\xi)}{A_1\cosh(\sqrt{-\delta}\xi)+A_2\sinh(\sqrt{-\delta}\xi)+\mu/\delta}\cdot\sqrt{-\delta}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \end{equation} (4.10)
    \begin{equation} \Psi_1 = \frac{1}{A_1\cosh(\sqrt{-\delta}\xi)+A_2\sinh(\sqrt{-\delta}\xi)+\mu/\delta}, \ \ \Xi_1 = A_1^2\delta-A_2^2\delta-\mu^2/\delta. \end{equation} (4.11)
    \begin{equation} \Phi_2 = \frac{-A_1\sin(\sqrt{\delta}\xi)+A_2\cos(\sqrt{\delta}\xi)}{A_1\cos(\sqrt{\delta}\xi)+A_2\sin(\sqrt{\delta}\xi)+\mu/\delta}\cdot\sqrt{\delta}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \end{equation} (4.12)
    \begin{equation} \Psi_2 = \frac{1}{A_1\cos(\sqrt{\delta}\xi)+A_2\sin(\sqrt{\delta}\xi)+\mu/\delta}, \ \ \Xi_2 = A_1^2\delta+A_2^2\delta-\mu^2/\delta.\ \ \ \ \ \ \ \ \end{equation} (4.13)
    \begin{equation} \Phi_3 = \frac{A_1+\mu\xi}{A_1\xi+A_2+\mu\xi^2/2}, \ \Psi_3 = \frac{1}{A_1\xi+A_2+\mu\xi^2/2}, \ \ \Xi_3 = A_1^2-2A_2\mu.\ \ \ \end{equation} (4.14)

    Since A_1 and A_2 are arbitrary constants, one may choose arbitrarily their values. For example, if we choose A_1 = 0 , A_2\neq 0 and \mu = 0 in (4.8), we obtain some traveling wave solutions.

    Case 1.1 when \delta < 0 , we have

    \begin{equation} u_1(\xi) = a_0+\frac{b_2\delta}{A_2}\left(\frac{3}{2}\coth(\sqrt{-\delta}\xi)-\coth^3(\sqrt{-\delta}\xi)- \rm{csch}^3(\sqrt{-\delta}\xi)\right), (A_2 \gt 0), \ \ \ \end{equation} (4.15)

    where \xi = c(x-\frac{a_0a}{\alpha}t^\alpha), b = \frac{19b_2a\delta}{60A_2c\sqrt{-\delta}}, \ \ k = \frac{ab_2}{60c^3A_2\sqrt{-\delta}}.

    \begin{equation} u_2(\xi) = a_0-\frac{b_2\delta}{A_2}\left(\frac{3}{2}\coth(\sqrt{-\delta}\xi)-\coth^3(\sqrt{-\delta}\xi)+ \rm{csch}^3(\sqrt{-\delta}\xi)\right), (A_2 \lt 0), \ \ \ \end{equation} (4.16)

    where \xi = c(x-\frac{a_0a}{\alpha}t^\alpha), b = -\frac{19b_2a\delta}{60A_2c\sqrt{-\delta}}, \ \ k = -\frac{ab_2}{60c^3A_2\sqrt{-\delta}}.

    Case 1.2 when \delta > 0 , we have

    \begin{equation} u_3(\xi) = a_0+\frac{b_2\delta}{A_2}\left(\frac{3}{2}\cot(\sqrt{\delta}\xi)+\cot^3(\sqrt{\delta}\xi)+\csc^3(\sqrt{\delta}\xi)\right), (A_2 \gt 0), \ \ \ \end{equation} (4.17)

    where \xi = c(x-\frac{a_0a}{\alpha}t^\alpha), b = \frac{19b_2a\delta}{60A_2c\sqrt{\delta}}, \ \ k = \frac{ab_2}{60c^3A_2\sqrt{\delta}}.

    \begin{equation} u_4(\xi) = a_0-\frac{b_2\delta}{A_2}\left(\frac{3}{2}\cot(\sqrt{\delta}\xi)+\cot^3(\sqrt{\delta}\xi)-\csc^3(\sqrt{\delta}\xi)\right), (A_2 \lt 0), \ \ \ \end{equation} (4.18)

    where \xi = c(x-\frac{a_0a}{\alpha}t^\alpha), b = -\frac{19b_2a\delta}{60A_2c\sqrt{\delta}}, \ \ k = -\frac{ab_2}{60c^3A_2\sqrt{\delta}}.

    Again if A_2 = 0 , A_1\neq 0 and \mu = 0 in (4.8), we obtain some traveling wave solutions.

    Case 2.1 when \delta < 0 , we have

    \begin{equation} u_5(\xi) = a_0+\frac{b_2\delta \sqrt{-\delta}}{\sqrt{A_1^2\delta}}\left(\frac{3}{2}\tanh(\sqrt{-\delta}\xi)-\tanh^3(\sqrt{-\delta}\xi)\right)+\frac{b_2\delta}{A_1} \rm{sech}^3(\sqrt{-\delta}\xi), \end{equation} (4.19)

    where \xi = c(x-\frac{a_0a}{\alpha}t^\alpha), b = \frac{19b_2a\delta}{60c\sqrt{A_1^2\delta}}, \ \ k = \frac{ab_2}{60c^3\sqrt{A_1^2\delta}}.

    Case 2.2 when \delta > 0 , we have

    \begin{equation} u_6(\xi) = a_0-\frac{b_2\delta}{A_1}\left(\frac{3}{2}\tan(\sqrt{\delta}\xi)+\tan^3(\sqrt{\delta}\xi))-\sec^3(\sqrt{\delta}\xi)\right), (A_1 \gt 0), \end{equation} (4.20)

    where \xi = c(x-\frac{a_0a}{\alpha}t^\alpha), b = \frac{19b_2a\delta}{60c A_1\sqrt{\delta}}, \ \ k = \frac{ab_2}{60c^3 A_1\sqrt{\delta}}.

    \begin{equation} u_7(\xi) = a_0+\frac{b_2\delta}{A_1}\left(\frac{3}{2}\tan(\sqrt{\delta}\xi)+\tan^3(\sqrt{\delta}\xi))+\sec^3(\sqrt{\delta}\xi)\right), (A_1 \lt 0), \end{equation} (4.21)

    where \xi = c(x-\frac{a_0a}{\alpha}t^\alpha), b = -\frac{19b_2a\delta}{60c A_1\sqrt{\delta}}, \ \ k = -\frac{ab_2}{60c^3 A_1\sqrt{\delta}}.

    If we choose A_1 = 0 , A_2\neq 0 and \mu = 0 in (4.9), we obtain some traveling wave solutions, for example

    Case 3.1 when \delta < 0 , we have

    \begin{equation} u_8(\xi) = a_0+\frac{b_2\delta}{A_2}\left(\frac{21}{22}\coth(\sqrt{-\delta}\xi)-\coth^3(\sqrt{-\delta}\xi)+ \left(\frac{5}{11}-\coth^2(\sqrt{-\delta}\xi)\right) \rm{csch}(\sqrt{-\delta}\xi)\right), (A_2 \gt 0), \ \ \ \end{equation} (4.22)

    where \xi = c(x-\frac{a_0a}{\alpha}t^\alpha), b = -\frac{19b_2a\delta}{660A_2c\sqrt{-\delta}}, \ \ k = \frac{ab_2}{60c^3A_2\sqrt{-\delta}}.

    \begin{equation} u_9(\xi) = a_0-\frac{b_2\delta}{A_2}\left(\frac{21}{22}\coth(\sqrt{-\delta}\xi)-\coth^3(\sqrt{-\delta}\xi)- \left(\frac{5}{11}-\coth^2(\sqrt{-\delta}\xi)\right) \rm{csch}(\sqrt{-\delta}\xi)\right), (A_2 \lt 0), \ \ \ \end{equation} (4.23)

    where \xi = c(x-\frac{a_0a}{\alpha}t^\alpha), b = \frac{19b_2a\delta}{660A_2c\sqrt{-\delta}}, \ \ k = -\frac{ab_2}{60c^3A_2\sqrt{-\delta}}.

    Case 3.2 when \delta > 0 , we have

    \begin{equation} u_{10}(\xi) = a_0+\frac{b_2\delta}{A_2}\left(\frac{21}{22}\cot(\sqrt{\delta}\xi)+\cot^3(\sqrt{\delta}\xi)+ \left(\frac{5}{11}+\cot^2(\sqrt{\delta}\xi)\right)\csc(\sqrt{\delta}\xi)\right), (A_2 \gt 0), \ \ \ \end{equation} (4.24)

    where \xi = c(x-\frac{a_0a}{\alpha}t^\alpha), b = -\frac{19b_2a\delta}{660A_2c\sqrt{\delta}}, \ \ k = \frac{ab_2}{60c^3A_2\sqrt{\delta}}.

    \begin{equation} u_{11}(\xi) = a_0-\frac{b_2\delta}{A_2}\left(\frac{21}{22}\cot(\sqrt{\delta}\xi)+\cot^3(\sqrt{\delta}\xi)- \left(\frac{5}{11}+\cot^2(\sqrt{\delta}\xi)\right)\csc(\sqrt{\delta}\xi)\right), (A_2 \lt 0), \ \ \ \end{equation} (4.25)

    where \xi = c(x-\frac{a_0a}{\alpha}t^\alpha), b = \frac{19b_2a\delta}{660A_2c\sqrt{\delta}}, \ \ k = -\frac{ab_2}{60c^3A_2\sqrt{\delta}}.

    Again if A_2 = 0 , A_1\neq 0 and \mu = 0 in (4.9), we obtain some traveling wave solutions.

    Case 4.1 when \delta < 0 , we have

    \begin{equation} u_{12}(\xi) = a_0+\frac{b_2\delta\sqrt{-\delta}}{\sqrt{A_1^2\delta}}\left(\frac{21}{22}\tanh(\sqrt{-\delta}\xi)-\tanh^3(\sqrt{-\delta}\xi)\right)+\frac{b_2\delta}{A_1} \left(\frac{5}{11}-\tanh^2(\sqrt{-\delta}\xi)\right) \rm{sech}(\sqrt{-\delta}\xi), \end{equation} (4.26)

    where \xi = c(x-\frac{a_0a}{\alpha}t^\alpha), b = -\frac{19b_2a\delta}{660c\sqrt{A_1^2\delta}}, \ \ k = \frac{ab_2}{60c^3\sqrt{A_1^2\delta}}.

    Case 4.2 when \delta > 0 , we have

    \begin{equation} u_{13}(\xi) = a_0-\frac{b_2\delta}{A_1}\left(\frac{21}{22}\tan(\sqrt{\delta}\xi)+\tan^3(\sqrt{\delta}\xi)- \left(\frac{5}{11}+\tan^2(\sqrt{\delta}\xi)\right)\sec(\sqrt{\delta}\xi)\right), (A_1 \gt 0), \ \ \ \end{equation} (4.27)

    where \xi = c(x-\frac{a_0a}{\alpha}t^\alpha), b = -\frac{19b_2a\delta}{660A_1c\sqrt{\delta}}, \ \ k = \frac{ab_2}{60c^3A_1\sqrt{\delta}}.

    \begin{equation} u_{14}(\xi) = a_0+\frac{b_2\delta}{A_1}\left(\frac{21}{22}\tan(\sqrt{\delta}\xi)+\tan^3(\sqrt{\delta}\xi)+ \left(\frac{5}{11}+\tan^2(\sqrt{\delta}\xi)\right)\sec(\sqrt{\delta}\xi)\right), (A_1 \lt 0), \ \ \ \end{equation} (4.28)

    where \xi = c(x-\frac{a_0a}{\alpha}t^\alpha), b = \frac{19b_2a\delta}{660A_1c\sqrt{\delta}}, \ \ k = -\frac{ab_2}{60c^3A_1\sqrt{\delta}}.

    Consider the (3+1)-dimensional time-fractional KdV-Zakharov-Kuznetsov (KdV-ZK) equation [24,25]:

    \begin{equation} \ D_{t}^{\alpha}u+auu_x+u_{xxx}+b(u_{xyy}+u_{xzz}) = 0, \end{equation} (4.29)

    where 0 < \alpha\leq 1 and a, b are arbitrary constants.

    It is well known that the Korteweg-de Vries (KdV) equation arises as an model for one-dimensional long wavelength surface waves propagating in weakly nonlinear dispersive media, as well as the evolution of weakly nonlinear ion acoustic waves in plasmas. The ZK equation is one of two well-studied canonical two-dimensional extensions of the Korteweg-de Vries equation. In recent, S. Shoo et al. [25] found some new exact traveling wave solutions of Eq. (4.29) by the simplest equation method.

    To solve (4.29), we use the wave transformations:

    \begin{equation} \ u = u(\xi), \ \ \ \xi = c(x+y+z-\frac{\upsilon t^{\alpha}}{\alpha}), \end{equation} (4.30)

    then (4.29) is reduced into a nonlinear ODE in the form

    \begin{equation} \ -c\upsilon u'(\xi)+acu(\xi)u'(\xi)+c^3(1+2b)u'''(\xi) = 0. \end{equation} (4.31)

    By reducing (4.31), we get

    \begin{equation} \ -\upsilon u'(\xi)+au(\xi)u'(\xi)+c^2(1+2b)u'''(\xi) = 0. \end{equation} (4.32)

    Further by integrating (4.32) with respect to \xi , we get

    \begin{equation} \ -\upsilon u(\xi)+\frac{a}{2}u^2(\xi)+c^2(1+2b)u''(\xi) = 0. \end{equation} (4.33)

    By balancing the highest order derivative term u'' and nonlinear term u^2 in (4.33), the value of n can be determined, which is n = 2 in this problem. Therefore, by equation (3.4), we have the following ansatz:

    \begin{equation} u(\xi) = a_0+a_1\left(\frac{\phi'}{\phi}\right)+a_2\left(\frac{\phi'}{\phi}\right)^{2}+b_0\frac{1}{\phi}+b_1\left(\frac{\phi'}{\phi}\right) \frac{1}{\phi}, \end{equation} (4.34)

    where a_0, a_1, a_2, b_0 and b_1 are constants to be determined later, and function \phi(\xi) satisfies (3.5).

    By substituting (4.34) into (4.33) and using the second order linear ODE (3.5) and (3.7), collecting all terms with the same order of \frac{1}{\phi^i} and \frac{1}{\phi^i}\frac{\phi'}{\phi} together, the left-hand side of (4.33) is converted into another polynomial in \frac{1}{\phi^i} and \frac{1}{\phi^i}\frac{\phi'}{\phi} . Equating each coefficient of this different power terms to zero yields a set of algebraic equations for a_0, a_1, a_2, b_0, b_1, \delta, \mu, a, b, c and \upsilon . Solving this system of algebraic equations, with the aid of Maple, we obtain

    \begin{equation} \ 1. a_0 = \pm\frac{b_1\delta}{\sqrt{\Xi_i}}, \ \ a_1 = 0, \ \ a_2 = \pm\frac{b_1}{\sqrt{\Xi_i}}, \ \ b_0 = \mp\frac{b_1\mu}{\sqrt{\Xi_i}}, \ \ b = -\frac{6c^2\sqrt{\Xi_i}\pm ab_1}{12c^2\sqrt{\Xi_i}}, \ \ \upsilon = \pm\frac{\delta ab_1}{6\sqrt{\Xi_i}}.\ \ \end{equation} (4.35)
    \begin{equation} \ 2. a_0 = \pm\frac{2b_1\delta}{3\sqrt{\Xi_i}}, \ \ a_1 = 0, \ \ a_2 = \pm\frac{b_1}{\sqrt{\Xi_i}}, \ \ b_0 = \mp\frac{b_1\mu}{\sqrt{\Xi_i}}, \ \ b = -\frac{6c^2\sqrt{\Xi_i}\pm ab_1}{12c^2\sqrt{\Xi_i}}, \ \ \upsilon = \mp\frac{\delta ab_1}{6\sqrt{\Xi_i}}.\ \ \end{equation} (4.36)

    Substituting (4.35) and (4.36) and the general solutions (3.6) of Eq. (3.5) into (4.34), we obtain more exact solutions of (4.29):

    \begin{equation} u_{1i}(\xi) = \pm\frac{b_1\delta}{\sqrt{\Xi_i}}\pm\frac{b_1}{\sqrt{\Xi_i}}\Phi_i^2+b_1\Psi_i(\mp\frac{\mu}{\sqrt{\Xi_i}}+\Phi_i), \end{equation} (4.37)

    where \xi = c(x+y+z\mp\frac{\delta ab_1}{6\sqrt{\Xi_i}\alpha}t^\alpha), \ \ b = -\frac{6c^2\sqrt{\Xi_i}\pm ab_1}{12c^2\sqrt{\Xi_i}} .

    \begin{equation} u_{2i}(\xi) = \pm\frac{2b_1\delta}{3\sqrt{\Xi_i}}\pm\frac{b_1}{\sqrt{\Xi_i}}\Phi_i^2+b_1\Psi_i(\mp\frac{\mu}{\sqrt{\Xi_i}}+\Phi_i), \end{equation} (4.38)

    where \xi = c(x+y+z\pm\frac{\delta ab_1}{6\sqrt{\Xi_i}\alpha}t^\alpha), \ \ b = -\frac{6c^2\sqrt{\Xi_i}\pm ab_1}{12c^2\sqrt{\Xi_i}} , in which i = 1 for \delta < 0 , i = 2 for \delta > 0 , i = 3 for \delta = 0 , and \Phi_i, \Psi_i, \Xi_i, \ (i = 1, 2, 3) see (4.10)-(4.14).

    Here A_1 and A_2 are arbitrary constants. Therefore, one can freely select their values. If we choose A_1 = 0 , A_2\neq 0 , \mu = 0 and \delta > 0 in (4.37), we obtain some traveling wave solutions.

    \begin{equation} u_1(\xi) = \frac{b_1\sqrt{\delta}}{A_2}\left(\csc^2(\sqrt{\delta}\xi)+\cot(\sqrt{\delta}\xi)\csc(\sqrt{\delta}\xi)\right), (A_2 \gt 0), \ \end{equation} (4.39)

    where \xi = c(x+y+z-\frac{\delta ab_1}{6A_2\alpha\sqrt{\delta}}t^\alpha), b = -\frac{6c^2A_2\sqrt{\delta}+ ab_1}{12c^2A_2\sqrt{\delta}}.

    \begin{equation} u_2(\xi) = -\frac{b_1\sqrt{\delta}}{A_2}\left(\csc^2(\sqrt{\delta}\xi)-\cot(\sqrt{\delta}\xi)\csc(\sqrt{\delta}\xi)\right), (A_2 \lt 0), \ \end{equation} (4.40)

    where \xi = c(x+y+z+\frac{\delta ab_1}{6A_2\alpha\sqrt{\delta}}t^\alpha), b = \frac{-6c^2A_2\sqrt{\delta}+ ab_1}{12c^2A_2\sqrt{\delta}}.

    If we choose A_1 = 0 , A_2\neq 0 , \mu = 0 and \delta < 0 in (4.38), we obtain some other traveling wave solutions.

    \begin{equation} u_3(\xi) = -\frac{b_1\sqrt{-\delta}}{A_2}\left(\frac{2}{3}-\coth^2(\sqrt{-\delta}\xi)-\coth(\sqrt{-\delta}\xi) \rm{csch}(\sqrt{-\delta}\xi)\right), (A_2 \gt 0), \ \end{equation} (4.41)

    where \xi = c(x+y+z+\frac{\delta ab_1}{6A_2\alpha\sqrt{-\delta}}t^\alpha), b = -\frac{6c^2A_2\sqrt{-\delta}+ ab_1}{12c^2A_2\sqrt{-\delta}}.

    \begin{equation} u_4(\xi) = \frac{b_1\sqrt{-\delta}}{A_2}\left(\frac{2}{3}-\coth^2(\sqrt{-\delta}\xi)+\coth(\sqrt{-\delta}\xi) \rm{csch}(\sqrt{-\delta}\xi)\right), (A_2 \lt 0), \ \end{equation} (4.42)

    where \xi = c(x+y+z-\frac{\delta ab_1}{6A_2\alpha\sqrt{-\delta}}t^\alpha), b = \frac{-6c^2A_2\sqrt{-\delta}+ ab_1}{12c^2A_2\sqrt{-\delta}}.

    If we choose A_1 = 0 , A_2\neq 0 , \mu = 0 and \delta > 0 in (4.38), we obtain some traveling wave solutions.

    \begin{equation} u_5(\xi) = \frac{b_1\sqrt{\delta}}{A_2}\left(\frac{2}{3}+\cot^2(\sqrt{\delta}\xi)+\cot(\sqrt{\delta}\xi)\csc(\sqrt{\delta}\xi)\right), (A_2 \gt 0), \ \end{equation} (4.43)

    where \xi = c(x+y+z+\frac{\delta ab_1}{6A_2\alpha\sqrt{\delta}}t^\alpha), b = -\frac{6c^2A_2\sqrt{\delta}+ ab_1}{12c^2A_2\sqrt{\delta}}.

    \begin{equation} u_6(\xi) = -\frac{b_1\sqrt{\delta}}{A_2}\left(\frac{2}{3}+\cot^2(\sqrt{\delta}\xi)-\cot(\sqrt{\delta}\xi)\csc(\sqrt{\delta}\xi)\right), (A_2 \gt 0), \ \end{equation} (4.44)

    where \xi = c(x+y+z-\frac{\delta ab_1}{6A_2\alpha\sqrt{\delta}}t^\alpha), b = \frac{-6c^2A_2\sqrt{\delta}+ ab_1}{12c^2A_2\sqrt{\delta}}.

    Similarly, we can write down the other families of exact solutions of Eq. (4.29) which are omitted for convenience.

    Consider the time-fractional Sharma-Tasso-Olver (FSTO) equation [26,27]:

    \begin{equation} \ D_{t}^{\alpha}u+3au_x^2+3au^2u_{x}+3auu_{xx}+au_{xxx} = 0, \end{equation} (4.45)

    where a is an arbitrary constant and 0 < \alpha\leq 1 . The function u(x, t) is assumed to be a causal function of time. i.e. vanishing for t < 0 . The general response expression contains a parameter describing the order of the fractional derivative that can be varied to obtain various responses. In the case of \alpha = 1 , Eq. (4.45) reduces to the classical nonlinear STO equation. L. Song [26] found a rational approximation solution of Eq. (4.45) by the variational iteration method, the Adomian decomposition method and the homotopy perturbation method.

    To solve (4.45), we use the wave transformations:

    \begin{equation} \ u = u(\xi), \ \ \ \xi = c(x-\frac{\upsilon t^{\alpha}}{\alpha}), \end{equation} (4.46)

    then (4.45) is reduced into a nonlinear ODE in the form

    \begin{equation} \ -c\upsilon u'(\xi)+3ac^2u'^2(\xi)+3acu^2(\xi)u'(\xi)+3ac^2u(\xi)u''(\xi)+ac^3u'''(\xi) = 0. \end{equation} (4.47)

    By reducing (4.47), we get

    \begin{equation} \ -\upsilon u'(\xi)+3acu'^2(\xi)+3au^2(\xi)u'(\xi)+3acu(\xi)u''(\xi)+ac^2u'''(\xi) = 0. \end{equation} (4.48)

    Further by integrating (4.48) with respect to \xi , we get

    \begin{equation} \ -\upsilon u(\xi)+3acu(\xi)u'(\xi)+au^3(\xi)+ac^2u''(\xi) = 0. \end{equation} (4.49)

    By balancing the highest order derivative term u'' and nonlinear term u^3 in (4.49), the value of n can be determined, which is n = 1 in this problem. Therefore, by Eq. (3.4), we have the following ansatz:

    \begin{equation} u(\xi) = a_0+a_1\left(\frac{\phi'}{\phi}\right)+b_0\frac{1}{\phi}, \end{equation} (4.50)

    where a_0, a_1 and b_0 are constants to be determined later, and function \phi(\xi) satisfies (3.5).

    By substituting (4.50) into (4.49) and using the second order linear ODE (3.5) and (3.7), collecting all terms with the same order of \frac{1}{\phi^i} and \frac{1}{\phi^i}\frac{\phi'}{\phi} together, the left-hand side of (4.49) is converted into another polynomial in \frac{1}{\phi^i} and \frac{1}{\phi^i}\frac{\phi'}{\phi} . Equating each coefficient of this different power terms to zero yields a set of algebraic equations for a_0, a_1, b_0, \delta, \mu, a, c and \upsilon . Solving this system of algebraic equations, with the aid of Maple, we obtain

    \begin{equation} \ 1. a_0 = 0, \ \ a_1 = c, \ \ b_0 = \pm\sqrt{\Xi_i}c, \ \ \upsilon = -ac^2\delta.\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \end{equation} (4.51)
    \begin{equation} \ 2. a_0 = 0, \ \ a_1 = \pm\frac{b_0}{\sqrt{\Xi_i}}, \ \ c = \pm\frac{2b_0}{\sqrt{\Xi_i}}, \ \ \upsilon = -\frac{b_0^2a\delta}{\Xi_i}.\ \ \ \ \ \ \ \ \ \ \ \ \end{equation} (4.52)
    \begin{equation} \ 3. a_0 = \pm\sqrt{-\frac{\delta}{\Xi_i}}b_0, \ \ a_1 = \frac{b_0}{\sqrt{\Xi_i}}, \ \ c = \frac{2b_0}{\sqrt{\Xi_i}}, \ \ \upsilon = -\frac{4b_0^2a\delta}{\Xi_i}.\ \ \ \end{equation} (4.53)
    \begin{equation} \ 4. a_0 = \pm\sqrt{-\frac{\delta}{\Xi_i}}b_0, \ \ a_1 = -\frac{b_0}{\sqrt{\Xi_i}}, \ \ c = -\frac{2b_0}{\sqrt{\Xi_i}}, \ \ \upsilon = -\frac{4b_0^2a\delta}{\Xi_i}. \end{equation} (4.54)

    Substituting (4.51)-(4.54) and the general solutions (3.6) of Eq. (3.5) into (4.50), we obtain more exact solutions of (4.45):

    \begin{equation} u_{1i}(\xi) = c\Phi_i\pm\sqrt{\Xi_i}c\Psi_i, \end{equation} (4.55)

    where \xi = c(x+\frac{ac^2\delta t^\alpha}{\alpha}).

    \begin{equation} u_{2i}(\xi) = \pm\frac{b_0}{\sqrt{\Xi_i}}\Phi_i+b_0\Psi_i, \end{equation} (4.56)

    where \xi = \pm\frac{2b_0}{\sqrt{\Xi_i}}(x+\frac{b_0^2a\delta t^\alpha}{\Xi_i\alpha}).

    \begin{equation} u_{3i}(\xi) = \pm\sqrt{-\frac{\delta}{\Xi_i}}b_0+\frac{b_0}{\sqrt{\Xi_i}}\Phi_i+b_0\Psi_i, \end{equation} (4.57)

    where \xi = \frac{2b_0}{\sqrt{\Xi_i}}(x+\frac{4b_0^2a\delta t^\alpha}{\Xi_i\alpha}).

    \begin{equation} u_{4i}(\xi) = \pm\sqrt{-\frac{\delta}{\Xi_i}}b_0-\frac{b_0}{\sqrt{\Xi_i}}\Phi_i+b_0\Psi_i, \end{equation} (4.58)

    where \xi = -\frac{2b_0}{\sqrt{\Xi_i}}(x+\frac{4b_0^2a\delta t^\alpha}{\Xi_i\alpha}), in which i = 1 for \delta < 0 , i = 2 for \delta > 0 , i = 3 for \delta = 0 , and \Phi_i, \Psi_i, \Xi_i, \ (i = 1, 2, 3) see (4.10)-(4.14).

    Here A_1 and A_2 are arbitrary constants. Therefore, one can freely select their values. If we choose A_1 = 0 , A_2\neq 0 , \mu = 0 and \delta < 0 in (4.55), we the traveling wave solution:

    \begin{equation} u_1(\xi) = c\sqrt{-\delta}\left(\coth(\sqrt{-\delta}\xi)\pm \rm{csch}(\sqrt{-\delta}\xi)\right).\ \end{equation} (4.59)

    If we choose A_1 = 0 , A_2\neq 0 , \mu = 0 and \delta > 0 in (4.55), we obtain the traveling wave solution:

    \begin{equation} u_2(\xi) = c\sqrt{\delta}\left(\cot(\sqrt{\delta}\xi)\pm\csc(\sqrt{\delta}\xi)\right).\ \end{equation} (4.60)

    If we choose A_2 = 0 , A_1\neq 0 , \mu = 0 and \delta > 0 in (4.55), we obtain the traveling wave solution:

    \begin{equation} u_3(\xi) = -c\sqrt{\delta}\left(\tan(\sqrt{\delta}\xi)\pm\sec(\sqrt{\delta}\xi)\right).\ \end{equation} (4.61)

    where \xi = c(x+\frac{ac^2\delta}{\alpha}t^\alpha).

    Similarly, we can write down the other families of exact solutions of Eq. (4.45) which are omitted for convenience.

    In this section, some typical wave figures are given as follows (Figure 1-3):

    Figure 1.  (a) 2D figure of solution u_{11}(\xi) in (4.8) with A_1 = 1, \mu = 1, \delta = -1, A_2 = 1, c = 0.5, a_0 = 2, a = 1, b_2 = 1 , (b) 2D figure of solution u_{12}(\xi) in (4.8) with A_1 = 1, \mu = 1, \delta = 1, A_2 = 1, c = 0.5, a_0 = 2, a = 1, b_2 = 1 .
    Figure 2.  (a) 2D figure of solution u_{11}(\xi) in (4.37) with A_1 = 1, \mu = 2, \delta = -1, A_2 = 1, c = 1, a = 1, b_1 = 1, y = 1, z = 1 , (b) 2D figure of solution u_{12}(\xi) in (4.37) with A_1 = 1, \mu = 1, \delta = 1, A_2 = 1, c = 1, a = 1, b_1 = 1, y = 1, z = 1 .
    Figure 3.  (a) 2D figure of solution u_{11}(\xi) in (4.55) with A_1 = 1, \mu = 2, \delta = -1, A_2 = 1, c = 1, a = 1 , (b) 2D figure of solution u_{12}(\xi) in (4.55) with A_1 = 1, \mu = 1, \delta = 1, A_2 = 1, c = 1, a = 1 .

    The basic idea of the two variable (\phi'/\phi, 1/\phi) -expansion method is to research the new exact traveling wave solutions of the mentioned Eqs. (4.1), (4.29) and Eq. (4.45). The Eqs. (4.1), (4.29) and (4.29) have been studied using various techniques, among them, Authors obtained some new solutions, but the researches considered the Jumaries modified Riemann-Liouville derivative sense for their solution techniques. Nonetheless, the existing analytical solutions reported in [23,24,27] are not correct because the utilized definitions of fractional derivative have some shortcomings that could not be overlooked [21]. Chen et al. [25] found some new solutions of Eq. (4.29) expressed by tanh, coth, tan and cot form. In our case, first time we considered the conformable fractional derivative sense and two variable (\phi'/\phi, 1/\phi) -expansion method for the Eqs. (4.1), (4.29) and (4.45), we found some new solutions expressed by tanh, coth, sech, csch, tan, cot, sec and csc form. To our knowledge, the solutions obtained have not been reported in former literature. So, all the solutions are new in this article.

    In this study, the two variable (\phi'/\phi, 1/\phi) -expansion method with the help of conformable wave transformation has been applied to find out exact traveling wave solutions of time-fractional differential equations. We have obtained some new and further general solitary wave solutions to three nonlinear time fractional differential equation, namely, time-fractional K-S equation, (3+1)-dimensional KdV-ZK equation and FSTO equation in terms of hyperbolic, trigonometric and rational function solution involving parameters. These solutions have important physical implications, for example, these solutions forces are convenient to characterize the hydromagnetic waves in cold plasma, acoustic waves in inharmonic crystals and acoustic-gravity waves incompressible fluids. The obtained results show that the two variable (\phi'/\phi, 1/\phi) -expansion method is direct, consistent, reliable, very much attractive and an effective powerful mathematical tool for obtaining the exact solutions of other time fractional differential equations, and it can be generalized to nonlinear space-time fractional differential equations and space fractional differential equations. Finally, our results in this article have been checked using the Maple by putting them back into the original equation.

    The authors would like to express their deepest appreciation to the reviewers for their valuable suggestions and comments to improve the article.

    This work was supported by the Middle-Aged Academic Backbone of Honghe University (No. 2014GG0105; No.2015GG0207), Scientific Research Foundation of Yunnan Education Department (No. 2018JS479) Yunnan Applied Basic Research Project(No.2018FH001013; 2018FH001014) and the Natural Science Foundation of Education Committee of Yunnan Province (No. 2019J0558).

    The authors declare no conflict of interest.



    [1] C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet, 395 (2020), 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5 doi: 10.1016/S0140-6736(20)30183-5
    [2] CDC COVID-19 Response Team, Severe outcomes among patients with coronavirus disease 2019 (COVID-19)–-United States, February 12– March 16, 2020, MMWR Morb Mortal Wkly Rep, 69 (2020), 343–346. https://doi.org/10.15585/mmwr.mm6912e2 doi: 10.15585/mmwr.mm6912e2
    [3] K. Liu, Y. Y. Fang, Y. Deng, W. Liu, M. F. Wang, J. P. Ma, et al., Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province, Chin. Med. J. (Engl.), 33 (2020), 1025–1031. https://doi.org/10.1097/CM9.0000000000000744 doi: 10.1097/CM9.0000000000000744
    [4] H. A. Rothan, S. N. Byrareddy, The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak, J. Autoimmun., (2020), 102433. https://doi.org/10.1016/j.jaut.2020.102433
    [5] National Health Commission of the People's Republic of China, Announcement of the National Health Commission of the People's Republic of China (No. 1, 2020). (2020-01-20), Available from: http://www.nhc.gov.cn/xcs/zhengcwj/202001/44a3b8245e8049d2837a4f27529cd386.shtml. Accessed date: April 1, 2020.
    [6] J. F. Chan, S. Yuan, K. H. Kok, K. To, H. Chu, J, Yang, et al., A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster, Lancet, 395 (2020), 514–523. https://doi.org/10.1016/S0140-6736(20)30154-9 doi: 10.1016/S0140-6736(20)30154-9
    [7] Q. Li, X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong, et al., Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia, N. Engl. J. Med., 382 (2020), 1199–1207. https://doi.org/10.1056/NEJMoa2001316 doi: 10.1056/NEJMoa2001316
    [8] J. Li, G. Xu, H. Yu, X. Peng, Y. Luo, C. Cao, Clinical characteristics and outcomes of 74 patients with severe or critical COVID-19, Am. J. Med. Sci., 360 (2020), 229–235. https://doi.org/10.1016/j.amjms.2020.05.040 doi: 10.1016/j.amjms.2020.05.040
    [9] W. Yang, Q. Cao, L. Qin, X. Wang, Z. Cheng, A. Pan, et al., Clinical characteristics and imaging manifestations of the 2019 novel coronavirus disease (COVID-19): a multi-center study in Wenzhou city, Zhejiang, China, J. Infect., 80 (2020), 388–393. https://doi.org/10.1016/j.jinf.2020.02.016 doi: 10.1016/j.jinf.2020.02.016
    [10] Y. Xu, J. Dong, W. An, X. Lv, X. Yin, J. Zhang, et al., Clinical and computed tomographic imaging features of novel coronavirus pneumonia caused by SARS-CoV-2, J. Infect., 80 (2020), 394–400. https://doi.org/10.1016/j.jinf.2020.02.017 doi: 10.1016/j.jinf.2020.02.017
    [11] Z. Chen, J. Hu, L. Liu, Y. Zhang, D. Liu, M. Xiong, et al., Clinical characteristics of patients with severe and critical COVID-19 in Wuhan: A single-center, retrospective study, Infect. Dis. Ther., 10 (2021), 1–18. https://doi.org/10.1007/s40121-020-00379-2 doi: 10.1007/s40121-020-00379-2
    [12] F. Zhou, T. Yu, R. Du, G. Fan, Y. Liu, Z. Liu, et al., Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study, Lancet, 395 (2020), 1054–1062. https://doi.org/10.1016/S0140-6736(20)30566-3 doi: 10.1016/S0140-6736(20)30566-3
    [13] J. Tian, X. Yuan, J. Xiao, Q. Zhong, C. Yang, B. Liu, et al., Clinical characteristics and risk factors associated with COVID-19 disease severity in patients with cancer in Wuhan, China: a multicentre, retrospective, cohort study, Lancet Oncol., 21 (2020), 893–903. https://doi.org/10.1016/S1470-2045(20)30309-0 doi: 10.1016/S1470-2045(20)30309-0
    [14] G. Grasselli, A. Zangrillo, A. Zanella, M. Antonelli, L. Cabrini, A. Castelli, et al., Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region Italy, JAMA, 323 (2020), 1574–1581. https://doi.org/10.1001/jama.2020.5394 doi: 10.1001/jama.2020.5394
    [15] M. G. Argenziano, S. L. Bruce, C. L. Slater, J. R. Tiao, M. R. Baldwin, R. G. Barr, et al., Characterization and clinical course of 1000 patients with coronavirus disease 2019 in New York: retrospective case series, BMJ, 369 (2020), m1996. https://doi.org/10.1136/bmj.m1996 doi: 10.1136/bmj.m1996
    [16] X. Yang, Y. Yu, J. Xu, H. Shu, J. Xia, H. Liu, et al., Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study, Lancet Respir. Med., 8 (2020), 475–481. https://doi.org/10.1016/S2213-2600(20)30079-5 doi: 10.1016/S2213-2600(20)30079-5
    [17] National Health Committee of the People's Republic of China, The Diagnostic Criteria of COVID-19 Diagnosis and Treatment Protocol (Trial Edition 8). [2020-08-19], Available from: http://www.nhc.gov.cn/yzygj/s7653p/202008/0a7bdf12bd4b46e5bd28ca7f9a7f5e5a.shtml.
    [18] R. Krishnapuram, J. M. Keller, The possibilistic C-means algorithm: insights and recommendations, IEEE Trans. Fuzzy Syst., 4 (2002), 385–393. https://doi.org/10.1109/91.531779 doi: 10.1109/91.531779
    [19] R. Krishnapuram, J. M. Keller, A possibilistic approach to clustering, IEEE Trans. Fuzzy Syst., 1 (2002), 98–110. https://doi.org/10.1109/91.227387 doi: 10.1109/91.227387
    [20] F. Carvalho, C. P. Tenorio, N. Junior, Partitional fuzzy clustering methods based on adaptive quadratic distances, Fuzzy Sets Syst., 157 (2006), 2833–2857. https://doi.org/10.1016/j.fss.2006.06.004 doi: 10.1016/j.fss.2006.06.004
    [21] N. E. Breslow, D. G. Clayton, Approximate inference in generalized linear mixed models, J. Am. Stat. Assoc., 88 (1993), 9–25. https://doi.org/10.2307/2290687
    [22] N. E. Breslow, X. Lin, Bias correction in generalised linear mixed models with a single component of dispersion, Biometrika, 82 (1995), 81–91. https://doi.org/10.1093/biomet/82.1.81 doi: 10.1093/biomet/82.1.81
    [23] S. W. Raudenbush, M. Yang, M. Yosef, Maximum likelihood for generalized linear models with nested random effects via high-Order, multivariate laplace approximation, J. Comput. Graphical Stat., 9 (2000), 141–157. https://doi.org/10.2307/1390617 doi: 10.2307/1390617
    [24] D. Bates, M. Maechler, B. Bolker, S. Walker, Fitting linear mixed-effects models using lme4, J. Stat. Software, 67 (2015), 1–48. https://doi.org/10.18637/jss.v067.i01 doi: 10.18637/jss.v067.i01
    [25] M. E. Brooks, K. Kristensen, K. J. van Benthem, A. Magnusson, C. W. Berg, A. Nielsen, et al., glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling, R J., 9 (2017), 378–400. https://doi.org/10.32614/rj-2017-066 doi: 10.32614/rj-2017-066
    [26] P. E. Shrout, J. L. Fleiss, Intraclass correlations: uses in assessing rater reliability, Psychol. Bull., 86 (1979), 420–428. https://doi.org/10.1037/0033-2909.86.2.420 doi: 10.1037/0033-2909.86.2.420
    [27] J. Twisk, Applied Multilevel Analysis, Cambridge University Press, 2006. https://doi.org/10.1017/cbo9780511610806
    [28] P. K. Andersen, R. D. Gill, Cox's regression model for counting pro- cesses: A large sample study, Ann. Stat., 10 (1982), 1100–1120. https://doi.org/10.1214/aos/1176345976 doi: 10.1214/aos/1176345976
    [29] T. Fleming, D. Harrington, Counting Processes and Survival Analysis, Wiley, New York, (1991), 343–346.
    [30] P. Andersen, O. Borgan, R. Gill, N. Keiding, Statistical Models Based on Counting Processes, Springer-Verlag, New York, 1993. https://doi.org/10.1007/978-1-4612-4348-9
    [31] D. Ludecke, M. Ben-Shachar, I. Patil, P. Waggoner, D. Makowski, Performance: An R package for assessment, comparison and testing of statistical Models, J. Open Source Software, 6 (2021), 3139. https://doi.org/10.21105/joss.03139 doi: 10.21105/joss.03139
    [32] H. Akaike, A new look at the statistical model identification, IEEE Trans. Autom. Control, 19 (1974), 716–723. https://doi.org/10.1109/tac.1974.1100705 doi: 10.1109/tac.1974.1100705
    [33] A. Gelman, Y. Su, arm: Data analysis using regression and multilevel/hierarchical models, R package version 1.12-2, 2021.
    [34] J. Fox, S. Weisberg, An R Companion to Applied Regression, 3rd edition, Thousand Oaks CA: Sage, 2019.
    [35] T. M. Therneau, P. M. Grambsch, Modeling Survival Data: Extending the Cox Model, Springer, New York, 2000.
    [36] Y. Liu, B. Mao, S. Liang, J. Yang, H. Lu, Y. Chai, et al., Association between age and clinical characteristics and outcomes of COVID-19, Eur. Respir. J., 55 (2020), 2001112. https://doi.org/10.1183/13993003.01112-2020 doi: 10.1183/13993003.01112-2020
    [37] L. Wang, W. He, X. Yu, D. Hu, M. Bao, H. Liu, et al., Coronavirus disease 2019 in elderly patients: characteristics andprognostic factors based on 4-week follow-up, J. Infect., 80 (2020), 639–645. https://doi.org/10.1016/j.jinf.2020.03.019 doi: 10.1016/j.jinf.2020.03.019
    [38] J. Lian, X. Jin, S. Hao, H. Cai, S. Zhang, L. Zheng, et al., Analysis of epidemiological and clinical features in older patients with Coronavirus disease 2019 (COVID-19) outside Wuhan, Clin. Infect. Dis., 71 (2020), 740–747. https://doi.org/10.1093/cid/ciaa242 doi: 10.1093/cid/ciaa242
    [39] G. Ye, Z. Pan, Y. Pan, Q. Deng, L. Chen, J. Li, et al., Clinical characteristics of severe acute respiratory syndrome coronavirus 2 reactivation, J. Infect., 80 (2020), e14–17. https://doi.org/10.1016/j.jinf.2020.03.001 doi: 10.1016/j.jinf.2020.03.001
  • This article has been cited by:

    1. Aniqa Aniqa, Jamshad Ahmad, Soliton solution of fractional Sharma-Tasso-Olever equation via an efficient (G′/G)-expansion method, 2022, 13, 20904479, 101528, 10.1016/j.asej.2021.06.014
    2. Hongkua Lin, Explicit Exact Solutions of Space-time Fractional Drinfel’d-Sokolov-Wilson Equations, 2021, 2068, 1742-6588, 012005, 10.1088/1742-6596/2068/1/012005
    3. Sevil Çulha Ünal, Ayşegül Daşcıoğlu, Exact solutions of time fractional Korteweg–de Vries–Zakharov–Kuznetsov equation, 2021, 44, 0170-4214, 9557, 10.1002/mma.7379
    4. Shumaila Naz, Qazi Mahmood Ul-Hassan, Jamshad ahmad, Aniqa Zulfiqar, Dynamics of new optical solutions for nonlinear equations via a novel analytical technique, 2022, 54, 0306-8919, 10.1007/s11082-022-03793-7
    5. Mst Munny Khatun, M Ali Akbar, Zarina K Fayazova, Onur Alp İlhan, Various wave solutions to the nonlinear fractional Korteweg-de Vries Zakharov-Kuznetsov equation by a new approach to the two-variable expansion scheme, 2024, 99, 0031-8949, 035218, 10.1088/1402-4896/ad23ba
    6. Ramima Akter, Shuvo Sarker, Anish Adhikary, M. Ali Akbar, Pinakee Dey, M.S. Osman, Dynamics of geometric shape solutions for space-time fractional modified equal width equation with beta derivative, 2024, 11, 26668181, 100841, 10.1016/j.padiff.2024.100841
    7. Yating Hao, Ben Gao, Exact solutions to the (3 + 1)-dimensional time-fractional KdV–Zakharov–Kuznetsov equation and modified KdV equation with variable coefficients, 2024, 98, 0973-7111, 10.1007/s12043-023-02693-z
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2344) PDF downloads(98) Cited by(0)

Figures and Tables

Figures(5)  /  Tables(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog